Memory effect assisted imaging through multimode optical fibres
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34145228
PubMed Central
PMC8213736
DOI
10.1038/s41467-021-23729-1
PII: 10.1038/s41467-021-23729-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
When light propagates through opaque material, the spatial information it holds becomes scrambled, but not necessarily lost. Two classes of techniques have emerged to recover this information: methods relying on optical memory effects, and transmission matrix (TM) approaches. Here we develop a general framework describing the nature of memory effects in structures of arbitrary geometry. We show how this framework, when combined with wavefront shaping driven by feedback from a guide-star, enables estimation of the TM of any such system. This highlights that guide-star assisted imaging is possible regardless of the type of memory effect a scatterer exhibits. We apply this concept to multimode fibres (MMFs) and identify a 'quasi-radial' memory effect. This allows the TM of an MMF to be approximated from only one end - an important step for micro-endoscopy. Our work broadens the applications of memory effects to a range of novel imaging and optical communication scenarios.
Institute of Scientific Instruments of CAS Brno Czech Republic
Leibniz Institute of Photonic Technology Jena Germany
Zobrazit více v PubMed
Vellekoop IM, Mosk AP. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 2007;32:2309–2311. doi: 10.1364/OL.32.002309. PubMed DOI
Yaqoob Z, Psaltis D, Feld MS, Yang C. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics. 2008;2:110. doi: 10.1038/nphoton.2007.297. PubMed DOI PMC
Popoff SM, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 2010;104:100601. doi: 10.1103/PhysRevLett.104.100601. PubMed DOI
Čižmár T, Mazilu M, Dholakia K. In situ wavefront correction and its application to micromanipulation. Nat. Photonics. 2010;4:388. doi: 10.1038/nphoton.2010.85. DOI
Vellekoop IM, Lagendijk A, Mosk AP. Exploiting disorder for perfect focusing. Nat. Photonics. 2010;4:320. doi: 10.1038/nphoton.2010.3. DOI
Popoff S, Lerosey G, Fink M, Boccara AC, Gigan S. Image transmission through an opaque material. Nat. Commun. 2010;1:81. doi: 10.1038/ncomms1078. PubMed DOI
DiLeonardo R, Bianchi S. Hologram transmission through multi-mode optical fibers. Opt. Express. 2011;19:247–254. doi: 10.1364/OE.19.000247. PubMed DOI
Mosk AP, Lagendijk A, Lerosey G, Fink M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics. 2012;6:283. doi: 10.1038/nphoton.2012.88. DOI
Rotter S, Gigan S. Light fields in complex media: Mesoscopic scattering meets wave control. Rev. Mod. Phys. 2017;89:015005. doi: 10.1103/RevModPhys.89.015005. DOI
Feng S, Kane C, Lee PA, Stone AD. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 1988;61:834. doi: 10.1103/PhysRevLett.61.834. PubMed DOI
Freund I, Rosenbluh M, Feng S. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett. 1988;61:2328. doi: 10.1103/PhysRevLett.61.2328. PubMed DOI
Judkewitz B, Horstmeyer R, Vellekoop IM, Papadopoulos IN, Yang C. Translation correlations in anisotropically scattering media. Nat. Phys. 2015;11:684–689. doi: 10.1038/nphys3373. DOI
Yílmaz H, et al. Angular memory effect of transmission eigenchannels. Phys. Rev. Lett. 2019;123:203901. doi: 10.1103/PhysRevLett.123.203901. PubMed DOI
de Boer JF, van Albada MP, Lagendijk A. Transmission and intensity correlations in wave propagation through random media. Phys. Rev. B. 1992;45:658. doi: 10.1103/PhysRevB.45.658. PubMed DOI
Kadobianskyi M, Papadopoulos IN, Chaigne T, Horstmeyer R, Judkewitz B. Scattering correlations of time-gated light. Optica. 2018;5:389–394. doi: 10.1364/OPTICA.5.000389. DOI
Choi Y, et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett. 2012;109:203901. doi: 10.1103/PhysRevLett.109.203901. PubMed DOI PMC
Čižmár T, Dholakia K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 2012;3:1027. doi: 10.1038/ncomms2024. PubMed DOI PMC
Ohayon S, Caravaca-Aguirre A, Piestun R, DiCarlo JJ. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomed. Opt. express. 2018;9:1492–1509. doi: 10.1364/BOE.9.001492. PubMed DOI PMC
Turtaev S, et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light.: Sci. Appl. 2018;7:92. doi: 10.1038/s41377-018-0094-x. PubMed DOI PMC
Bertolotti J, et al. Non-invasive imaging through opaque scattering layers. Nature. 2012;491:232. doi: 10.1038/nature11578. PubMed DOI
Fienup JR. Reconstruction of an object from the modulus of its fourier transform. Opt. Lett. 1978;3:27–29. doi: 10.1364/OL.3.000027. PubMed DOI
Fugate RQ, et al. Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star. Nature. 1991;353:144–146. doi: 10.1038/353144a0. DOI
Yoon, S. et al. Deep optical imaging within complex scattering media. Nat. Rev. Phys.2, 1–18, 2020.
Vellekoop IM, Cui M, Yang C. Digital optical phase conjugation of fluorescence in turbid tissue. Appl. Phys. Lett. 2012;101:081108. doi: 10.1063/1.4745775. PubMed DOI PMC
Ruan H, et al. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping. Optica. 2017;4:1337–1343. doi: 10.1364/OPTICA.4.001337. PubMed DOI PMC
Zhou EH, Ruan H, Yang C, Judkewitz B. Focusing on moving targets through scattering samples. Optica. 2014;1:227–232. doi: 10.1364/OPTICA.1.000227. PubMed DOI PMC
Kong F, et al. Photoacoustic-guided convergence of light through optically diffusive media. Opt. Lett. 2011;36:2053–2055. doi: 10.1364/OL.36.002053. PubMed DOI PMC
Judkewitz B, Wang YM, Horstmeyer R, Mathy A, Yang C. Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (trove) Nat. photonics. 2013;7:300. doi: 10.1038/nphoton.2013.31. PubMed DOI PMC
Horstmeyer R, Ruan H, Yang C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics. 2015;9:563. doi: 10.1038/nphoton.2015.140. PubMed DOI PMC
Osnabrugge G, Horstmeyer R, Papadopoulos IN, Judkewitz B, Vellekoop IM. Generalized optical memory effect. Optica. 2017;4:886–892. doi: 10.1364/OPTICA.4.000886. DOI
Papadopoulos IN, Jouhanneau J-S, Poulet JFA, Judkewitz B. Scattering compensation by focus scanning holographic aberration probing (f-sharp) Nat. Photonics. 2016;11:116–123. doi: 10.1038/nphoton.2016.252. DOI
Okamoto, K. Fundamentals of Optical Waveguides. (Academic press, 2006).
Plöschner M, Tyc T, Čižmár T. Seeing through chaos in multimode fibres. Nat. Photonics. 2015;9:529. doi: 10.1038/nphoton.2015.112. DOI
Leach J, Padgett MJ, Barnett SM, Franke-Arnold S, Courtial J. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 2002;88:257901. doi: 10.1103/PhysRevLett.88.257901. PubMed DOI
Amitonova LV, Mosk AP, Pinkse PWH. Rotational memory effect of a multimode fiber. Opt. express. 2015;23:20569–20575. doi: 10.1364/OE.23.020569. PubMed DOI
Shapiro JH. Computational ghost imaging. Phys. Rev. A. 2008;78:061802. doi: 10.1103/PhysRevA.78.061802. DOI
Amitonova LV, De Boer JF. Compressive imaging through a multimode fiber. Opt. Lett. 2018;43:5427–5430. doi: 10.1364/OL.43.005427. PubMed DOI
Turtaev S, et al. Comparison of nematic liquid-crystal and dmd based spatial light modulation in complex photonics. Opt. Express. 2017;25:29874–29884. doi: 10.1364/OE.25.029874. PubMed DOI
Xiong W, et al. Principal modes in multimode fibers: exploring the crossover from weak to strong mode coupling. Opt. Express. 2017;25:2709–2724. doi: 10.1364/OE.25.002709. PubMed DOI
Leite IT, et al. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre. Nat. Photonics. 2018;12:33–39. doi: 10.1038/s41566-017-0053-8. DOI
Zhu L, et al. Chromato-axial memory effect through a forward-scattering slab. Optica. 2020;7:338–345. doi: 10.1364/OPTICA.382209. DOI
Boniface A, Mounaix M, Blochet B, Piestun R, Gigan S. Transmission-matrix-based point-spread-function engineering through a complex medium. Optica. 2017;4:54–59. doi: 10.1364/OPTICA.4.000054. DOI
Li, S. et al. Compressively sampling the optical transmission matrix of a multimode fibre. Light.: Sci. Appl.10, 1–15 (2021). PubMed PMC
Sivankutty S, et al. Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber. Opt. express. 2016;24:825–841. doi: 10.1364/OE.24.000825. PubMed DOI
Conkey DB, Caravaca-Aguirre AM, Piestun R. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. express. 2012;20:1733–1740. doi: 10.1364/OE.20.001733. PubMed DOI
Matthès, M. W., Bromberg, Y., de Rosny, J., & Popoff, S. M. Learning and avoiding disorder in multimode fibers. Preprint at: https://arxiv.org/abs/2010.14813 (2020).
Boniface A, Blochet B, Dong J, Gigan S. Noninvasive light focusing in scattering media using speckle variance optimization. Optica. 2019;6:1381–1385. doi: 10.1364/OPTICA.6.001381. DOI
Boniface A, Dong J, Gigan S. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix. Nat. Commun. 2020;11:6154. doi: 10.1038/s41467-020-19696-8. PubMed DOI PMC
Kamaljith V, et al. Ultrafast-laser-ablation-assisted spatially selective attachment of fluorescent sensors onto optical fibers. Opt. Lett. 2020;45:2716–2719. doi: 10.1364/OL.381018. PubMed DOI
Gu RY, Mahalati RN, Kahn JM. Design of flexible multi-mode fiber endoscope. Opt. express. 2015;23:26905–26918. doi: 10.1364/OE.23.026905. PubMed DOI
Gu, R. Y., Chou, E., Rewcastle, C., Levi, O., and Kahn, J. M. Improved spot formation for flexible multi-mode fiber endoscope using partial reflector. Preprint at: https://arxiv.org/abs/1805.07553 (2018).
Gordon GSD, et al. Characterizing optical fiber transmission matrices using metasurface reflector stacks for lensless imaging without distal access. Phys. Rev. X. 2019;9:041050.
Chen H, Fontaine NK, Ryf R, Neilson DT, Winzer P. Remote spatio-temporal focusing over multimode fiber enabled by single-ended channel estimation. IEEE J. Sel. Top. Quantum Electron. 2020;26:1–9.
Rosen, S., Gilboa, D., Katz, O. & Silberberg, Y. Focusing and scanning through flexible multimode fibers without access to the distal end. Preprint at: https://arxiv.org/abs/1506.08586 (2015).
Xiong W, Hsu CW, Cao H. Long-range spatio-temporal correlations in multimode fibers for pulse delivery. Nat. Commun. 2019;10:1–7. doi: 10.1038/s41467-018-07882-8. PubMed DOI PMC
Mounaix M, Carpenter J. Control of the temporal and polarization response of a multimode fiber. Nat. Commun. 2019;10:1–8. doi: 10.1038/s41467-019-13059-8. PubMed DOI PMC
Carpenter J, Eggleton BJ, Schröder J. 110 × 110 optical mode transfer matrix inversion. Opt. express. 2014;22:96–101. doi: 10.1364/OE.22.000096. PubMed DOI
Flaes DEB, et al. Robustness of light-transport processes to bending deformations in graded-index multimode waveguides. Phys. Rev. Lett. 2018;120:233901. doi: 10.1103/PhysRevLett.120.233901. PubMed DOI
Mekis A, et al. High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 1996;77:3787. doi: 10.1103/PhysRevLett.77.3787. PubMed DOI
Kuschmierz R, Scharf E, Koukourakis N, Czarske JW. Self-calibration of lensless holographic endoscope using programmable guide stars. Opt. Lett. 2018;43:2997–3000. doi: 10.1364/OL.43.002997. PubMed DOI
Choudhury D, et al. Computational optical imaging with a photonic lantern. Nat. Commun. 2020;11:1–9. doi: 10.1038/s41467-020-18818-6. PubMed DOI PMC
Katz O, Heidmann P, Fink M, Gigan S. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. photonics. 2014;8:784. doi: 10.1038/nphoton.2014.189. DOI
Brown BR, Lohmann AW. Complex spatial filtering with binary masks. Appl. Opt. 1966;5:967–969. doi: 10.1364/AO.5.000967. PubMed DOI
Lee W-H. Binary computer-generated holograms. Appl. Opt. 1979;18:3661–3669. doi: 10.1364/AO.18.003661. PubMed DOI