"There's plenty of room at the bottom": deep brain imaging with holographic endo-microscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38250297
PubMed Central
PMC10798506
DOI
10.1117/1.nph.11.s1.s11504
PII: 23077SSPER
Knihovny.cz E-zdroje
- Klíčová slova
- complex media photonics, deep brain imaging, endoscope, in-vivo imaging, multimode fiber, wavefront shaping,
- Publikační typ
- časopisecké články MeSH
SIGNIFICANCE: Over more than 300 years, microscopic imaging keeps providing fundamental insights into the mechanisms of living organisms. Seeing microscopic structures beyond the reach of free-space light-based microscopy, however, requires dissection of the tissue-an intervention seriously disturbing its physiological functions. The hunt for low-invasiveness tools has led a growing community of physicists and engineers into the realm of complex media photonics. One of its activities represents exploiting multimode optical fibers (MMFs) as ultra-thin endoscopic probes. Employing wavefront shaping, these tools only recently facilitated the first peeks at cells and their sub-cellular compartments at the bottom of the mouse brain with the impact of micro-scale tissue damage. AIM: Here, we aim to highlight advances in MMF-based holographic endo-microscopy facilitating microscopic imaging throughout the whole depth of the mouse brain. APPROACH: We summarize the important technical and methodological prerequisites for stabile high-resolution imaging in vivo. RESULTS: We showcase images of the microscopic building blocks of brain tissue, including neurons, neuronal processes, vessels, intracellular calcium signaling, and red blood cell velocity in individual vessels. CONCLUSIONS: This perspective article helps to understand the complexity behind the technology of holographic endo-microscopy, summarizes its recent advances and challenges, and stimulates the mind of the reader for further exploitation of this tool in the neuroscience research.
Friedrich Schiller University Jena Institute of Applied Optics Jena Germany
Institute of Scientific Instruments of the Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Liu H., et al. , “In vivo deep-brain structural and hemodynamic multiphoton microscopy enabled by quantum dots,” Nano Lett. 19(8), 5260–5265 (2019).NALEFD10.1021/acs.nanolett.9b01708 PubMed DOI
Attardo A., Fitzgerald J., Schnitzer M., “Impermanence of dendritic spines in live adult CA1 hippocampus,” Nature 523, 592–596 (2015).10.1038/nature14467 PubMed DOI PMC
Barretto R., Messerschmidt B., Schnitzer M., “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6, 511–512 (2009).10.1038/nmeth.1339 PubMed DOI PMC
Antonini A., et al. , “Extended field-of-view ultrathin microendoscopes for high-resolution two-photon imaging with minimal invasiveness,” eLife 9, e58882 (2020).10.7554/eLife.58882 PubMed DOI PMC
Ohayon S., et al. , “Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging,” Biomed. Opt. Express 9, 1492–1509 (2018).BOEICL10.1364/BOE.9.001492 PubMed DOI PMC
Vasquez-Lopez S. A., et al. , “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light Sci. Appl. 7, 110 (2018).10.1038/s41377-018-0111-0 PubMed DOI PMC
Turtaev S., et al. , “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7, 92 (2018).10.1038/s41377-018-0094-x PubMed DOI PMC
Stibůrek M., et al. , “ PubMed DOI PMC
Allen Reference, “Atlas—mouse brain—coronal sections,” atlas.brain-map.org.
Turtaev S., et al. , “Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics,” Opt. Express 25, 29874–29884 (2017).OPEXFF10.1364/OE.25.029874 PubMed DOI
Mahalati R. N., et al. , “Resolution limits for imaging through multi-mode fibre,” Opt. Express 21, 1656–1668 (2013).OPEXFF10.1364/OE.21.001656 PubMed DOI
Rudolf B., et al. , “Thermal stability of wavefront shaping using a DMD as a spatial light modulator,” Opt. Express 29, 41808–41818 (2021).OPEXFF10.1364/OE.442284 DOI
Silveira B. M., et al. , “Side-view holographic endomicroscopy via a custom-terminated multimode fibre,” Opt. Express 29, 23083–23095 (2021).OPEXFF10.1364/OE.426235 PubMed DOI
Tučková T., et al. , “Computational image enhancement of multimode fibre-based holographic endo-microscopy: harnessing the muddy modes,” Opt. Express 29, 38206–38220 (2021).OPEXFF10.1364/OE.434848 PubMed DOI
Gomes A. D., et al. , “Near perfect focusing through multimode fibres,” Opt. Express 30, 10645–10663 (2022).OPEXFF10.1364/OE.452145 PubMed DOI
Leite I. T., et al. , “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12, 33–39 (2018).NPAHBY10.1038/s41566-017-0053-8 DOI
Amitonova L. V., et al. , “High-resolution wavefront shaping with a photonic crystal fibre for multimode fibre imaging,” Opt. Lett. 41, 497–500 (2016).OPLEDP10.1364/OL.41.000497 PubMed DOI
Kleinfeld D., et al. , “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U. S. A. 95(26), 15741–15746 (1998). Erratum in: Proc. Natl. Acad. Sci. U. S. A. 96(14), 8307 (1999).10.1073/pnas.95.26.15741 PubMed DOI PMC
Rynes M. L., et al. , “Miniaturized head-mounted microscope for whole-cortex mesoscale imaging in freely behaving mice,” Nat. Methods 18(4), 417–425 (2021).10.1038/s41592-021-01104-8 PubMed DOI PMC
Wang Z., et al. , “REM sleep is associated with distinct global cortical dynamics and controlled by occipital cortex,” Nat. Commun. 13, 6896 (2022).NCAOBW10.1038/s41467-022-34720-9 PubMed DOI PMC
Cai D. J., et al. , “A shared neural ensemble links distinct contextual memories encoded close in time,” Nature 534(7605), 115–118 (2016).10.1038/nature17955 PubMed DOI PMC
Gilad A., et al. , “Behavioral strategy determines frontal or posterior location of short-term memory in neocortex,” Neuron 99(4), 814–828.e7 (2018).NERNET10.1016/j.neuron.2018.07.029 PubMed DOI
Ghosh I., et al. , “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8, 871–878 (2011).10.1038/nmeth.1694 PubMed DOI PMC
Senarathna I., et al. , “A miniature multi-contrast microscope for functional imaging in freely behaving animals,” Nat. Commun. 10, 99 (2019).NCAOBW10.1038/s41467-018-07926-z PubMed DOI PMC
Guinto I. C., et al. , “Modular head-mounted cortical imaging device for chronic monitoring of intrinsic signals in mice,” J. Biomed. Opt. 27(2), 026501 (2022).JBOPFO10.1117/1.JBO.27.2.026501 PubMed DOI PMC
Truong T. V., et al. , “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).10.1038/nmeth.1652 PubMed DOI
Lu R., et al. , “Video-rate volumetric functional imaging of the brain at synaptic resolution,” Nat. Neurosci. 20(4), 620–628 (2017).NANEFN10.1038/nn.4516 PubMed DOI PMC
Prevedel R., et al. , “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016).10.1038/nmeth.4040 PubMed DOI PMC
Meng G., et al. , “High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo,” eLife 8, e40805 (2019).10.7554/eLife.40805 PubMed DOI PMC
Papagiakoumou E., Ronzitti E., Emiliani V., “Scanless two-photon excitation with temporal focusing,” Nat. Methods 17(6), 571–581 (2020).10.1038/s41592-020-0795-y PubMed DOI
Rodríguez C., Ji N., “Adaptive optical microscopy for neurobiology,” Curr. Opin. Neurobiol. 50, 83–91 (2018).COPUEN10.1016/j.conb.2018.01.011 PubMed DOI PMC
Streich I., et al. , “High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy,” Nat. Methods 18(10), 1253–1258 (2021).10.1038/s41592-021-01257-6 PubMed DOI PMC
Cheng A., et al. , “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).10.1038/nmeth.1552 PubMed DOI PMC
Sadegh S., et al. , “Efficient non-degenerate two-photon excitation for fluorescence microscopy,” Opt. Express 27(20), 28022–28035 (2019).OPEXFF10.1364/OE.27.028022 PubMed DOI PMC
Szabo V., et al. , “Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope,” Neuron 84(6), 1157–1169 (2014).NERNET10.1016/j.neuron.2014.11.005 PubMed DOI
Ozbay B. N., et al. , “Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axial-scanning,” Sci. Rep. 8(1), 8108 (2018).SRCEC310.1038/s41598-018-26326-3 PubMed DOI PMC
Zong W., et al. , “Large-scale two-photon calcium imaging in freely moving mice,” Cell 185(7), 1240–1256.e30 (2022).CELLB510.1016/j.cell.2022.02.017 PubMed DOI PMC
Jennings J. H., Stuber G. D., “Tools for resolving functional activity and connectivity within intact neural circuits,” Curr. Biol. 24(1), R41–R50 (2014).CUBLE210.1016/j.cub.2013.11.042 PubMed DOI PMC
Mizrahi A., et al. , “High-resolution in vivo imaging of hippocampal dendrites and spines,” J. Neurosci. 24(13), 3147–3151 (2004).JNRSDS10.1523/JNEUROSCI.5218-03.2004 PubMed DOI PMC
Gu L., et al. , “Long-term in vivo imaging of dendritic spines in the hippocampus reveals structural plasticity,” J. Neurosci. 34(42), 13948–13953 (2014).JNRSDS10.1523/JNEUROSCI.1464-14.2014 PubMed DOI PMC
Patel A. A., et al. , “Simultaneous electrophysiology and fiber photometry in freely behaving mice,” Front Neurosci. 14, 148 (2020).10.3389/fnins.2020.00148 PubMed DOI PMC
Gunaydin L. A., et al. , “Natural neural projection dynamics underlying social behavior,” Cell 157(7), 1535–1551 (2014).CELLB510.1016/j.cell.2014.05.017 PubMed DOI PMC
Lütcke H., et al. , “Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice,” Front. Neural Circuits 4, 9 (2010).10.3389/fncir.2010.00009 PubMed DOI PMC
Pisano F., et al. , “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).10.1038/s41592-019-0581-x PubMed DOI
Zhang R., Kim C. K., “Correcting for the hemoglobin absorption artifact in fiber photometry data,” Cell Rep. Methods 2(7), 100257 (2022).10.1016/j.crmeth.2022.100257 PubMed DOI PMC
Martianova E., Aronson S., Proulx C. D., “Multi-fiber photometry to record neural activity in freely-moving animals,” J. Vis. Exp. 152, e60278 (2019).10.3791/60278 PubMed DOI
Kim A. K., et al. , “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).10.1038/nmeth.3770 PubMed DOI PMC
Boonzajer Flaes A. E., et al. , “Robustness of light-transport processes to bending deformations in graded-index multimode waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018). (was 19 before adding the discussion).PRLTAO10.1103/PhysRevLett.120.233901 PubMed DOI
Wen Z., et al. , “Single multimode fibre for in vivo light-field-encoded endoscopic imaging,” Nat. Photonics 17, 679–687 (2023).NPAHBY10.1038/s41566-023-01240-x DOI
Li S., et al. , “Memory effect assisted imaging through multimode optical fibres,” Nat. Commun. 12, 3751 (2021).NCAOBW10.1038/s41467-021-23729-1 PubMed DOI PMC
Loterie D., et al. , “Digital confocal microscopy through a multimode fiber,” Opt. Express 23, 23845–23858 (2015).OPEXFF10.1364/OE.23.023845 PubMed DOI
Morales-Delgado E. E., et al. , “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23, 9109–9120 (2015).OPEXFF10.1364/OE.23.009109 PubMed DOI