Advancing the path to in-vivo imaging in freely moving mice via multimode-multicore fiber based holographic endoscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38352728
PubMed Central
PMC10863504
DOI
10.1117/1.nph.11.s1.s11506
PII: 23097SSR
Knihovny.cz E-zdroje
- Klíčová slova
- fiber connection, freely moving, holographic endoscopy, in-vivo imaging, multicore fiber, multimode fiber,
- Publikační typ
- časopisecké články MeSH
SIGNIFICANCE: Hair-thin multimode optical fiber-based holographic endoscopes have gained considerable interest in modern neuroscience for their ability to achieve cellular and even subcellular resolution during in-vivo deep brain imaging. However, the application of multimode fibers in freely moving animals presents a persistent challenge as it is difficult to maintain optimal imaging performance while the fiber undergoes deformations. AIM: We propose a fiber solution for challenging in-vivo applications with the capability of deep brain high spatial resolution imaging and neuronal activity monitoring in anesthetized as well as awake behaving mice. APPROACH: We used our previously developed M3CF multimode-multicore fiber to record fluorescently labeled neurons in anesthetized mice. Our M3CF exhibits a cascaded refractive index structure, enabling two distinct regimes of light transport that imitate either a multimode or a multicore fiber. The M3CF has been specifically designed for use in the initial phase of an in-vivo experiment, allowing for the navigation of the endoscope's distal end toward the targeted brain structure. The multicore regime enables the transfer of light to and from each individual neuron within the field of view. For chronic experiments in awake behaving mice, it is crucial to allow for disconnecting the fiber and the animal between experiments. Therefore, we provide here an effective solution and establish a protocol for reconnection of two segments of M3CF with hexagonally arranged corelets. RESULTS: We successfully utilized the M3CF to image neurons in anaesthetized transgenic mice expressing enhanced green fluorescent protein. Additionally, we compared imaging results obtained with the M3CF with larger numerical aperture (NA) fibers in fixed whole-brain tissue. CONCLUSIONS: This study focuses on addressing challenges and providing insights into the use of multimode-multicore fibers as imaging solutions for in-vivo applications. We suggest that the upcoming version of the M3CF increases the overall NA between the two cladding layers to allow for access to high resolution spatial imaging. As the NA increases in the multimode regime, the fiber diameter and ring structure must be reduced to minimize the computational burden and invasiveness.
Center for Behavioral Brain Sciences Magdeburg Germany
Friedrich Schiller University Jena Institute of Applied Optics Jena Germany
German Centre for Neurodegenerative Diseases Magdeburg Germany
Institute of Scientific Instruments of CAS Brno Czechia
Leibniz Institute for Neurobiology Magdeburg Germany
Leibniz Institute of Photonic Technology Jena Germany
University of Chinese Academy of Sciences Hangzhou Institute for Advanced Study Hangzhou China
Zobrazit více v PubMed
Deisseroth K., “Optogenetics: 10 years of microbial opsins in neuroscience,” Nat. Neuro Sci. 18(9), 1213–1225 (2015).SCIEAS10.1038/nn.4091 PubMed DOI PMC
Häusser M., “Optogenetics: the age of light,” Nat. Methods 11(10), 1012–1014 (2014).10.1038/nmeth.3111 PubMed DOI
Shemesh O. A., et al. , “Temporally precise single-cell-resolution optogenetics,” Nat. Neurosci. 20(12), 1796–1806 (2017).NANEFN10.1038/s41593-017-0018-8 PubMed DOI PMC
Frank J. A., Antonini M.-J., Anikeeva P., “Next-generation interfaces for studying neural function,” Nat. Biotechnol. 37(9), 1013–1023 (2019).NABIF910.1038/s41587-019-0198-8 PubMed DOI PMC
Robinson N. T., et al. , “Targeted activation of hippocampal place cells drives memory-guided spatial behavior,” Cell 183(6), 1586–1599.e10 (2020).CELLB510.1016/j.cell.2020.09.061 PubMed DOI PMC
Kobat D., Horton N. G., Xu C., “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).JBOPFO10.1117/1.3646209 PubMed DOI
Katona G., et al. , “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).10.1038/nmeth.1851 PubMed DOI
Horton N. G., et al. , “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).NPAHBY10.1038/nphoton.2012.336 PubMed DOI PMC
Sofroniew N. J., et al. , “A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging,” elife 5, e14472 (2016).10.7554/eLife.14472 PubMed DOI PMC
Wu J., et al. , “Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo,” Nat. Methods 17(3), 287–290 (2020).10.1038/s41592-020-0762-7 PubMed DOI PMC
Zong W., et al. , “Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice,” Nat. Methods 14(7), 713–719 (2017).10.1038/nmeth.4305 PubMed DOI
Ducourthial G., et al. , “Development of a real-time flexible multi-photon microendoscope for label-free imaging in a live animal,” Sci. Rep. 5(1), 18303 (2015).10.1038/srep18303 PubMed DOI PMC
Li A., et al. , “Twist-free ultralight two-photon fiberscope enabling neuroimaging on freely rotating/walking mice,” Optica 8(6), 870–879 (2021).10.1364/OPTICA.422657 DOI
Accanto N., et al. , “A flexible two-photon fiberscope for fast activity imaging and precise optogenetic photostimulation of neurons in freely moving mice,” Neuron 111, 176–189.e6 (2022).NERNET10.1016/j.neuron.2022.10.030 PubMed DOI
Sych Y., et al. , “High-density multi-fiber photometry for studying large-scale brain circuit dynamics,” Nat. Methods 16(6), 553–560 (2019).10.1038/s41592-019-0400-4 PubMed DOI
Kim C. K., et al. , “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).10.1038/nmeth.3770 PubMed DOI PMC
Pisanello F., et al. , “Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber,” Nat. Neurosci. 20(8), 1180–1188 (2017).NANEFN10.1038/nn.4591 PubMed DOI PMC
Pisano F., et al. , “Depth-resolved fiber photometry with a single tapered optical fiber implant,” Nat. Methods 16(11), 1185–1192 (2019).10.1038/s41592-019-0581-x PubMed DOI
Ohayon S., et al. , “Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging,” Biomed. Opt. Express 9(4), 1492–1509 (2018).BOEICL10.1364/BOE.9.001492 PubMed DOI PMC
Vasquez-Lopez S. A., et al. , “Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber,” Light Sci. Appl. 7(1), 110 (2018).10.1038/s41377-018-0111-0 PubMed DOI PMC
Turtaev S., et al. , “High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging,” Light Sci. Appl. 7(1), 92 (2018).10.1038/s41377-018-0094-x PubMed DOI PMC
Stibůrek M., et al. , “ PubMed DOI PMC
Orth A., et al. , “Optical fiber bundles: ultra-slim light field imaging probes,” Sci. Adv. 5(4), eaav1555 (2019).10.1126/sciadv.aav1555 PubMed DOI PMC
Shin J., et al. , “A minimally invasive lens-free computational microendoscope,” Sci. Adv. 5(12), eaaw5595 (2019).10.1126/sciadv.aaw5595 PubMed DOI PMC
Choi W., et al. , “Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues,” Nat. Commun. 13(1), 4469 (2022).NCAOBW10.1038/s41467-022-32114-5 PubMed DOI PMC
Badt N., Katz O., “Real-time holographic lensless micro-endoscopy through flexible fibers via fiber bundle distal holography,” Nat. Commun. 13(1), 6055 (2022).NCAOBW10.1038/s41467-022-33462-y PubMed DOI PMC
Plöschner M., Tyc T., Čižmár T., “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).NPAHBY10.1038/nphoton.2015.112 DOI
Wen Z., et al. , “Single multimode fibre for in vivo light-field-encoded endoscopic imaging,” Nat. Photonics 17, 1–9 (2023).NPAHBY10.1038/s41566-022-01137-1 DOI
Borhani N., et al. , “Learning to see through multimode fibers,” Optica 5(8), 960–966 (2018).10.1364/OPTICA.5.000960 DOI
Li S., et al. , “Compressively sampling the optical transmission matrix of a multimode fibre,” Light Sci. Appl. 10(1), 88 (2021).10.1038/s41377-021-00514-9 PubMed DOI PMC
Gordon G. S., et al. , “Characterizing optical fiber transmission matrices using metasurface reflector stacks for lensless imaging without distal access,” Phys. Rev. X 9(4), 041050 (2019).PRXHAE10.1103/PhysRevX.9.041050 DOI
Flaes D. E. B., et al. , “Robustness of light-transport processes to bending deformations in graded-index multimode waveguides,” Phys. Rev. Lett. 120(23), 233901 (2018).PRLTAO10.1103/PhysRevLett.120.233901 PubMed DOI
Tsvirkun V., et al. , “Flexible lensless endoscope with a conformationally invariant multi-core fiber,” Optica 6(9), 1185–1189 (2019).10.1364/OPTICA.6.001185 DOI
Du Y., et al. , “Hybrid multimode-multicore fibre based holographic endoscope for deep-tissue neurophotonics,” Light: Adv. Manuf. 3(3), 408–416 (2022).10.37188/lam.2022.029 DOI
Popoff S., et al. , “Image transmission through an opaque material,” Nat. Commun. 1(1), 81 (2010).NCAOBW10.1038/ncomms1078 PubMed DOI
Čižmár T., Dholakia K., “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).OPEXFF10.1364/OE.19.018871 PubMed DOI
Gincel D., et al. , “Analysis of cerebellar Purkinje cells using EAAT4 glutamate transporter promoter reporter in mice generated via bacterial artificial chromosome-mediated transgenesis,” Exp. Neurol. 203(1), 205–212 (2007).EXNEAC10.1016/j.expneurol.2006.08.016 PubMed DOI