"There's plenty of room at the bottom": deep brain imaging with holographic endo-microscopy

. 2024 Sep ; 11 (Suppl 1) : S11504. [epub] 20240119

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38250297

SIGNIFICANCE: Over more than 300 years, microscopic imaging keeps providing fundamental insights into the mechanisms of living organisms. Seeing microscopic structures beyond the reach of free-space light-based microscopy, however, requires dissection of the tissue-an intervention seriously disturbing its physiological functions. The hunt for low-invasiveness tools has led a growing community of physicists and engineers into the realm of complex media photonics. One of its activities represents exploiting multimode optical fibers (MMFs) as ultra-thin endoscopic probes. Employing wavefront shaping, these tools only recently facilitated the first peeks at cells and their sub-cellular compartments at the bottom of the mouse brain with the impact of micro-scale tissue damage. AIM: Here, we aim to highlight advances in MMF-based holographic endo-microscopy facilitating microscopic imaging throughout the whole depth of the mouse brain. APPROACH: We summarize the important technical and methodological prerequisites for stabile high-resolution imaging in vivo. RESULTS: We showcase images of the microscopic building blocks of brain tissue, including neurons, neuronal processes, vessels, intracellular calcium signaling, and red blood cell velocity in individual vessels. CONCLUSIONS: This perspective article helps to understand the complexity behind the technology of holographic endo-microscopy, summarizes its recent advances and challenges, and stimulates the mind of the reader for further exploitation of this tool in the neuroscience research.

Zobrazit více v PubMed

Liu H., et al. , “In vivo deep-brain structural and hemodynamic multiphoton microscopy enabled by quantum dots,” Nano Lett. 19(8), 5260–5265 (2019).NALEFD10.1021/acs.nanolett.9b01708 PubMed DOI

Attardo A., Fitzgerald J., Schnitzer M., “Impermanence of dendritic spines in live adult CA1 hippocampus,” Nature 523, 592–596 (2015).10.1038/nature14467 PubMed DOI PMC

Barretto R., Messerschmidt B., Schnitzer M., “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6, 511–512 (2009).10.1038/nmeth.1339 PubMed DOI PMC

Antonini A., et al. , “Extended field-of-view ultrathin microendoscopes for high-resolution two-photon imaging with minimal invasiveness,” eLife 9, e58882 (2020).10.7554/eLife.58882 PubMed DOI PMC

Ohayon S., et al. , “Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging,” Biomed. Opt. Express 9, 1492–1509 (2018).BOEICL10.1364/BOE.9.001492 PubMed DOI PMC

Vasquez-Lopez S. A., et al. , “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light Sci. Appl. 7, 110 (2018).10.1038/s41377-018-0111-0 PubMed DOI PMC

Turtaev S., et al. , “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7, 92 (2018).10.1038/s41377-018-0094-x PubMed DOI PMC

Stibůrek M., et al. , “ PubMed DOI PMC

Allen Reference, “Atlas—mouse brain—coronal sections,” atlas.brain-map.org.

Turtaev S., et al. , “Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics,” Opt. Express 25, 29874–29884 (2017).OPEXFF10.1364/OE.25.029874 PubMed DOI

Mahalati R. N., et al. , “Resolution limits for imaging through multi-mode fibre,” Opt. Express 21, 1656–1668 (2013).OPEXFF10.1364/OE.21.001656 PubMed DOI

Rudolf B., et al. , “Thermal stability of wavefront shaping using a DMD as a spatial light modulator,” Opt. Express 29, 41808–41818 (2021).OPEXFF10.1364/OE.442284 DOI

Silveira B. M., et al. , “Side-view holographic endomicroscopy via a custom-terminated multimode fibre,” Opt. Express 29, 23083–23095 (2021).OPEXFF10.1364/OE.426235 PubMed DOI

Tučková T., et al. , “Computational image enhancement of multimode fibre-based holographic endo-microscopy: harnessing the muddy modes,” Opt. Express 29, 38206–38220 (2021).OPEXFF10.1364/OE.434848 PubMed DOI

Gomes A. D., et al. , “Near perfect focusing through multimode fibres,” Opt. Express 30, 10645–10663 (2022).OPEXFF10.1364/OE.452145 PubMed DOI

Leite I. T., et al. , “Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre,” Nat. Photonics 12, 33–39 (2018).NPAHBY10.1038/s41566-017-0053-8 DOI

Amitonova L. V., et al. , “High-resolution wavefront shaping with a photonic crystal fibre for multimode fibre imaging,” Opt. Lett. 41, 497–500 (2016).OPLEDP10.1364/OL.41.000497 PubMed DOI

Kleinfeld D., et al. , “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. U. S. A. 95(26), 15741–15746 (1998). Erratum in: Proc. Natl. Acad. Sci. U. S. A. 96(14), 8307 (1999).10.1073/pnas.95.26.15741 PubMed DOI PMC

Rynes M. L., et al. , “Miniaturized head-mounted microscope for whole-cortex mesoscale imaging in freely behaving mice,” Nat. Methods 18(4), 417–425 (2021).10.1038/s41592-021-01104-8 PubMed DOI PMC

Wang Z., et al. , “REM sleep is associated with distinct global cortical dynamics and controlled by occipital cortex,” Nat. Commun. 13, 6896 (2022).NCAOBW10.1038/s41467-022-34720-9 PubMed DOI PMC

Cai D. J., et al. , “A shared neural ensemble links distinct contextual memories encoded close in time,” Nature 534(7605), 115–118 (2016).10.1038/nature17955 PubMed DOI PMC

Gilad A., et al. , “Behavioral strategy determines frontal or posterior location of short-term memory in neocortex,” Neuron 99(4), 814–828.e7 (2018).NERNET10.1016/j.neuron.2018.07.029 PubMed DOI

Ghosh I., et al. , “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8, 871–878 (2011).10.1038/nmeth.1694 PubMed DOI PMC

Senarathna I., et al. , “A miniature multi-contrast microscope for functional imaging in freely behaving animals,” Nat. Commun. 10, 99 (2019).NCAOBW10.1038/s41467-018-07926-z PubMed DOI PMC

Guinto I. C., et al. , “Modular head-mounted cortical imaging device for chronic monitoring of intrinsic signals in mice,” J. Biomed. Opt. 27(2), 026501 (2022).JBOPFO10.1117/1.JBO.27.2.026501 PubMed DOI PMC

Truong T. V., et al. , “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011).10.1038/nmeth.1652 PubMed DOI

Lu R., et al. , “Video-rate volumetric functional imaging of the brain at synaptic resolution,” Nat. Neurosci. 20(4), 620–628 (2017).NANEFN10.1038/nn.4516 PubMed DOI PMC

Prevedel R., et al. , “Fast volumetric calcium imaging across multiple cortical layers using sculpted light,” Nat. Methods 13(12), 1021–1028 (2016).10.1038/nmeth.4040 PubMed DOI PMC

Meng G., et al. , “High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo,” eLife 8, e40805 (2019).10.7554/eLife.40805 PubMed DOI PMC

Papagiakoumou E., Ronzitti E., Emiliani V., “Scanless two-photon excitation with temporal focusing,” Nat. Methods 17(6), 571–581 (2020).10.1038/s41592-020-0795-y PubMed DOI

Rodríguez C., Ji N., “Adaptive optical microscopy for neurobiology,” Curr. Opin. Neurobiol. 50, 83–91 (2018).COPUEN10.1016/j.conb.2018.01.011 PubMed DOI PMC

Streich I., et al. , “High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy,” Nat. Methods 18(10), 1253–1258 (2021).10.1038/s41592-021-01257-6 PubMed DOI PMC

Cheng A., et al. , “Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing,” Nat. Methods 8(2), 139–142 (2011).10.1038/nmeth.1552 PubMed DOI PMC

Sadegh S., et al. , “Efficient non-degenerate two-photon excitation for fluorescence microscopy,” Opt. Express 27(20), 28022–28035 (2019).OPEXFF10.1364/OE.27.028022 PubMed DOI PMC

Szabo V., et al. , “Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope,” Neuron 84(6), 1157–1169 (2014).NERNET10.1016/j.neuron.2014.11.005 PubMed DOI

Ozbay B. N., et al. , “Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axial-scanning,” Sci. Rep. 8(1), 8108 (2018).SRCEC310.1038/s41598-018-26326-3 PubMed DOI PMC

Zong W., et al. , “Large-scale two-photon calcium imaging in freely moving mice,” Cell 185(7), 1240–1256.e30 (2022).CELLB510.1016/j.cell.2022.02.017 PubMed DOI PMC

Jennings J. H., Stuber G. D., “Tools for resolving functional activity and connectivity within intact neural circuits,” Curr. Biol. 24(1), R41–R50 (2014).CUBLE210.1016/j.cub.2013.11.042 PubMed DOI PMC

Mizrahi A., et al. , “High-resolution in vivo imaging of hippocampal dendrites and spines,” J. Neurosci. 24(13), 3147–3151 (2004).JNRSDS10.1523/JNEUROSCI.5218-03.2004 PubMed DOI PMC

Gu L., et al. , “Long-term in vivo imaging of dendritic spines in the hippocampus reveals structural plasticity,” J. Neurosci. 34(42), 13948–13953 (2014).JNRSDS10.1523/JNEUROSCI.1464-14.2014 PubMed DOI PMC

Patel A. A., et al. , “Simultaneous electrophysiology and fiber photometry in freely behaving mice,” Front Neurosci. 14, 148 (2020).10.3389/fnins.2020.00148 PubMed DOI PMC

Gunaydin L. A., et al. , “Natural neural projection dynamics underlying social behavior,” Cell 157(7), 1535–1551 (2014).CELLB510.1016/j.cell.2014.05.017 PubMed DOI PMC

Lütcke H., et al. , “Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice,” Front. Neural Circuits 4, 9 (2010).10.3389/fncir.2010.00009 PubMed DOI PMC

Pisano F., et al. , “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).10.1038/s41592-019-0581-x PubMed DOI

Zhang R., Kim C. K., “Correcting for the hemoglobin absorption artifact in fiber photometry data,” Cell Rep. Methods 2(7), 100257 (2022).10.1016/j.crmeth.2022.100257 PubMed DOI PMC

Martianova E., Aronson S., Proulx C. D., “Multi-fiber photometry to record neural activity in freely-moving animals,” J. Vis. Exp. 152, e60278 (2019).10.3791/60278 PubMed DOI

Kim A. K., et al. , “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).10.1038/nmeth.3770 PubMed DOI PMC

Boonzajer Flaes A. E., et al. , “Robustness of light-transport processes to bending deformations in graded-index multimode waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018). (was 19 before adding the discussion).PRLTAO10.1103/PhysRevLett.120.233901 PubMed DOI

Wen Z., et al. , “Single multimode fibre for in vivo light-field-encoded endoscopic imaging,” Nat. Photonics 17, 679–687 (2023).NPAHBY10.1038/s41566-023-01240-x DOI

Li S., et al. , “Memory effect assisted imaging through multimode optical fibres,” Nat. Commun. 12, 3751 (2021).NCAOBW10.1038/s41467-021-23729-1 PubMed DOI PMC

Loterie D., et al. , “Digital confocal microscopy through a multimode fiber,” Opt. Express 23, 23845–23858 (2015).OPEXFF10.1364/OE.23.023845 PubMed DOI

Morales-Delgado E. E., et al. , “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23, 9109–9120 (2015).OPEXFF10.1364/OE.23.009109 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace