EEG Reactivity Predicts Individual Efficacy of Vagal Nerve Stimulation in Intractable Epileptics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31118916
PubMed Central
PMC6507513
DOI
10.3389/fneur.2019.00392
Knihovny.cz E-zdroje
- Klíčová slova
- EEG reactivity, efficacy prediction, epilepsy, epilepsy treatment, neurostimulation, vagal nerve stimulation,
- Publikační typ
- časopisecké články MeSH
Background: Chronic vagal nerve stimulation (VNS) is a well-established non-pharmacological treatment option for drug-resistant epilepsy. This study sought to develop a statistical model for prediction of VNS efficacy. We hypothesized that reactivity of the electroencephalogram (EEG) to external stimuli measured during routine preoperative evaluation differs between VNS responders and non-responders. Materials and Methods: Power spectral analyses were computed retrospectively on pre-operative EEG recordings from 60 epileptic patients with VNS. Thirty five responders and 25 non-responders were compared on the relative power values in four standard frequency bands and eight conditions of clinical assessment-eyes opening/closing, photic stimulation, and hyperventilation. Using logistic regression, groups of electrodes within anatomical areas identified as maximally discriminative by n leave-one-out iterations were used to classify patients. The reliability of the predictive model was verified with an independent data-set from 22 additional patients. Results: Power spectral analyses revealed significant differences in EEG reactivity between responders and non-responders; specifically, the dynamics of alpha and gamma activity strongly reflected VNS efficacy. Using individual EEG reactivity to develop and validate a predictive model, we discriminated between responders and non-responders with 86% accuracy, 83% sensitivity, and 90% specificity. Conclusion: We present a new statistical model with which EEG reactivity to external stimuli during routine presurgical evaluation can be seen as a promising avenue for the identification of patients with favorable VNS outcome. This novel method for the prediction of VNS efficacy might represent a breakthrough in the management of drug-resistant epilepsy, with wide-reaching medical and economic implications.
Institute of Biostatistics and Analyses Faculty of Medicine Masaryk University Brno Czechia
Institute of Scientific Instruments The Czech Academy of Sciences Brno Czechia
Zobrazit více v PubMed
Englot DJ, Chang EF, Auguste KI. Vagus nerve stimulation for epilepsy: a meta-analysis of efficacy and predictors of response. J Neurosurg. (2011) 115:1248–55. 10.3171/2011.7.JNS11977 PubMed DOI
Englot DJ, Rolston JD, Wright CW, Hassnain KH, Chang EF. Rates and predictors of seizure freedom with vagus nerve stimulation for intractable epilepsy. Neurosurgery. (2016) 79:345–53. 10.1227/NEU.0000000000001165 PubMed DOI PMC
Theodore WH, Fisher RS. Brain stimulation for epilepsy. Lancet Neurol. (2004) 3:111–8. 10.1016/S1474-4422(03)00664-1 PubMed DOI
Alexander GM, McNamara JO. Vagus nerve stimulation elevates seizure threshold in the kindling model. Epilepsia. (2012) 53:2043–52. 10.1111/j.1528-1167.2012.03646.x PubMed DOI
Jaseja H. EEG-desynchronization as the major mechanism of anti-epileptic action of vagal nerve stimulation in patients with intractable seizures: clinical neurophysiological evidence. Med Hypotheses. (2010) 74:855–6. 10.1016/j.mehy.2009.11.031 PubMed DOI
Marrosu F, Santoni F, Puligheddu M, Barberini L, Maleci A, Ennas F, et al. . Increase in 20-50 Hz (gamma frequencies) power spectrum and synchronization after chronic vagal nerve stimulation. Clin Neurophysiol. (2005) 116:2026–36. 10.1016/j.clinph.2005.06.015 PubMed DOI
Fraschini M, Puligheddu M, Demuru M, Polizzi L, Maleci A, Tamburini G, et al. . VNS induced desynchronization in gamma bands correlates with positive clinical outcome in temporal lobe pharmacoresistant epilepsy. Neurosci Lett. (2013) 536:14–8. 10.1016/j.neulet.2012.12.044 PubMed DOI
Bodin C, Aubert S, Daquin G, Carron R, Scavarda D, McGonigal A, et al. . Responders to vagus nerve stimulation (VNS) in refractory epilepsy have reduced interictal cortical synchronicity on scalp EEG. Epilepsy Res. (2015) 113:98–103. 10.1016/j.eplepsyres.2015.03.018 PubMed DOI
Landre E. Vagus nerve stimulation and refractory partial epilepsies. Rev Neurol. (2004) 160:S280–7. PubMed
McHugh JC, Singh HW, Phillips J, Murphy K, Doherty CP, Delanty N. Outcome measurement after vagal nerve stimulation therapy: proposal of a new classification. Epilepsia. (2007) 48:375–8. 10.1111/j.1528-1167.2006.00931.x PubMed DOI
Pfurtscheller G, Aranibar A. Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr Clin Neurophysiol. (1977) 42:817–26. PubMed
Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J R Stat Soc B. (1995) 57:289–300.
Liu H, Yang Z, Huang L, Qu W, Hao H, Li L. Heart-rate variability indices as predictors of the response to vagus nerve stimulation in patients with drug-resistant epilepsy. Epilepsia. (2017) 58:1015–22. 10.1111/epi.13738 PubMed DOI
Van der Worp HB, Kraaier V, Wieneke GH, Van Huffelen AC. Quantitative EEG during progressive hypocarbia and hypoxia. Hyperventilation-induced EEG changes reconsidered. Electroencephalogr Clin Neurophysiol. (1991) 79:335–41. PubMed
Wyke BD. Brain function and blood sugar: observations based on a case of islet cell adenoma of the pancreas. Electroencephalogr Clin Neurophysiol. (1952) 4:339–50. PubMed
Neurbauer AC, Sange G, Pfurtscheller G. Psychometric intelligence and event-related desynchronization during performance of a letter matching task. In: Pfurtscheller G, Lopes da Silva FH, editors. Handbook of Electroencephalography nad Clinical Neurophysiology. Amsterdam: Willy; (1999). p. 219–31.
Steriade M, Llinas RR. The functional states of the thalamus and the associated neuronal interplay. Physiol Rev. (1988) 68:649–742. PubMed
Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. (1999) 110:1842–57. PubMed
Venturini R, De Pascalis V, Imperiali MG, Martini PS. EEG alpha reactivity and extraversion-introversion. Pers Indiv Differ. (1981) 2:215–20.
Neubauer A, Freudenthaler HH, Pfurtscheller G. Intelligence and spatiotemporal patterns of event-related desynchronization (ERD). Intelligence. (1995) 20:249–66.
Duffy FH, Albert MS, McAnulty G. Brain electrical activity in patients with presenile and senile dementia of the Alzheimer type. Ann Neurol. (1984) 16:439–48. PubMed
Kononen M, Partanen JV. Blocking of EEG alpha activity during visual performance in healthy adults. A quantitative study. Electroencephalogr Clin Neurophysiol. (1993) 87:164–6. PubMed
Marciani MG, Gotman J. Effect of drug-withdrawal on location of seizure onset. Epilepsia. (1986) 27:423–31. PubMed
Gaal ZA, Boha R, Stam CJ, Molnar M. Age-dependent features of EEG-reactivity–spectral, complexity, and network characteristics. Neurosci Lett. (2010) 479:79–84. 10.1016/j.neulet.2010.05.037 PubMed DOI
Babiloni C, Lizio R, Vecchio F, Frisoni GB, Pievani M, Geroldi C, et al. . Reactivity of cortical alpha rhythms to eye opening in mild cognitive impairment and Alzheimer's disease: an EEG study. J Alzheimers Dis. (2010) 22:1047–64. 10.3233/JAD-2010-100798 PubMed DOI
van der Hiele K, Bollen EL, Vein AA, Reijntjes RH, Westendorp RG, van Buchem MA, et al. . EEG markers of future cognitive performance in the elderly. J Clin Neurophysiol. (2008) 25:83–9. 10.1097/WNP.0b013e31816a5b25 PubMed DOI
Basar E, Schurmann M, Basar-Eroglu C, Karakas S. Alpha oscillations in brain functioning: an integrative theory. Int J Psychophysiol. (1997) 26:5–29. PubMed
Whithain EM, Pope KJ, Fitzgibbon SP, Lewis T, Clark CR, Loveless S, et al. Scalp electrical recording during paralysis: Quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clin Neurophysiol. (2007) 118:1877–88. 10.1016/j.clinph.2007.04.027 PubMed DOI
Muthukumaraswamy SD. High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front Hum Neurosci. (2013) 7:138. 10.3389/fnhum.2013.00138 PubMed DOI PMC
Boytsova JA, Danko SG, Medvedev SV. When EMG contamination does not necessarily hide high-frequency EEG: scalp electrical recordings before and after Dysport injections. Exp Brain Res. (2016) 234:3091–106. 10.1007/s00221-016-4708-3 PubMed DOI
Andersen P, Andersson SA, Lomo T. Thalamo-cortical relations during spontaneous barbiturate spindles. Electroencephalogr Clin Neurophysiol. (1968) 24:90. PubMed
Lopes da Silva FH, van Lierop THMT, Schrijer CF, Storm van Leeuwen W. Organization of thalamic and cortical alpha rhythms: Spectra and coherences. Electroencephalogr Clin Neurophysiol. (1973) 35:627–39. PubMed
Timofeev I, Steriade M. Fast (mainly 30-100 Hz) oscillations in the cat cerebellothalamic pathway and their synchronization with cortical potentials. J Physiol. (1997) 504:153–68. PubMed PMC
Bartolomei F, Bonini F, Vidal E, Trebuchon A, Lagarde S, Lambert I, et al. . How does vagal nerve stimulation (VNS) change EEG brain functional connectivity? Epilepsy Res. (2016) 126:141–6. 10.1016/j.eplepsyres.2016.06.008 PubMed DOI
Wostyn S, Staljanssens W, De Taeye L, Strobbe G, Gadeyne S, Van Roost D, et al. . EEG derived brain activity reflects treatment response from vagus nerve stimulation in patients with epilepsy. Int J Neural Syst. (2017) 27:1650048. 10.1142/S0129065716500489 PubMed DOI
De Herdt V, De Waele J, Raedt R, Wyckhuys T, El Tahry R, Vonck K, et al. . Modulation of seizure threshold by vagus nerve stimulation in an animal model for motor seizures. Acta Neurol Scand. (2010) 121:271–6. 10.1111/j.1600-0404.2009.01223.x PubMed DOI
Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH. Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol. (2000) 38:315–36. 10.1016/S0167-8760(00)00173-2 PubMed DOI
Traub RD, Whittington MA, Colling SB, Buzsáki G, Jefferys JG. Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. J Physiol. (1996) 493(Pt 2):471–84. PubMed PMC
Entropy in scalp EEG can be used as a preimplantation marker for VNS efficacy