• This record comes from PubMed

Entropy in scalp EEG can be used as a preimplantation marker for VNS efficacy

. 2023 Nov 01 ; 13 (1) : 18849. [epub] 20231101

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 37914788
PubMed Central PMC10620210
DOI 10.1038/s41598-023-46113-z
PII: 10.1038/s41598-023-46113-z
Knihovny.cz E-resources

Vagus nerve stimulation (VNS) is a therapeutic option in drug-resistant epilepsy. VNS leads to ≥ 50% seizure reduction in 50 to 60% of patients, termed "responders". The remaining 40 to 50% of patients, "non-responders", exhibit seizure reduction < 50%. Our work aims to differentiate between these two patient groups in preimplantation EEG analysis by employing several Entropy methods. We identified 59 drug-resistant epilepsy patients treated with VNS. We established their response to VNS in terms of responders and non-responders. A preimplantation EEG with eyes open/closed, photic stimulation, and hyperventilation was found for each patient. The EEG was segmented into eight time intervals within four standard frequency bands. In all, 32 EEG segments were obtained. Seven Entropy methods were calculated for all segments. Subsequently, VNS responders and non-responders were compared using individual Entropy methods. VNS responders and non-responders differed significantly in all Entropy methods except Approximate Entropy. Spectral Entropy revealed the highest number of EEG segments differentiating between responders and non-responders. The most useful frequency band distinguishing responders and non-responders was the alpha frequency, and the most helpful time interval was hyperventilation and rest 4 (the end of EEG recording).

See more in PubMed

Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, et al. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010;51:1069–1077. doi: 10.1111/j.1528-1167.2009.02397.x. PubMed DOI

Engel J. Progress in epilepsy: Reducing the treatment gap and the promise of biomarkers. Curr. Opin. Neurol. 2008;21:150–154. doi: 10.1097/WCO.0b013e3282f4edc3. PubMed DOI

Englot DJ, Chang EF, Auguste KI. Vagus nerve stimulation for epilepsy: A meta-analysis of efficacy and predictors of response. J. Neurosurg. 2011;115:1248–1255. doi: 10.3171/2011.7.JNS11977. PubMed DOI

De Herdt V, Boon P, Ceulemans B, Hauman H, Lagae L, Legros B, et al. Vagus nerve stimulation for refractory epilepsy: A Belgian multicenter study. Eur. J. Paediatr. Neurol. EJPN Off. J. Eur. Paediatr. Neurol. Soc. 2007;11:261–269. doi: 10.1016/j.ejpn.2007.01.008. PubMed DOI

Kuba R, Brázdil M, Kalina M, Procházka T, Hovorka J, Nezádal T, et al. Vagus nerve stimulation: Longitudinal follow-up of patients treated for 5 years. Seizure. 2009;18:269–274. doi: 10.1016/j.seizure.2008.10.012. PubMed DOI

Labar D. Vagus nerve stimulation for 1 year in 269 patients on unchanged antiepileptic drugs. Seizure. 2004;13:392–398. doi: 10.1016/j.seizure.2003.09.009. PubMed DOI

Renfroe JB, Wheless JW. Earlier use of adjunctive vagus nerve stimulation therapy for refractory epilepsy. Neurology. 2002;59:S26–30. doi: 10.1212/wnl.59.6_suppl_4.s26. PubMed DOI

Vonck K, Thadani V, Gilbert K, Dedeurwaerdere S, De Groote L, De Herdt V, et al. Vagus nerve stimulation for refractory epilepsy: A transatlantic experience. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 2004;21:283–289. doi: 10.1097/01.wnp.0000139654.32974.4e. PubMed DOI

Toffa DH, Touma L, Meskine TE, Bouthillier A, Nguyen DK. Learnings from 30 years of reported efficacy and safety of vagus nerve stimulation (VNS) for epilepsy treatment: A critical review. Seizure Eur. J. Epilepsy. 2020;83:104–123. doi: 10.1016/j.seizure.2020.09.027. PubMed DOI

Zanchetti A, Wang SC, Moruzzi G. The effect of vagal afferent stimulation on the EEG pattern of the cat. Electroencephalogr. Clin. Neurophysiol. 1952;4:357–361. doi: 10.1016/0013-4694(52)90064-3. PubMed DOI

Chase MH, Nakamura Y, Clemente CD, Sterman MB. Afferent vagal stimulation: Neurographic correlates of induced eeg synchronization and desynchronization. Brain Res. 1967;5:236–249. doi: 10.1016/0006-8993(67)90089-3. PubMed DOI

Sangare A, Marchi A, Pruvost-Robieux E, Soufflet C, Crepon B, Ramdani C, et al. The effectiveness of vagus nerve stimulation in drug-resistant epilepsy correlates with vagus nerve stimulation-induced electroencephalography desynchronization. Brain Connect. 2020;10:566–577. doi: 10.1089/brain.2020.0798. PubMed DOI PMC

Ernst LD, Steffan PJ, Srikanth P, Wiedrick J, Spencer DC, Datta P, et al. Electrocorticography analysis in patients with dual neurostimulators supports desynchronization as a mechanism of action for acute vagal nerve stimulator stimulation. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 2021 doi: 10.1097/WNP.0000000000000847. PubMed DOI

Bartolomei F, Bonini F, Vidal E, Trébuchon A, Lagarde S, Lambert I, et al. How does vagal nerve stimulation (VNS) change EEG brain functional connectivity? Epilepsy Res. 2016;126:141–146. doi: 10.1016/j.eplepsyres.2016.06.008. PubMed DOI

Hachem LD, Wong SM, Ibrahim GM. The vagus afferent network: Emerging role in translational connectomics. Neurosurg. Focus. 2018;45:E2. doi: 10.3171/2018.6.FOCUS18216. PubMed DOI

Workewych AM, Arski ON, Mithani K, Ibrahim GM. Biomarkers of seizure response to vagus nerve stimulation: A scoping review. Epilepsia. 2020;61:2069–2085. doi: 10.1111/epi.16661. PubMed DOI

Shannon C, Weaver W. The Mathematical Theory of Comunication. University of Illinois Press; 1949.

Amarantidis LC, Abásolo D. Interpretation of entropy algorithms in the context of biomedical signal analysis and their application to EEG analysis in epilepsy. Entropy. 2019;21:840. doi: 10.3390/e21090840. DOI

Inouye T, Shinosaki K, Sakamoto H, Toi S, Ukai S, Iyama A, et al. Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr. Clin. Neurophysiol. 1991;79:204–210. doi: 10.1016/0013-4694(91)90138-t. PubMed DOI

Bandt C, Pompe B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002 doi: 10.1103/physrevlett.88.174102. PubMed DOI

Unakafova V. Investigating measures of complexity for dynamical systems and for time series. 2015.

Pan YN, Chen J, Li XL. Spectral entropy: A complementary index for rolling element bearing performance degradation assessment. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2009;223:1223–1231. doi: 10.1243/09544062JMES1224. DOI

Pincus SM. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. U. S. A. Math. 1991;88:2297–2301. doi: 10.1073/PNAS.88.6.2297. PubMed DOI PMC

Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000;278:H2039–2049. doi: 10.1152/ajpheart.2000.278.6.H2039. PubMed DOI

Pincus SM, Gladstone IM, Ehrenkranz RA. A regularity statistic for medical data analysis. J. Clin. Monit. 1991;7:335–345. doi: 10.1007/bf01619355. PubMed DOI

Rezek IA, Roberts SJ. Stochastic complexity measures for physiological signal analysis. IEEE Trans. Biomed. Eng. 1998;45:1186–1191. doi: 10.1109/10.709563. PubMed DOI

Anier A, Lipping T, Ferenets R, Puumala P, Sonkajärvi E, Rätsep I, et al. Relationship between approximate entropy and visual inspection of irregularity in the EEG signal, a comparison with spectral entropy. Br. J. Anaesth. 2012 doi: 10.1093/bja/aes312. PubMed DOI

Kugiumtzis D, Tsimpiris A. Measures of analysis of time series (MATS): A MATLAB toolkit for computation of multiple measures on time series data bases. J. Stat. Softw. 2010 doi: 10.18637/JSS.V033.I05. DOI

Broer H, Takens F. Dynamical Systems and Chaos. Springer; 2011.

Martinéz-Cagical, Víctor. Sample Entropy. Mathworks n.d.

Unakafova, Valentina. Fast Permutation Entropy. Central File Exchange. n.d.;2017.

Unakafova VA, Keller K. Efficiently measuring complexity on the basis of real-world data. Entropy. 2013;15:4392–4415. doi: 10.3390/e15104392. DOI

Keller K, Unakafov AM, Unakafova VA. Ordinal patterns, entropy, and EEG. Entropy. 2014;16:6212–6239. doi: 10.3390/e16126212. DOI

Jordan D, Stockmanns G, Kochs EF, Pilge S, Schneider G. Electroencephalographic order pattern analysis for the separation of consciousness and unconsciousness: An analysis of approximate entropy, permutation entropy, recurrence rate, and phase coupling of order recurrence plots. Anesthesiology. 2008;109:1014–1022. doi: 10.1097/ALN.0b013e31818d6c55. PubMed DOI

Unakafov AM, Keller K. Conditional entropy of ordinal patterns. Phys. D. 2014;269:94–102. doi: 10.1016/j.physd.2013.11.015. PubMed DOI PMC

Delorme A, Makeig S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods. 2004;134:9–21. doi: 10.1016/j.jneumeth.2003.10.009. PubMed DOI

Brazdil M, Dolezalova I, Koritakova E, Chladek J, Roman R, Pail M, et al. EEG reactivity predicts individual efficacy of vagal nerve stimulation in intractable epileptics. Front. Neurol. 2019;10:392. doi: 10.3389/fneur.2019.00392. PubMed DOI PMC

Koritakova E, Dolezalova I, Chladek J, Jurkova T, Chrastina J, Plesinger F, et al. A novel statistical model for predicting the efficacy of vagal nerve stimulation in patients with epilepsy (Pre-X-Stim) is applicable to different EEG systems. Front. Neurosci. 2021;15:635787. doi: 10.3389/fnins.2021.635787. PubMed DOI PMC

Plesinger F, Halamek J, Chladek J, Jurak P, Ivora A, Dolezalova I, et al. Pre-implant heart activity differs in responders and non-responders to vagal nerve stimulation therapy in epileptic patients. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2021;2021:5816–5819. doi: 10.1109/EMBC46164.2021.9629577. PubMed DOI

Bodin C, Aubert S, Daquin G, Carron R, Scavarda D, McGonigal A, et al. Responders to vagus nerve stimulation (VNS) in refractory epilepsy have reduced interictal cortical synchronicity on scalp EEG. Epilepsy Res. 2015;113:98–103. doi: 10.1016/j.eplepsyres.2015.03.018. PubMed DOI

Kang J, Chen H, Li X, Li X. EEG entropy analysis in autistic children. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2019;62:199–206. doi: 10.1016/j.jocn.2018.11.027. PubMed DOI

Vanluchene ALG, Vereecke H, Thas O, Mortier EP, Shafer SL, Struys MMRF. Spectral entropy as an electroencephalographic measure of anesthetic drug effect: A comparison with bispectral index and processed midlatency auditory evoked response. Anesthesiology. 2004;101:34–42. doi: 10.1097/00000542-200407000-00008. PubMed DOI

Tian Y, Zhang H, Xu W, Zhang H, Yang L, Zheng S, et al. Spectral entropy can predict changes of working memory performance reduced by short-time training in the delayed-match-to-sample task. Front. Hum. Neurosci. 2017 doi: 10.3389/fnhum.2017.00437. PubMed DOI PMC

Gaubert S, Raimondo F, Houot M, Corsi M-C, Naccache L, Diego Sitt J, et al. EEG evidence of compensatory mechanisms in preclinical Alzheimer's disease. Brain J. Neurol. 2019;142:2096–2112. doi: 10.1093/brain/awz150. PubMed DOI

Mohamed AMA, Uçan ON, Bayat O, Duru AD. Classification of resting-state status based on sample entropy and power spectrum of electroencephalography (EEG) Appl. Bionics Biomech. 2020;2020:8853238. doi: 10.1155/2020/8853238. PubMed DOI PMC

Li P, Karmakar C, Yan C, Palaniswami M, Liu C. Classification of 5-S epileptic EEG recordings using distribution entropy and sample entropy. Front. Physiol. 2016;7:136. doi: 10.3389/fphys.2016.00136. PubMed DOI PMC

Hou F, Zhang L, Qin B, Gaggioni G, Liu X, Vandewalle G. Changes in EEG permutation entropy in the evening and in the transition from wake to sleep. Sleep. 2021;44:zsaa226. doi: 10.1093/sleep/zsaa226. PubMed DOI PMC

Jensen O, Mazaheri A. Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Front. Hum. Neurosci. 2010;4:186. doi: 10.3389/fnhum.2010.00186. PubMed DOI PMC

Ra JS, Li T, Li Y. A novel permutation entropy-based EEG channel selection for improving epileptic seizure prediction. Sensors. 2021;21:7972. doi: 10.3390/s21237972. PubMed DOI PMC

Lau ZJ, Pham T, Chen SHA, Makowski D. Brain entropy, fractal dimensions and predictability: A review of complexity measures for EEG in healthy and neuropsychiatric populations. Eur. J. Neurosci. 2021 doi: 10.1111/ejn.15800. PubMed DOI PMC

Schwartzkroin PA. Origins of the epileptic state. Epilepsia. 1997;38:853–858. doi: 10.1111/j.1528-1157.1997.tb01250.x. PubMed DOI

Fisher RS, Cross JH, D'Souza C, French JA, Haut SR, Higurashi N, et al. Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia. 2017;58:531–542. doi: 10.1111/epi.13671. PubMed DOI

Gibbs FA, Gibbs EL, Lennox WG. Electroencephalographic response to overventilation and its relation to age. J. Pediatr. 1943;23:497–505. doi: 10.1016/S0022-3476(43)80252-3. DOI

Morgan MH, Scott DF. EEG activation in epilepsies other than petit mai. Epilepsia. 1970;11:255–261. doi: 10.1111/j.1528-1157.1970.tb03889.x. PubMed DOI

Berger A, Carapancea E, Vespa S, Danthine V, Doguet P, Delbeke J, et al. Vagus nerve stimulation-induced laryngeal motor evoked potentials for response prediction and intensity titration in drug-resistant epilepsy. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2023;147:99–107. doi: 10.1016/j.clinph.2023.01.009. PubMed DOI

Ibrahim GM, Sharma P, Hyslop A, Guillen MR, Morgan BR, Wong S, et al. Presurgical thalamocortical connectivity is associated with response to vagus nerve stimulation in children with intractable epilepsy. NeuroImage Clin. 2017;16:634–642. doi: 10.1016/j.nicl.2017.09.015. PubMed DOI PMC

Mithani K, Mikhail M, Morgan BR, Wong S, Weil AG, Deschenes S, et al. Connectomic profiling identifies responders to vagus nerve stimulation. Ann. Neurol. 2019;86:743–753. doi: 10.1002/ana.25574. PubMed DOI

Babajani-Feremi A, Noorizadeh N, Mudigoudar B, Wheless JW. Predicting seizure outcome of vagus nerve stimulation using MEG-based network topology. NeuroImage Clin. 2018;19:990–999. doi: 10.1016/j.nicl.2018.06.017. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...