Compressively sampling the optical transmission matrix of a multimode fibre
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
804626
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
61705073
National Natural Science Foundation of China (National Science Foundation of China)
1815896
National Science Foundation (NSF)
PubMed
33883544
PubMed Central
PMC8060322
DOI
10.1038/s41377-021-00514-9
PII: 10.1038/s41377-021-00514-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The measurement of the optical transmission matrix (TM) of an opaque material is an advanced form of space-variant aberration correction. Beyond imaging, TM-based methods are emerging in a range of fields, including optical communications, micro-manipulation, and computing. In many cases, the TM is very sensitive to perturbations in the configuration of the scattering medium it represents. Therefore, applications often require an up-to-the-minute characterisation of the fragile TM, typically entailing hundreds to thousands of probe measurements. Here, we explore how these measurement requirements can be relaxed using the framework of compressive sensing, in which the incorporation of prior information enables accurate estimation from fewer measurements than the dimensionality of the TM we aim to reconstruct. Examples of such priors include knowledge of a memory effect linking the input and output fields, an approximate model of the optical system, or a recent but degraded TM measurement. We demonstrate this concept by reconstructing the full-size TM of a multimode fibre supporting 754 modes at compression ratios down to ∼5% with good fidelity. We show that in this case, imaging is still possible using TMs reconstructed at compression ratios down to ∼1% (eight probe measurements). This compressive TM sampling strategy is quite general and may be applied to a variety of other scattering samples, including diffusers, thin layers of tissue, fibre optics of any refractive profile, and reflections from opaque walls. These approaches offer a route towards the measurement of high-dimensional TMs either quickly or with access to limited numbers of measurements.
Department of Computer Science and Engineering University of South Florida Tampa FL 33620 USA
Department of Electrical and Computer Engineering Boston University Boston MA 02215 USA
Department of Physics and Astronomy University of Rochester 500 Wilson Blvd Rochester NY 14618 USA
Institute of Scientific Instruments of CAS Královopolská 147 612 64 Brno Czech Republic
Leibniz Institute of Photonic Technology Albert Einstein Straße 9 07745 Jena Germany
School of Physics and Astronomy University of Exeter Exeter EX4 4QL UK
Zobrazit více v PubMed
Vellekoop IM, Mosk AP. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 2007;32:2309–2311. doi: 10.1364/OL.32.002309. PubMed DOI
Yaqoob Z, et al. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics. 2008;2:110–115. doi: 10.1038/nphoton.2007.297. PubMed DOI PMC
Čižmár T, Mazilu M, Dholakia K. In situ wavefront correction and its application to micromanipulation. Nat. Photonics. 2010;4:388–394. doi: 10.1038/nphoton.2010.85. DOI
Conkey DB, Caravaca-Aguirre AM, Piestun R. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express. 2012;20:1733–1740. doi: 10.1364/OE.20.001733. PubMed DOI
Papadopoulos IN, et al. Scattering compensation by focus scanning holographic aberration probing (F-Sharp) Nat. Photonics. 2017;11:116–123. doi: 10.1038/nphoton.2016.252. DOI
Yoon S, et al. Deep optical imaging within complex scattering media. Nat. Rev. Phys. 2020;2:141–158. doi: 10.1038/s42254-019-0143-2. DOI
Di Leonardo R, Bianchi S. Hologram transmission through multi-mode optical fibers. Opt. Express. 2011;19:247–254. doi: 10.1364/OE.19.000247. PubMed DOI
Choi Y, et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett. 2012;109:203901. doi: 10.1103/PhysRevLett.109.203901. PubMed DOI PMC
Čižmár T, Dholakia K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 2012;3:1027. doi: 10.1038/ncomms2024. PubMed DOI PMC
Popoff SM, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 2010;104:100601. doi: 10.1103/PhysRevLett.104.100601. PubMed DOI
Popoff S, et al. Image transmission through an opaque material. Nat. Commun. 2010;1:81. doi: 10.1038/ncomms1078. PubMed DOI
Mosk AP, et al. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics. 2012;6:283–292. doi: 10.1038/nphoton.2012.88. DOI
Rotter S, Gigan S. Light fields in complex media: mesoscopic scattering meets wave control. Rev. Mod. Phys. 2017;89:015005. doi: 10.1103/RevModPhys.89.015005. DOI
Carpenter J, Eggleton BJ, Schröder J. Observation of Eisenbud–Wigner–Smith states as principal modes in multimode fibre. Nat. Photonics. 2015;9:751–757. doi: 10.1038/nphoton.2015.188. DOI
Hong PL, et al. Three-dimensional spatially resolved optical energy density enhanced by wavefront shaping. Optica. 2018;5:844–849. doi: 10.1364/OPTICA.5.000844. DOI
Yılmaz H, et al. Transverse localization of transmission eigenchannels. Nat. Photonics. 2019;13:352–358. doi: 10.1038/s41566-019-0367-9. DOI
Ambichl P, et al. Focusing inside disordered media with the generalized Wigner-Smith operator. Phys. Rev. Lett. 2017;119:033903. doi: 10.1103/PhysRevLett.119.033903. PubMed DOI
Horodynski M, et al. Optimal wave fields for micromanipulation in complex scattering environments. Nat. Photonics. 2020;14:149–153. doi: 10.1038/s41566-019-0550-z. DOI
Matthès MW, et al. Optical complex media as universal reconfigurable linear operators. Optica. 2019;6:465–472. doi: 10.1364/OPTICA.6.000465. DOI
Leedumrongwatthanakun S, et al. Programmable linear quantum networks with a multimode fibre. Nat. Photonics. 2020;14:139–142. doi: 10.1038/s41566-019-0553-9. DOI
Bertolotti J, et al. Non-invasive imaging through opaque scattering layers. Nature. 2012;491:232–234. doi: 10.1038/nature11578. PubMed DOI
Judkewitz B, et al. Translation correlations in anisotropically scattering media. Nat. Phys. 2015;11:684–689. doi: 10.1038/nphys3373. DOI
Li, S. et al. Guide-star assisted imaging through multimode optical fibres. arXiv:2005.06445 [physics.optics] (2020).
Plöschner M, Tyc T, Čižmár T. Seeing through chaos in multimode fibres. Nat. Photonics. 2015;9:529–535. doi: 10.1038/nphoton.2015.112. DOI
Candes EJ, Wakin MB. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008;25:21–30. doi: 10.1109/MSP.2007.914731. DOI
Sánchez-Ortiga E, et al. Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit. Appl. Opt. 2014;53:2058–2066. doi: 10.1364/AO.53.002058. PubMed DOI
Čižmár T, Dholakia K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express. 2011;19:18871–18884. doi: 10.1364/OE.19.018871. PubMed DOI
Papadopoulos IN, et al. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed. Opt. Express. 2013;4:260–270. doi: 10.1364/BOE.4.000260. PubMed DOI PMC
Ohayon S, et al. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomed. Opt. Express. 2018;9:1492–1509. doi: 10.1364/BOE.9.001492. PubMed DOI PMC
Turtaev S, et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light.: Sci. Appl. 2018;7:92. doi: 10.1038/s41377-018-0094-x. PubMed DOI PMC
Flaes DEB, et al. Robustness of light-transport processes to bending deformations in graded-index multimode waveguides. Phys. Rev. Lett. 2018;120:233901. doi: 10.1103/PhysRevLett.120.233901. PubMed DOI
Amitonova LV, Mosk AP, Pinkse PWH. Rotational memory effect of a multimode fiber. Opt. Express. 2015;23:20569–20575. doi: 10.1364/OE.23.020569. PubMed DOI
Xiong W, et al. Principal modes in multimode fibers: exploring the crossover from weak to strong mode coupling. Opt. Express. 2017;25:2709–2724. doi: 10.1364/OE.25.002709. PubMed DOI
Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009;2:183–202. doi: 10.1137/080716542. DOI
Brown BR, Lohmann AW. Complex spatial filtering with binary masks. Appl. Opt. 1966;5:967–969. doi: 10.1364/AO.5.000967. PubMed DOI
Lee WH. Binary computer-generated holograms. Appl. Opt. 1979;18:3661–3669. doi: 10.1364/AO.18.003661. PubMed DOI
Mitchell KJ, et al. High-speed spatial control of the intensity, phase and polarisation of vector beams using a digital micro-mirror device. Opt. Express. 2016;24:29269–29282. doi: 10.1364/OE.24.029269. PubMed DOI
Turtaev S, et al. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. Opt. Express. 2017;25:29874–29884. doi: 10.1364/OE.25.029874. PubMed DOI
Mastiani B, Ohn TL, Vellekoop IM. Scanning a focus through scattering media without using the optical memory effect. Opt. Lett. 2019;44:5226–5229. doi: 10.1364/OL.44.005226. PubMed DOI
Osnabrugge G, et al. Generalized optical memory effect. Optica. 2017;4:886–892. doi: 10.1364/OPTICA.4.000886. DOI
Mounaix M, et al. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix. Phys. Rev. Lett. 2016;116:253901. doi: 10.1103/PhysRevLett.116.253901. PubMed DOI
Boniface A, et al. Rapid broadband characterization of scattering medium using hyperspectral imaging. Optica. 2019;6:274–279. doi: 10.1364/OPTICA.6.000274. DOI
Trägårdh J, et al. Label-free cars microscopy through a multimode fiber endoscope. Opt. Express. 2019;27:30055–30066. doi: 10.1364/OE.27.030055. PubMed DOI
Mounaix M, Carpenter J. Control of the temporal and polarization response of a multimode fiber. Nat. Commun. 2019;10:5085. doi: 10.1038/s41467-019-13059-8. PubMed DOI PMC
Gordon GSD, et al. Full-field quantitative phase and polarisation-resolved imaging through an optical fibre bundle. Opt. Express. 2019;27:23929–23947. doi: 10.1364/OE.27.023929. PubMed DOI PMC
Antipa N, et al. DiffuserCam: lensless single-exposure 3D imaging. Optica. 2018;5:1–9. doi: 10.1364/OPTICA.5.000001. DOI
Carpenter J, Eggleton BJ, Schröder J. 110x110 optical mode transfer matrix inversion. Opt. Express. 2014;22:96–101. doi: 10.1364/OE.22.000096. PubMed DOI
Borhani N, et al. Learning to see through multimode fibers. Optica. 2018;5:960–966. doi: 10.1364/OPTICA.5.000960. DOI
Caramazza P, et al. Transmission of natural scene images through a multimode fibre. Nat. Commun. 2019;10:2029. doi: 10.1038/s41467-019-10057-8. PubMed DOI PMC
Fan PF, Zhao TR, Su L. Deep learning the high variability and randomness inside multimode fibers. Opt. Express. 2019;27:20241–20258. doi: 10.1364/OE.27.020241. PubMed DOI
Xiong W, et al. Deep learning of ultrafast pulses with a multimode fiber. APL Photonics. 2020;5:096106. doi: 10.1063/5.0007037. DOI
Fienup JR. Phase retrieval algorithms: a comparison. Appl. Opt. 1982;21:2758–2769. doi: 10.1364/AO.21.002758. PubMed DOI
Drémeau A, et al. Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt. Express. 2015;23:11898–11911. doi: 10.1364/OE.23.011898. PubMed DOI
Howland GA, Lum DJ, Howell JC. Compressive wavefront sensing with weak values. Opt. Express. 2014;22:18870–18880. doi: 10.1364/OE.22.018870. PubMed DOI
Mirhosseini M, et al. Compressive direct measurement of the quantum wave function. Phys. Rev. Lett. 2014;113:090402. doi: 10.1103/PhysRevLett.113.090402. PubMed DOI
Liutkus A, et al. Imaging with nature: compressive imaging using a multiply scattering medium. Sci. Rep. 2014;4:5552. doi: 10.1038/srep05552. PubMed DOI PMC
Amitonova LV, De Boer JF. Compressive imaging through a multimode fiber. Opt. Lett. 2018;43:5427–5430. doi: 10.1364/OL.43.005427. PubMed DOI
Caravaca-Aguirre AM, et al. Hybrid photoacoustic-fluorescence microendoscopy through a multimode fiber using speckle illumination. APL Photonics. 2019;4:096103. doi: 10.1063/1.5113476. DOI
Feldkhun D, et al. Focusing and scanning through scattering media in microseconds. Optica. 2019;6:72–75. doi: 10.1364/OPTICA.6.000072. DOI
Tzang O, et al. Wavefront shaping in complex media with a 350 khz modulator via a 1D-to-2D transform. Nat. Photonics. 2019;13:788–793. doi: 10.1038/s41566-019-0503-6. DOI