Compressively sampling the optical transmission matrix of a multimode fibre

. 2021 Apr 21 ; 10 (1) : 88. [epub] 20210421

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33883544

Grantová podpora
804626 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
61705073 National Natural Science Foundation of China (National Science Foundation of China)
1815896 National Science Foundation (NSF)

Odkazy

PubMed 33883544
PubMed Central PMC8060322
DOI 10.1038/s41377-021-00514-9
PII: 10.1038/s41377-021-00514-9
Knihovny.cz E-zdroje

The measurement of the optical transmission matrix (TM) of an opaque material is an advanced form of space-variant aberration correction. Beyond imaging, TM-based methods are emerging in a range of fields, including optical communications, micro-manipulation, and computing. In many cases, the TM is very sensitive to perturbations in the configuration of the scattering medium it represents. Therefore, applications often require an up-to-the-minute characterisation of the fragile TM, typically entailing hundreds to thousands of probe measurements. Here, we explore how these measurement requirements can be relaxed using the framework of compressive sensing, in which the incorporation of prior information enables accurate estimation from fewer measurements than the dimensionality of the TM we aim to reconstruct. Examples of such priors include knowledge of a memory effect linking the input and output fields, an approximate model of the optical system, or a recent but degraded TM measurement. We demonstrate this concept by reconstructing the full-size TM of a multimode fibre supporting 754 modes at compression ratios down to ∼5% with good fidelity. We show that in this case, imaging is still possible using TMs reconstructed at compression ratios down to ∼1% (eight probe measurements). This compressive TM sampling strategy is quite general and may be applied to a variety of other scattering samples, including diffusers, thin layers of tissue, fibre optics of any refractive profile, and reflections from opaque walls. These approaches offer a route towards the measurement of high-dimensional TMs either quickly or with access to limited numbers of measurements.

Zobrazit více v PubMed

Vellekoop IM, Mosk AP. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 2007;32:2309–2311. doi: 10.1364/OL.32.002309. PubMed DOI

Yaqoob Z, et al. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics. 2008;2:110–115. doi: 10.1038/nphoton.2007.297. PubMed DOI PMC

Čižmár T, Mazilu M, Dholakia K. In situ wavefront correction and its application to micromanipulation. Nat. Photonics. 2010;4:388–394. doi: 10.1038/nphoton.2010.85. DOI

Conkey DB, Caravaca-Aguirre AM, Piestun R. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express. 2012;20:1733–1740. doi: 10.1364/OE.20.001733. PubMed DOI

Papadopoulos IN, et al. Scattering compensation by focus scanning holographic aberration probing (F-Sharp) Nat. Photonics. 2017;11:116–123. doi: 10.1038/nphoton.2016.252. DOI

Yoon S, et al. Deep optical imaging within complex scattering media. Nat. Rev. Phys. 2020;2:141–158. doi: 10.1038/s42254-019-0143-2. DOI

Di Leonardo R, Bianchi S. Hologram transmission through multi-mode optical fibers. Opt. Express. 2011;19:247–254. doi: 10.1364/OE.19.000247. PubMed DOI

Choi Y, et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett. 2012;109:203901. doi: 10.1103/PhysRevLett.109.203901. PubMed DOI PMC

Čižmár T, Dholakia K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 2012;3:1027. doi: 10.1038/ncomms2024. PubMed DOI PMC

Popoff SM, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 2010;104:100601. doi: 10.1103/PhysRevLett.104.100601. PubMed DOI

Popoff S, et al. Image transmission through an opaque material. Nat. Commun. 2010;1:81. doi: 10.1038/ncomms1078. PubMed DOI

Mosk AP, et al. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics. 2012;6:283–292. doi: 10.1038/nphoton.2012.88. DOI

Rotter S, Gigan S. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys. 2017;89:015005. doi: 10.1103/RevModPhys.89.015005. DOI

Carpenter J, Eggleton BJ, Schröder J. Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre. Nat. Photonics. 2015;9:751–757. doi: 10.1038/nphoton.2015.188. DOI

Hong PL, et al. Three-dimensional spatially resolved optical energy density enhanced by wavefront shaping. Optica. 2018;5:844–849. doi: 10.1364/OPTICA.5.000844. DOI

Yılmaz H, et al. Transverse localization of transmission eigenchannels. Nat. Photonics. 2019;13:352–358. doi: 10.1038/s41566-019-0367-9. DOI

Ambichl P, et al. Focusing inside disordered media with the generalized Wigner-Smith operator. Phys. Rev. Lett. 2017;119:033903. doi: 10.1103/PhysRevLett.119.033903. PubMed DOI

Horodynski M, et al. Optimal wave fields for micromanipulation in complex scattering environments. Nat. Photonics. 2020;14:149–153. doi: 10.1038/s41566-019-0550-z. DOI

Matthès MW, et al. Optical complex media as universal reconfigurable linear operators. Optica. 2019;6:465–472. doi: 10.1364/OPTICA.6.000465. DOI

Leedumrongwatthanakun S, et al. Programmable linear quantum networks with a multimode fibre. Nat. Photonics. 2020;14:139–142. doi: 10.1038/s41566-019-0553-9. DOI

Bertolotti J, et al. Non-invasive imaging through opaque scattering layers. Nature. 2012;491:232–234. doi: 10.1038/nature11578. PubMed DOI

Judkewitz B, et al. Translation correlations in anisotropically scattering media. Nat. Phys. 2015;11:684–689. doi: 10.1038/nphys3373. DOI

Li, S. et al. Guide-star assisted imaging through multimode optical fibres. arXiv:2005.06445 [physics.optics] (2020).

Plöschner M, Tyc T, Čižmár T. Seeing through chaos in multimode fibres. Nat. Photonics. 2015;9:529–535. doi: 10.1038/nphoton.2015.112. DOI

Candes EJ, Wakin MB. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008;25:21–30. doi: 10.1109/MSP.2007.914731. DOI

Sánchez-Ortiga E, et al. Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit. Appl. Opt. 2014;53:2058–2066. doi: 10.1364/AO.53.002058. PubMed DOI

Čižmár T, Dholakia K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express. 2011;19:18871–18884. doi: 10.1364/OE.19.018871. PubMed DOI

Papadopoulos IN, et al. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed. Opt. Express. 2013;4:260–270. doi: 10.1364/BOE.4.000260. PubMed DOI PMC

Ohayon S, et al. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomed. Opt. Express. 2018;9:1492–1509. doi: 10.1364/BOE.9.001492. PubMed DOI PMC

Turtaev S, et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light.: Sci. Appl. 2018;7:92. doi: 10.1038/s41377-018-0094-x. PubMed DOI PMC

Flaes DEB, et al. Robustness of light-transport processes to bending deformations in graded-index multimode waveguides. Phys. Rev. Lett. 2018;120:233901. doi: 10.1103/PhysRevLett.120.233901. PubMed DOI

Amitonova LV, Mosk AP, Pinkse PWH. Rotational memory effect of a multimode fiber. Opt. Express. 2015;23:20569–20575. doi: 10.1364/OE.23.020569. PubMed DOI

Xiong W, et al. Principal modes in multimode fibers: exploring the crossover from weak to strong mode coupling. Opt. Express. 2017;25:2709–2724. doi: 10.1364/OE.25.002709. PubMed DOI

Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009;2:183–202. doi: 10.1137/080716542. DOI

Brown BR, Lohmann AW. Complex spatial filtering with binary masks. Appl. Opt. 1966;5:967–969. doi: 10.1364/AO.5.000967. PubMed DOI

Lee WH. Binary computer-generated holograms. Appl. Opt. 1979;18:3661–3669. doi: 10.1364/AO.18.003661. PubMed DOI

Mitchell KJ, et al. High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device. Opt. Express. 2016;24:29269–29282. doi: 10.1364/OE.24.029269. PubMed DOI

Turtaev S, et al. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. Opt. Express. 2017;25:29874–29884. doi: 10.1364/OE.25.029874. PubMed DOI

Mastiani B, Ohn TL, Vellekoop IM. Scanning a focus through scattering media without using the optical memory effect. Opt. Lett. 2019;44:5226–5229. doi: 10.1364/OL.44.005226. PubMed DOI

Osnabrugge G, et al. Generalized optical memory effect. Optica. 2017;4:886–892. doi: 10.1364/OPTICA.4.000886. DOI

Mounaix M, et al. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix. Phys. Rev. Lett. 2016;116:253901. doi: 10.1103/PhysRevLett.116.253901. PubMed DOI

Boniface A, et al. Rapid broadband characterization of scattering medium using hyperspectral imaging. Optica. 2019;6:274–279. doi: 10.1364/OPTICA.6.000274. DOI

Trägårdh J, et al. Label-free cars microscopy through a multimode fiber endoscope. Opt. Express. 2019;27:30055–30066. doi: 10.1364/OE.27.030055. PubMed DOI

Mounaix M, Carpenter J. Control of the temporal and polarization response of a multimode fiber. Nat. Commun. 2019;10:5085. doi: 10.1038/s41467-019-13059-8. PubMed DOI PMC

Gordon GSD, et al. Full-field quantitative phase and polarisation-resolved imaging through an optical fibre bundle. Opt. Express. 2019;27:23929–23947. doi: 10.1364/OE.27.023929. PubMed DOI PMC

Antipa N, et al. DiffuserCam: lensless single-exposure 3D imaging. Optica. 2018;5:1–9. doi: 10.1364/OPTICA.5.000001. DOI

Carpenter J, Eggleton BJ, Schröder J. 110x110 optical mode transfer matrix inversion. Opt. Express. 2014;22:96–101. doi: 10.1364/OE.22.000096. PubMed DOI

Borhani N, et al. Learning to see through multimode fibers. Optica. 2018;5:960–966. doi: 10.1364/OPTICA.5.000960. DOI

Caramazza P, et al. Transmission of natural scene images through a multimode fibre. Nat. Commun. 2019;10:2029. doi: 10.1038/s41467-019-10057-8. PubMed DOI PMC

Fan PF, Zhao TR, Su L. Deep learning the high variability and randomness inside multimode fibers. Opt. Express. 2019;27:20241–20258. doi: 10.1364/OE.27.020241. PubMed DOI

Xiong W, et al. Deep learning of ultrafast pulses with a multimode fiber. APL Photonics. 2020;5:096106. doi: 10.1063/5.0007037. DOI

Fienup JR. Phase retrieval algorithms: a comparison. Appl. Opt. 1982;21:2758–2769. doi: 10.1364/AO.21.002758. PubMed DOI

Drémeau A, et al. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt. Express. 2015;23:11898–11911. doi: 10.1364/OE.23.011898. PubMed DOI

Howland GA, Lum DJ, Howell JC. Compressive wavefront sensing with weak values. Opt. Express. 2014;22:18870–18880. doi: 10.1364/OE.22.018870. PubMed DOI

Mirhosseini M, et al. Compressive direct measurement of the quantum wave function. Phys. Rev. Lett. 2014;113:090402. doi: 10.1103/PhysRevLett.113.090402. PubMed DOI

Liutkus A, et al. Imaging with nature: compressive imaging using a multiply scattering medium. Sci. Rep. 2014;4:5552. doi: 10.1038/srep05552. PubMed DOI PMC

Amitonova LV, De Boer JF. Compressive imaging through a multimode fiber. Opt. Lett. 2018;43:5427–5430. doi: 10.1364/OL.43.005427. PubMed DOI

Caravaca-Aguirre AM, et al. Hybrid photoacoustic-fluorescence microendoscopy through a multimode fiber using speckle illumination. APL Photonics. 2019;4:096103. doi: 10.1063/1.5113476. DOI

Feldkhun D, et al. Focusing and scanning through scattering media in microseconds. Optica. 2019;6:72–75. doi: 10.1364/OPTICA.6.000072. DOI

Tzang O, et al. Wavefront shaping in complex media with a 350 khz modulator via a 1D-to-2D transform. Nat. Photonics. 2019;13:788–793. doi: 10.1038/s41566-019-0503-6. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace