Suppression of the non-linear background in a multimode fibre CARS endoscope
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35284193
PubMed Central
PMC8884213
DOI
10.1364/boe.450375
PII: 450375
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Multimode fibres show great potential for use as miniature endoscopes for imaging deep in tissue with minimal damage. When used for coherent anti-Stokes Raman scattering (CARS) microscopy with femtosecond excitation sources, a high band-width probe is required to efficiently focus the broadband laser pulses at the sample plane. Although graded-index (GRIN) fibres have a large bandwidth, it is accompanied by a strong background signal from four-wave mixing and other non-linear processes occurring inside the fibre. We demonstrate that using a composite probe consisting of a GRIN fibre with a spliced on step-index fibre reduces the intensity of the non-linear background by more than one order of magnitude without significantly decreasing the focusing performance of the probe. Using this composite probe we acquire CARS images of biologically relevant tissue such as myelinated axons in the brain with good contrast.
Institute of Applied Optics Friedrich Schiller University Jena Fröbelstieg 1 07743 Jena Germany
Leibniz Institute of Photonic Technology Albert Einstein Straße 9 07745 Jena Germany
Zobrazit více v PubMed
Uckermann O., Galli R., Tamosaityte S., Leipnitz E., Geiger K. D., Schackert G., Koch E., Steiner G., Kirsch M., “Label-free delineation of brain tumors by coherent anti-Stokes Raman scattering microscopy in an orthotopic mouse model and human glioblastoma,” PLoS One 9(9), e107115 (2014).10.1371/journal.pone.0107115 PubMed DOI PMC
Bocklitz T. W., Salah F. S., Vogler N., Heuke S., Chernavskaia O., Schmidt C., Waldner M. J., Greten F. R., Bräuer R., Schmitt M., Stallmach A., Petersen I., Popp J., “Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool,” BMC Cancer 16(1), 534 (2016).10.1186/s12885-016-2520-x PubMed DOI PMC
Wang H., Fu Y., Zickmund P., Shi R., Cheng J.-X., “Coherent Anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005).10.1529/biophysj.105.061911 PubMed DOI PMC
Fu Y., Huff T. B., Wang H.-W., Cheng J.-X., Wang H., “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express 16(24), 19396–19409 (2008).10.1364/OE.16.019396 PubMed DOI PMC
Welte M. A., “As the fat flies: the dynamic lipid droplets of Drosophila embryos,” Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 1851(9), 1156–1185 (2015).10.1016/j.bbalip.2015.04.002 PubMed DOI PMC
Lombardini A., Mytskaniuk V., Sivankutty S., Andresen E. R., Chen X., Wenger J., Fabert M., Joly N., Louradour F., Kudlinski A., Rigneault H., “High-resolution multimodal flexible coherent Raman endoscope,” Light: Sci. Appl. 7(1), 10 (2018).10.1038/s41377-018-0003-3 PubMed DOI PMC
Lukic A., Dochow S., Bae H., Matz G., Latka I., Messerschmidt B., Schmitt M., Popp J., “Endoscopic fiber probe for nonlinear spectroscopic imaging,” Optica 4(5), 496–501 (2017).10.1364/OPTICA.4.000496 DOI
Leite I. T., Turtaev S., Jiang X., Šiler M., Cuschieri A., Russell P. S. J., Čižmár T., “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12(1), 33–39 (2018).10.1038/s41566-017-0053-8 DOI
Vellekoop I. M., Mosk A. P., “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).10.1364/OL.32.002309 PubMed DOI
Rotter S., Gigan S., “Light fields in complex media: mesoscopic scattering meets wave control,” Rev. Mod. Phys. 89(1), 015005 (2017).10.1103/RevModPhys.89.015005 DOI
Čižmár T., Dholakia K., “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).10.1364/OE.19.018871 PubMed DOI
Čižmár T., Dholakia K., “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3(1), 1027 (2012).10.1038/ncomms2024 PubMed DOI PMC
Papadopoulos I. N., Farahi S., Moser C., Psaltis D., “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).10.1364/BOE.4.000260 PubMed DOI PMC
Turtaev S., Leite I. T., Altwegg-Boussac T., Pakan J. M. P., Rochefort N. L., Čižmár T., “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light: Sci. Appl. 7(1), 92 (2018).10.1038/s41377-018-0094-x PubMed DOI PMC
Vasquez-Lopez S. A., Turcotte R., Koren V., Plöschner M., Padamsey Z., Booth M. J., Čižmár T., Emptage N. J., “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light: Sci. Appl. 7(1), 110 (2018).10.1038/s41377-018-0111-0 PubMed DOI PMC
Choi Y., Yoon C., Kim M., Yang T. D., Fang-Yen C., Dasari R. R., Lee K. J., Choi W., “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).10.1103/PhysRevLett.109.203901 PubMed DOI PMC
Loterie D., Goorden S. A., Psaltis D., Moser C., “Confocal microscopy through a multimode fiber using optical correlation,” Opt. Lett. 40(24), 5754–5757 (2015).10.1364/OL.40.005754 PubMed DOI
Sivankutty S., Andresen E. R., Cossart R., Bouwmans G., Monneret S., Rigneault H., “Ultra-thin rigid endoscope: Two-photon imaging through a graded-index multi-mode fiber,” Opt. Express 24(2), 825–841 (2016).10.1364/OE.24.000825 PubMed DOI
Kakkava E., Romito M., Conkey D. B., Loterie D., Stankovic K. M., Moser C., Psaltis D., “Selective femtosecond laser ablation via two-photon fluorescence imaging through a multimode fiber,” Biomed. Opt. Express 10(2), 423–433 (2019).10.1364/BOE.10.000423 PubMed DOI PMC
Turcotte R., Schmidt C. C., Booth M. J., Emptage N. J., “Volumetric two-photon fluorescence imaging of live neurons using a multimode optical fiber,” Opt. Lett. 45(24), 6599–6602 (2020).10.1364/OL.409464 PubMed DOI
Gusachenko I., Chen M., Dholakia K., “Raman imaging through a single multimode fibre,” Opt. Express 25(12), 13782–13798 (2017).10.1364/OE.25.013782 PubMed DOI
Deng S., Loterie D., Konstantinou G., Psaltis D., Moser C., “Raman imaging through multimode sapphire fiber,” Opt. Express 27(2), 1090–1098 (2019).10.1364/OE.27.001090 PubMed DOI
Cifuentes A., Pikálek T., Ondráčková P., Amezcua-Correa R., Antonio-Lopez J. E., Čižmár T., Trägårdh J., “Polarization-resolved second-harmonic generation imaging through a multimode fiber,” Optica 8(8), 1065–1074 (2021).10.1364/OPTICA.430295 DOI
Brustlein S., Berto P., Hostein R., Ferrand P., Billaudeau C., Marguet D., Muir A., Knight J., Rigneault H., “Double-clad hollow core photonic crystal fiber for coherent Raman endoscope,” Opt. Express 19(13), 12562–12568 (2011).10.1364/OE.19.012562 PubMed DOI
Balu M., Liu G., Chen Z., Tromberg B. J., Potma E. O., “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express 18(3), 2380–2388 (2010).10.1364/OE.18.002380 PubMed DOI PMC
Latka I., Dochow S., Krafft C., Dietzek B., Popp J., “Fiber optic probes for linear and nonlinear Raman applications - Current trends and future development: fiber optic Raman probes,” Laser Photonics Rev. 7(5), 698–731 (2013).10.1002/lpor.201200049 DOI
Pshenay-Severin E., Bae H., Reichwald K., Matz G., Bierlich J., Kobelke J., Lorenz A., Schwuchow A., Meyer-Zedler T., Schmitt M., Messerschmidt B., Popp J., “Multimodal nonlinear endomicroscopic imaging probe using a double-core double-clad fiber and focus-combining micro-optical concept,” Light: Sci. Appl. 10(1), 207 (2021).10.1038/s41377-021-00648-w PubMed DOI PMC
Trägårdh J., Pikálek T., Šerý M., Meyer T., Popp J., Čižmár T., “Label-free CARS microscopy through a multimode fibre endoscope,” Opt. Express 27(21), 30055–30066 (2019).10.1364/OE.27.030055 PubMed DOI
Meyer T., Chemnitz M., Baumgartl M., Gottschall T., Pascher T., Matthäus C., Romeike B. F. M., Brehm B. R., Limpert J., Tünnermann A., Schmitt M., Dietzek B., Popp J., “Expanding multimodal microscopy by high spectral resolution coherent Anti-Stokes Raman scattering imaging for clinical disease diagnostics,” Anal. Chem. 85(14), 6703–6715 (2013).10.1021/ac400570w PubMed DOI
Hellerer T., Enejder A. M., Zumbusch A., “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).10.1063/1.1768312 DOI
Mohseni M., Polzer C., Hellerer T., “Resolution of spectral focusing in coherent Raman imaging,” Opt. Express 26(8), 10230–10241 (2018).10.1364/OE.26.010230 PubMed DOI
Rocha-Mendoza I., Langbein W., Borri P., “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).10.1063/1.3028346 DOI
© 2011 Allen Institute for Brain Science. Allen Mouse Brain Atlas. Available from: http://atlas.brain-map.org/atlas?atlas=1&plate=100960092.
Lein E. S., Hawrylycz M. J., Ao N., Ayres M., Bensinger A., Bernard A., Boe A. F., Boguski M. S., Brockway K. S., Byrnes E. J., Chen L., Chen L., Chen T.-M., Chi Chin M., Chong J., Crook B. E., Czaplinska A., Dang C. N., Datta S., Dee N. R., Desaki A. L., Desta T., Diep E., Dolbeare T. A., Donelan M. J., Dong H.-W., Dougherty J. G., Duncan B. J., Ebbert A. J., Eichele G., Estin L. K., Faber C., Facer B. A., Fields R., Fischer S. R., Fliss T. P., Frensley C., Gates S. N., Glattfelder K. J., Halverson K. R., Hart M. R., Hohmann J. G., Howell M. P., Jeung D. P., Johnson R. A., Karr P. T., Kawal R., Kidney J. M., Knapik R. H., Kuan C. L., Lake J. H., Laramee A. R., Larsen K. D., Lau C., Lemon T. A., Liang A. J., Liu Y., Luong L. T., Michaels J., Morgan J. J., Morgan R. J., Mortrud M. T., Mosqueda N. F., Ng L. L., Ng R., Orta G. J., Overly C. C., Pak T. H., Parry S. E., Pathak S. D., Pearson O. C., Puchalski R. B., Riley Z. L., Rockett H. R., Rowland S. A., Royall J. J., Ruiz M. J., Sarno N. R., Schaffnit K., Shapovalova N. V., Sivisay T., Slaughterbeck C. R., Smith S. C., Smith K. A., Smith B. I., Sodt A. J., Stewart N. N., Stumpf K.-R., Sunkin S. M., Sutram M., Tam A., Teemer C. D., Thaller C., Thompson C. L., Varnam L. R., Visel A., Whitlock R. M., Wohnoutka P. E., Wolkey C. K., Wong V. Y., Wood M., Yaylaoglu M. B., Young R. C., Youngstrom B. L., Feng Yuan X., Zhang B., Zwingman T. A., Jones A. R., “Genome-wide atlas of gene expression in the adult mouse brain,” Nature 445(7124), 168–176 (2007).10.1038/nature05453 PubMed DOI
Pikálek T., Trägårdh J., Simpson S., Čižmár T., “Wavelength dependent characterization of a multimode fibre endoscope,” Opt. Express 27(20), 28239–28253 (2019).10.1364/OE.27.028239 PubMed DOI
Trägårdh J., Pikálek T., “Background suppression in a multimode fiber CARS endoscope,” figshare (2021), 10.6084/m9.figshare.16686094. PubMed DOI PMC
Suppression of the non-linear background in a multimode fibre CARS endoscope