Suppression of the non-linear background in a multimode fibre CARS endoscope

. 2022 Feb 01 ; 13 (2) : 862-874. [epub] 20220120

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35284193

Multimode fibres show great potential for use as miniature endoscopes for imaging deep in tissue with minimal damage. When used for coherent anti-Stokes Raman scattering (CARS) microscopy with femtosecond excitation sources, a high band-width probe is required to efficiently focus the broadband laser pulses at the sample plane. Although graded-index (GRIN) fibres have a large bandwidth, it is accompanied by a strong background signal from four-wave mixing and other non-linear processes occurring inside the fibre. We demonstrate that using a composite probe consisting of a GRIN fibre with a spliced on step-index fibre reduces the intensity of the non-linear background by more than one order of magnitude without significantly decreasing the focusing performance of the probe. Using this composite probe we acquire CARS images of biologically relevant tissue such as myelinated axons in the brain with good contrast.

Zobrazit více v PubMed

Uckermann O., Galli R., Tamosaityte S., Leipnitz E., Geiger K. D., Schackert G., Koch E., Steiner G., Kirsch M., “Label-free delineation of brain tumors by coherent anti-Stokes Raman scattering microscopy in an orthotopic mouse model and human glioblastoma,” PLoS One 9(9), e107115 (2014).10.1371/journal.pone.0107115 PubMed DOI PMC

Bocklitz T. W., Salah F. S., Vogler N., Heuke S., Chernavskaia O., Schmidt C., Waldner M. J., Greten F. R., Bräuer R., Schmitt M., Stallmach A., Petersen I., Popp J., “Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool,” BMC Cancer 16(1), 534 (2016).10.1186/s12885-016-2520-x PubMed DOI PMC

Wang H., Fu Y., Zickmund P., Shi R., Cheng J.-X., “Coherent Anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).10.1529/biophysj.105.061911 PubMed DOI PMC

Fu Y., Huff T. B., Wang H.-W., Cheng J.-X., Wang H., “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express 16(24), 19396–19409 (2008).10.1364/OE.16.019396 PubMed DOI PMC

Welte M. A., “As the fat flies: the dynamic lipid droplets of Drosophila embryos,” Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 1851(9), 1156–1185 (2015).10.1016/j.bbalip.2015.04.002 PubMed DOI PMC

Lombardini A., Mytskaniuk V., Sivankutty S., Andresen E. R., Chen X., Wenger J., Fabert M., Joly N., Louradour F., Kudlinski A., Rigneault H., “High-resolution multimodal flexible coherent Raman endoscope,” Light: Sci. Appl. 7(1), 10 (2018).10.1038/s41377-018-0003-3 PubMed DOI PMC

Lukic A., Dochow S., Bae H., Matz G., Latka I., Messerschmidt B., Schmitt M., Popp J., “Endoscopic fiber probe for nonlinear spectroscopic imaging,” Optica 4(5), 496–501 (2017).10.1364/OPTICA.4.000496 DOI

Leite I. T., Turtaev S., Jiang X., Šiler M., Cuschieri A., Russell P. S. J., Čižmár T., “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).10.1038/s41566-017-0053-8 DOI

Vellekoop I. M., Mosk A. P., “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).10.1364/OL.32.002309 PubMed DOI

Rotter S., Gigan S., “Light fields in complex media: mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89(1), 015005 (2017).10.1103/RevModPhys.89.015005 DOI

Čižmár T., Dholakia K., “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).10.1364/OE.19.018871 PubMed DOI

Čižmár T., Dholakia K., “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).10.1038/ncomms2024 PubMed DOI PMC

Papadopoulos I. N., Farahi S., Moser C., Psaltis D., “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).10.1364/BOE.4.000260 PubMed DOI PMC

Turtaev S., Leite I. T., Altwegg-Boussac T., Pakan J. M. P., Rochefort N. L., Čižmár T., “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).10.1038/s41377-018-0094-x PubMed DOI PMC

Vasquez-Lopez S. A., Turcotte R., Koren V., Plöschner M., Padamsey Z., Booth M. J., Čižmár T., Emptage N. J., “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 110 (2018).10.1038/s41377-018-0111-0 PubMed DOI PMC

Choi Y., Yoon C., Kim M., Yang T. D., Fang-Yen C., Dasari R. R., Lee K. J., Choi W., “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).10.1103/PhysRevLett.109.203901 PubMed DOI PMC

Loterie D., Goorden S. A., Psaltis D., Moser C., “Confocal microscopy through a multimode fiber using optical correlation,” Opt. Lett. 40(24), 5754–5757 (2015).10.1364/OL.40.005754 PubMed DOI

Sivankutty S., Andresen E. R., Cossart R., Bouwmans G., Monneret S., Rigneault H., “Ultra-thin rigid endoscope: Two-photon imaging through a graded-index multi-mode fiber,” Opt. Express 24(2), 825–841 (2016).10.1364/OE.24.000825 PubMed DOI

Kakkava E., Romito M., Conkey D. B., Loterie D., Stankovic K. M., Moser C., Psaltis D., “Selective femtosecond laser ablation via two-photon fluorescence imaging through a multimode fiber,” Biomed. Opt. Express 10(2), 423–433 (2019).10.1364/BOE.10.000423 PubMed DOI PMC

Turcotte R., Schmidt C. C., Booth M. J., Emptage N. J., “Volumetric two-photon fluorescence imaging of live neurons using a multimode optical fiber,” Opt. Lett. 45(24), 6599–6602 (2020).10.1364/OL.409464 PubMed DOI

Gusachenko I., Chen M., Dholakia K., “Raman imaging through a single multimode fibre,” Opt. Express 25(12), 13782–13798 (2017).10.1364/OE.25.013782 PubMed DOI

Deng S., Loterie D., Konstantinou G., Psaltis D., Moser C., “Raman imaging through multimode sapphire fiber,” Opt. Express 27(2), 1090–1098 (2019).10.1364/OE.27.001090 PubMed DOI

Cifuentes A., Pikálek T., Ondráčková P., Amezcua-Correa R., Antonio-Lopez J. E., Čižmár T., Trägårdh J., “Polarization-resolved second-harmonic generation imaging through a multimode fiber,” Optica 8(8), 1065–1074 (2021).10.1364/OPTICA.430295 DOI

Brustlein S., Berto P., Hostein R., Ferrand P., Billaudeau C., Marguet D., Muir A., Knight J., Rigneault H., “Double-clad hollow core photonic crystal fiber for coherent Raman endoscope,” Opt. Express 19(13), 12562–12568 (2011).10.1364/OE.19.012562 PubMed DOI

Balu M., Liu G., Chen Z., Tromberg B. J., Potma E. O., “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express 18(3), 2380–2388 (2010).10.1364/OE.18.002380 PubMed DOI PMC

Latka I., Dochow S., Krafft C., Dietzek B., Popp J., “Fiber optic probes for linear and nonlinear Raman applications - Current trends and future development: fiber optic Raman probes,” Laser Photonics Rev. 7(5), 698–731 (2013).10.1002/lpor.201200049 DOI

Pshenay-Severin E., Bae H., Reichwald K., Matz G., Bierlich J., Kobelke J., Lorenz A., Schwuchow A., Meyer-Zedler T., Schmitt M., Messerschmidt B., Popp J., “Multimodal nonlinear endomicroscopic imaging probe using a double-core double-clad fiber and focus-combining micro-optical concept,” Light: Sci. Appl. 10(1), 207 (2021).10.1038/s41377-021-00648-w PubMed DOI PMC

Trägårdh J., Pikálek T., Šerý M., Meyer T., Popp J., Čižmár T., “Label-free CARS microscopy through a multimode fibre endoscope,” Opt. Express 27(21), 30055–30066 (2019).10.1364/OE.27.030055 PubMed DOI

Meyer T., Chemnitz M., Baumgartl M., Gottschall T., Pascher T., Matthäus C., Romeike B. F. M., Brehm B. R., Limpert J., Tünnermann A., Schmitt M., Dietzek B., Popp J., “Expanding multimodal microscopy by high spectral resolution coherent Anti-Stokes Raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).10.1021/ac400570w PubMed DOI

Hellerer T., Enejder A. M., Zumbusch A., “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).10.1063/1.1768312 DOI

Mohseni M., Polzer C., Hellerer T., “Resolution of spectral focusing in coherent Raman imaging,” Opt. Express 26(8), 10230–10241 (2018).10.1364/OE.26.010230 PubMed DOI

Rocha-Mendoza I., Langbein W., Borri P., “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).10.1063/1.3028346 DOI

© 2011 Allen Institute for Brain Science. Allen Mouse Brain Atlas. Available from: http://atlas.brain-map.org/atlas?atlas=1&plate=100960092.

Lein E. S., Hawrylycz M. J., Ao N., Ayres M., Bensinger A., Bernard A., Boe A. F., Boguski M. S., Brockway K. S., Byrnes E. J., Chen L., Chen L., Chen T.-M., Chi Chin M., Chong J., Crook B. E., Czaplinska A., Dang C. N., Datta S., Dee N. R., Desaki A. L., Desta T., Diep E., Dolbeare T. A., Donelan M. J., Dong H.-W., Dougherty J. G., Duncan B. J., Ebbert A. J., Eichele G., Estin L. K., Faber C., Facer B. A., Fields R., Fischer S. R., Fliss T. P., Frensley C., Gates S. N., Glattfelder K. J., Halverson K. R., Hart M. R., Hohmann J. G., Howell M. P., Jeung D. P., Johnson R. A., Karr P. T., Kawal R., Kidney J. M., Knapik R. H., Kuan C. L., Lake J. H., Laramee A. R., Larsen K. D., Lau C., Lemon T. A., Liang A. J., Liu Y., Luong L. T., Michaels J., Morgan J. J., Morgan R. J., Mortrud M. T., Mosqueda N. F., Ng L. L., Ng R., Orta G. J., Overly C. C., Pak T. H., Parry S. E., Pathak S. D., Pearson O. C., Puchalski R. B., Riley Z. L., Rockett H. R., Rowland S. A., Royall J. J., Ruiz M. J., Sarno N. R., Schaffnit K., Shapovalova N. V., Sivisay T., Slaughterbeck C. R., Smith S. C., Smith K. A., Smith B. I., Sodt A. J., Stewart N. N., Stumpf K.-R., Sunkin S. M., Sutram M., Tam A., Teemer C. D., Thaller C., Thompson C. L., Varnam L. R., Visel A., Whitlock R. M., Wohnoutka P. E., Wolkey C. K., Wong V. Y., Wood M., Yaylaoglu M. B., Young R. C., Youngstrom B. L., Feng Yuan X., Zhang B., Zwingman T. A., Jones A. R., “Genome-wide atlas of gene expression in the adult mouse brain,” Nature 445(7124), 168–176 (2007).10.1038/nature05453 PubMed DOI

Pikálek T., Trägårdh J., Simpson S., Čižmár T., “Wavelength dependent characterization of a multimode fibre endoscope,” Opt. Express 27(20), 28239–28253 (2019).10.1364/OE.27.028239 PubMed DOI

Trägårdh J., Pikálek T., “Background suppression in a multimode fiber CARS endoscope,” figshare (2021), 10.6084/m9.figshare.16686094. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Suppression of the non-linear background in a multimode fibre CARS endoscope

. 2022 Feb 01 ; 13 (2) : 862-874. [epub] 20220120

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...