International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020)

. 2020 ; 14 () : 568051. [epub] 20210323

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33854421

Grantová podpora
P01 AT009965 NCCIH NIH HHS - United States
RG/19/5/34463 British Heart Foundation - United Kingdom
P2C HD086844 NICHD NIH HHS - United States
OT2 OD023867 NIH HHS - United States
P20 GM109040 NIGMS NIH HHS - United States

Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice.

Athinoula A Martinos Center for Biomedical Imaging Department of Radiology Massachusetts General Hospital Harvard Medical School Charlestown MA United States

Center for Behavioral Brain Sciences Magdeburg Otto von Guericke University Magdeburg Germany

Center for Behavioral Brain Sciences Otto von Guericke University Magdeburg Germany

Clinical and Cognitive Psychology and the Leiden Institute of Brain and Cognition Leiden University Leiden Netherlands

Clinical Psychology and the Leiden Institute of Brain and Cognition Leiden University Leiden Netherlands

Cognitive Neurophysiology Department of Child and Adolescent Psychiatry Faculty of Medicine TU Dresden Dresden Germany

Cognitive Psychology Unit Institute of Psychology Leiden University Leiden Netherlands

Department of Anatomy Faculty of Medicine Mersin University Mersin Turkey

Department of Anesthesia McMaster University Hamilton ON Canada

Department of Anesthesiology Center for Pain Medicine University of California San Diego Health System La Jolla CA United States

Department of Anesthesiology University Medicine Greifswald Greifswald Germany

Department of Biological Psychology and Affective Science Faculty of Human Sciences University of Potsdam Potsdam Germany

Department of Biological Psychology Clinical Psychology and Psychotherapy University of Würzburg Würzburg Germany

Department of Biomedical Engineering City College of New York New York NY United States

Department of Clinical Sciences and Community Health University of Milan Milan Italy

Department of Developmental Psychology and Socialisation University of Padova Padova Italy

Department of Epidemiology and Public Health Faculty of Medicine University of Ostrava Ostrava Czechia

Department of Gastroenterology University Hospitals of North Midlands NHS Trust Stoke on Trent United Kingdom

Department of Human Movement Studies Faculty of Education University of Ostrava Ostrava Czechia

Department of Internal Medicine Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy

Department of Neurology Epilepsy Center Frankfurt Rhine Main Goethe University Frankfurt Frankfurt am Main Germany

Department of Neurology Institute for Neuroscience 4Brain Ghent University Hospital Gent Belgium

Department of Neurology Otto von Guericke University Magdeburg Germany

Department of Neuroscience Physiology and Pharmacology Centre for Cardiovascular and Metabolic Neuroscience University College London London United Kingdom

Department of Neurosurgery University of Tübingen Tübingen Germany

Department of Pediatric Neuroscience Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy

Department of Performance Psychology Institute of Psychology Deutsche Sporthochschule Köln Germany

Department of Pharmaceutical Sciences School of Biosciences and Biotechnology Babasaheb Bhimrao Ambedkar University Lucknow India

Department of Psychiatry and Psychotherapy University Hospital LMU Munich Munich Germany

Department of Psychiatry and Psychotherapy University of Göttingen Göttingen Germany

Department of Psychiatry and Psychotherapy University of Tübingen Tübingen Germany

Department of Psychiatry Massachusetts General Hospital Harvard Medical School Boston MA United States

Department of Psychiatry Medical University of South Carolina Charleston SC United States

Department of Psychiatry Psychotherapy and Psychosomatics Medical Faculty University of Augsburg Augsburg Germany

Department of Psychiatry University of Pittsburgh School of Medicine UPMC Western Psychiatric Hospital Pittsburgh PA United States

Department of Psychological Science University of California Irvine Irvine CA United States

Department of Psychology College of Liberal Arts University of Minnesota Minneapolis MN United States

Department of Psychology Education and Child Studies Erasmus University Rotterdam Rotterdam Netherlands

Department of Psychology University of Greifswald Greifswald Germany

Department of Psychology University of Oslo Oslo Norway

Department of Radiology Athinoula A Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown MA United States

Department of Radiology Logan University Chesterfield MO United States

Department of Social and Health Psychology Institute of Psychology Deutsche Sporthochschule Köln Germany

Department of Surgery University Hospital Bonn Bonn Germany

Deutsches Zentrum für Neurodegenerative Erkrankungen Magdeburg Germany

Division for Vascular Surgery Department of Surgery Medical University of Vienna Vienna Austria

Division of Endocrinology and Diabetology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany

Division of Epileptology Fondazione IRCCS Istituto Neurologico C Besta Milan Italy

Division of Nuclear Medicine and Molecular Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston MA United States

Faculty of Biological Science School of Biomedical Science University of Leeds Leeds United Kingdom

Faculty of Biology and Faculty of Optics Complutense University of Madrid and Institute for Health Research San Carlos Clinical Hospital Madrid Spain

Faculty of Health Care University College Odisee Aalst Belgium

Faculty of Health Medicine and Life Sciences School for Mental Health and Neuroscience Alzheimer Centre Limburg Maastricht University Maastricht Netherlands

Faculty of Health Sciences Brandenburg University of Potsdam Potsdam Germany

Functional Imaging Lab Department of Radiology Guang An Men Hospital China Academy of Chinese Medical Sciences Beijing China

German Center for Diabetes Research Munich Germany

Headache Research Unit Department of Neurology Citadelle Hospital University of Liège Liège Belgium

Heart Rhythm Institute University of Oklahoma Health Sciences Center Oklahoma City OK United States

Institute for Clinical Diabetology German Diabetes Center Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf Germany

Institute for Cognitive Neurology and Dementia Research Otto von Guericke University Magdeburg Magdeburg Germany

Institute for Neuromodulation and Neurotechnology University Hospital and University of Tuebingen Tuebingen Germany

Institute of Acupuncture and Moxibustion China Academy of Chinese Medical Sciences Beijing China

Institute of Cognitive Neuroscience University College London London United Kingdom

Institute of Electrodynamics Microwave and Circuit Engineering TU Wien Vienna Austria

KG Jebsen Centre for Neurodevelopmental Disorders University of Oslo Oslo Norway

Laboratory for Biological Psychology Faculty of Psychology and Educational Sciences University of Leuven Leuven Belgium

Laboratory of Functional Neurovascular Diagnostics AG Early Diagnosis of Dementia Department of Psychiatry Psychosomatics and Psychotherapy University Clinic Würzburg Würzburg Germany

Laboratory of Systems Neuroscience and Imaging in Psychiatry University of Göttingen Göttingen Germany

Leibniz Institute for Neurobiology Magdeburg Germany

Leiden Institute for Brain and Cognition Leiden Netherlands

Medical Faculty Institute of Cognitive Neurology and Dementia Research Otto von Guericke University Magdeburg Germany

Mental Health and Wellbeing Research Group Vrije Universiteit Brussel Brussels Belgium

Migraine and Headache Clinic Koenigstein Königstein im Taunus Germany

Neuromodulatory Networks Leibniz Institute for Neurobiology Magdeburg Germany

NeuroV̇ASQ̇ Integrative Physiology Laboratory Faculty of Physical Education University of Brasilia Brasilia Brazil

NORMENT Division of Mental Health and Addiction University of Oslo and Oslo University Hospital Oslo Norway

Pain and Integrative Neuroscience Branch National Center for Complementary and Integrative Health NIH Bethesda MD United States

Research Group Health Psychology Faculty of Psychology and Educational Sciences University of Leuven Leuven Belgium

School of Biomedical Science Faculty of Biological Science University of Leeds Leeds United Kingdom

Scientific Institute IRCCS E Medea Pasian di Prato Italy

Section for Experimental Child and Adolescent Psychiatry Department of Child and Adolescent Psychiatry Centre for Psychosocial Medicine University of Heidelberg Heidelberg Germany

Section for Translational Psychobiology in Child and Adolescent Psychiatry Department of Child and Adolescent Psychiatry Centre for Psychosocial Medicine University of Heidelberg Heidelberg Germany

Sheffield Institute for Translational Neuroscience University of Sheffield Sheffield United Kingdom

SzeleSTIM GmbH Vienna Austria

Translational Medicine and Therapeutics Barts and The London School of Medicine and Dentistry William Harvey Research Institute Queen Mary University of London London United Kingdom

Unit of Neurology Neurophysiology Neurobiology Department of Medicine Università Campus Bio Medico di Roma Rome Italy

University Hospital of Child and Adolescent Psychiatry and Psychotherapy University of Bern Bern Switzerland

Utah State University Logan UT United States

Zobrazit více v PubMed

Afanasiev S. A., Pavliukova E. N., Kuzmichkina M. A., Rebrova T. Y., Anfinogenova Y., Likhomanov K. S., et al. . (2016). Nonpharmacological correction of hypersympatheticotonia in patients with chronic coronary insufficiency and severe left ventricular dysfunction. Ann. Noninvasive Electrocardiol. 21, 548–556. 10.1111/anec.12349 PubMed DOI PMC

Aihua L., Lu S., Liping L., Xiuru W., Hua L., Yuping W. (2014). A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy. Epilepsy Behav. 39, 105–110. 10.1016/j.yebeh.2014.08.005 PubMed DOI

Alexander G. M., Huang Y. Z., Soderblom E. J., He X.-P., Moseley M. A., McNamara J. O. (2017). Vagal nerve stimulation modifies neuronal activity and the proteome of excitatory synapses of amygdala/piriform cortex. J. Neurochem. 140, 629–644. 10.1111/jnc.13931 PubMed DOI PMC

Allchin R. E., Batten T. F., McWilliam P. N., Vaughan P. F. (1994). Electrical stimulation of the vagus increases extracellular glutamate recovered from the nucleus tractus solitarii of the cat by in vivo microdialysis. Exp. Physiol. 79, 265–268. 10.1113/expphysiol.1994.sp003761 PubMed DOI

Antonino D., Teixeira A. L., Maia-Lopes P. M., Souza M. C., Sabino-Carvalho J. L., Murray A. R., et al. . (2017). Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: a randomized placebo-controlled trial. Brain Stimul. 10, 875–881. 10.1016/j.brs.2017.05.006 PubMed DOI

Aston-Jones G., Waterhouse B. (2016). Locus coeruleus: from global projection system to adaptive regulation of behavior. Brain Res. 1645, 75–78. 10.1016/j.brainres.2016.03.001 PubMed DOI PMC

Ay I., Nasser R., Simon B., Ay H. (2016). Transcutaneous cervical vagus nerve stimulation ameliorates acute ischemic injury in rats. Brain Stimul. 9, 166–173. 10.1016/j.brs.2015.11.008 PubMed DOI PMC

Ay I., Sorensen A. G., Ay H. (2011). Vagus nerve stimulation reduces infarct size in rat focal cerebral ischemia: an unlikely role for cerebral blood flow. Brain Res. 1392, 110–115. 10.1016/j.brainres.2011.03.060 PubMed DOI PMC

Badran B. W., Brown J. C., Dowdle L. T., Mithoefer O. J., LaBate N. T., Coatsworth J., et al. . (2018a). Tragus or cymba conchae? Investigating the anatomical foundation of transcutaneous auricular vagus nerve stimulation (taVNS). Brain Stimul. 11, 947–948. 10.1016/j.brs.2018.06.003 PubMed DOI PMC

Badran B. W., Dowdle L. T., Mithoefer O. J., LaBate N. T., Coatsworth J., Brown J. C., et al. . (2018b). Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review. Brain Stimul. 11, 492–500. 10.1016/j.brs.2017.12.009 PubMed DOI PMC

Badran B. W., Jenkins D. D., Cook D., Thompson S., Dancy M., DeVries W. H., et al. . (2020). Transcutaneous auricular vagus nerve stimulation-paired rehabilitation for oromotor feeding problems in newborns: an open-label pilot study. Front. Hum. Neurosci. 14:77. 10.3389/fnhum.2020.00077 PubMed DOI PMC

Badran B. W., Mithoefer O. J., Summer C. E., LaBate N. T., Glusman C. E., Badran A. W., et al. . (2018c). Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul. 11, 699–708. 10.1016/j.brs.2018.04.004 PubMed DOI PMC

Badran B. W., Yu A. B., Adair D., Mappin G., DeVries W. H., Jenkins D. D., et al. . (2019). Laboratory administration of transcutaneous auricular vagus nerve stimulation (taVNS): technique, targeting, and considerations. J. Visual. Exp. 143:984. 10.3791/58984 PubMed DOI PMC

Banni S., Carta G., Murru E., Cordeddu L., Giordano E., Marrosu F., et al. . (2012). Vagus nerve stimulation reduces body weight and fat mass in rats. PLoS ONE. 7:e44813. 10.1371/journal.pone.0044813 PubMed DOI PMC

Barbanti P., Grazzi L., Egeo G., Padovan A. M., Liebler E., Bussone G. (2015). Non-invasive vagus nerve stimulation for acute treatment of high-frequency and chronic migraine: an open-label study. J. Headache Pain 16:61. 10.1186/s10194-015-0542-4 PubMed DOI PMC

Barbella G., Cocco I., Freri E., Marotta G., Visani E., Franceschetti S., et al. . (2018). Transcutaneous vagal nerve stimulatio (t-VNS): an adjunctive treatment option for refractory epilepsy. Seizure 60, 115–119. 10.1016/j.seizure.2018.06.016 PubMed DOI

Bauer S., Baier H., Baumgartner C., Bohlmann K., Fauser S., Graf W., et al. . (2016). Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain Stimul. 9, 356–363. 10.1016/j.brs.2015.11.003 PubMed DOI

Beaumont E., Campbell R. P., Andresen M. C., Scofield S., Singh K., Libbus I., et al. . (2017). Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract. Am. J. Physiol Heart Circ. Physiol. 313, H354–H367. 10.1152/ajpheart.00070.2017 PubMed DOI PMC

Beste C., Steenbergen L., Sellaro R., Grigoriadou S., Zhang R., Chmielewski W., et al. . (2016). Effects of concomitant stimulation of the GABAergic and norepinephrine system on inhibitory control—a study using transcutaneous vagus nerve stimulation. Brain Stimul. 9, 811–818. 10.1016/j.brs.2016.07.004 PubMed DOI

Betts M. J., Cardenas-Blanco A., Kanowski M., Jessen F., Düzel E. (2017). In vivo MRI assessment of the human locus coeruleus along its rostrocaudal extent in young and older adults. Neuroimage 163, 150–159. 10.1016/j.neuroimage.2017.09.042 PubMed DOI

Betts M. J., Kirilina E., Otaduy M. C. G., Ivanov D., Acosta-Cabronero J., Callaghan M. F., et al. . (2019). Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain 142, 2558–2571. 10.1093/brain/awz193 PubMed DOI PMC

Bianca R., Komisaruk B. R. (2007). Pupil dilatation in response to vagal afferent electrical stimulation is mediated by inhibition of parasympathetic outflow in the rat. Brain Res. 1177, 29–36. 10.1016/j.brainres.2007.06.104 PubMed DOI

Bikson M., Esmaeilpour Z., Adair D., Kronberg G., Tyler W. J., Antal A., et al. . (2019). Transcranial electrical stimulation nomenclature. Brain Stimul. 12, 1349–1366. 10.1016/j.brs.2019.07.010 PubMed DOI PMC

Bonaz B., Picq C., Sinniger V., Mayol J. F., Clarençon D. (2013). Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway. Neurogastroenterol. Motil. 25, 208–221. 10.1111/nmo.12076 PubMed DOI

Boon P., De Cock E., Mertens A., Trinka E. (2018). Neurostimulation for drug-resistant epilepsy: a systematic review of clinical evidence for efficacy, safety, contraindications and predictors for response. Curr. Opin. Neurol. 31, 198–210. 10.1097/WCO.0000000000000534 PubMed DOI

Borges U., Knops L., Laborde S., Klatt S., Raab M. (2020). Transcutaneous vagus nerve stimulation may enhance only specific aspects of the core executive functions. A randomized crossover trial. Front. Neurosci. 14:523. 10.3389/fnins.2020.00523 PubMed DOI PMC

Borges U., Laborde S., Raab M. (2019). Influence of transcutaneous vagus nerve stimulation on cardiac vagal activity: not different from sham stimulation and no effect of stimulation intensity. PLoS ONE 14:e0223848. 10.1371/journal.pone.0223848 PubMed DOI PMC

Borodovitsyna O., Flamini M. D., Chandler D. J. (2018). Acute stress persistently alters locus coeruleus function and anxiety-like behavior in adolescent rats. Neuroscience 373, 7–19. 10.1016/j.neuroscience.2018.01.020 PubMed DOI

Brack K. E., Coote J. H., Ng G. A. (2004). Interaction between direct sympathetic and vagus nerve stimulation on heart rate in the isolated rabbit heart. Exp. Physiol. 89, 128–139. 10.1113/expphysiol.2003.002654 PubMed DOI

Brázdil M., DoleŽalová I., Koritáková E., Chládek J., Roman R., Pail M., et al. . (2019). EEG Reactivity predicts individual efficacy of vagal nerve stimulation in intractable epileptics. Front. Neurol. 10:392. 10.3389/fneur.2019.00392 PubMed DOI PMC

Bretherton B., Atkinson L., Murray A., Clancy J., Deuchars S., Deuchars J. (2019). Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation. Aging 11, 4836–4857. 10.18632/aging.102074 PubMed DOI PMC

Brock C., Brock B., Aziz Q., Møller H. J., Pfeiffer Jensen M., Drewes A. M., et al. . (2017). Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha. Neurogastroenterol. Motil. 29:e12999. 10.1111/nmo.12999 PubMed DOI

Brooks C. M., Lange G. (1977). Interaction of myogenic and neurogenic mechanisms that control heart rate. Proc. Natl. Acad. Sci. U.S.A. 74, 1761–1762. 10.1073/pnas.74.4.1761 PubMed DOI PMC

Brooks J. C. W., Faull O. K., Pattinson K. T. S., Jenkinson M. (2013). Physiological noise in brainstem fMRI. Front. Hum. Neurosci. 7:623. 10.3389/fnhum.2013.00623 PubMed DOI PMC

Brown G. L., Eccles J. C. (1934). The action of a single vagal volley on the rhythm of the heart beat. J. Physiol. 82, 211–241. 10.1113/jphysiol.1934.sp003176 PubMed DOI PMC

Burger A. M., D'Agostini M., Verkuil B., Diest I. V. (2020a). Moving beyond belief: a narrative review of potential biomarkers for transcutaneous vagus nerve stimulation. Psychophysiology 57:e13571. 10.1111/psyp.13571 PubMed DOI

Burger A. M., Diest I. V., Does W. V., der Hysaj M., Thayer J. F., Brosschot J. F., et al. . (2018). Transcutaneous vagus nerve stimulation and extinction of prepared fear: a conceptual non-replication. Sci. Rep. 8:11471. 10.1038/s41598-018-29561-w PubMed DOI PMC

Burger A. M., Van der Does W., Brosschot J. F., Verkuil B. (2020b). From ear to eye? No effect of transcutaneous vagus nerve stimulation on human pupil dilation: a report of three studies. Biol. Psychol. 152:107863. 10.1016/j.biopsycho.2020.107863 PubMed DOI

Burger A. M., Van der Does W., Thayer J. F., Brosschot J. F., Verkuil B. (2019a). Transcutaneous vagus nerve stimulation reduces spontaneous but not induced negative thought intrusions in high worriers. Biol. Psychol. 142, 80–89. 10.1016/j.biopsycho.2019.01.014 PubMed DOI

Burger A. M., Van Diest I., Van der Does W., Korbee J. N., Waziri N., Brosschot J. F., et al. . (2019b). The effect of transcutaneous vagus nerve stimulation on fear generalization and subsequent fear extinction. Neurobiol. Learn. Mem. 161, 192–201. 10.1016/j.nlm.2019.04.006 PubMed DOI

Burger A. M., Verkuil B. (2018). Transcutaneous nerve stimulation via the tragus: are we really stimulating the vagus nerve? Brain Stimul. 11, 945–946. 10.1016/j.brs.2018.03.018 PubMed DOI

Burger A. M., Verkuil B., Fenlon H., Thijs L., Cools L., Miller H. C., et al. . (2017). Mixed evidence for the potential of non-invasive transcutaneous vagal nerve stimulation to improve the extinction and retention of fear. Behav. Res. Ther. 97, 64–74. 10.1016/j.brat.2017.07.005 PubMed DOI

Burger A. M., Verkuil B., Van Diest I., Van der Does W., Thayer J. F., Brosschot J. F. (2016). The effects of transcutaneous vagus nerve stimulation on conditioned fear extinction in humans. Neurobiol. Learn. Mem. 132, 49–56. 10.1016/j.nlm.2016.05.007 PubMed DOI

Burneo J. G., Faught E., Knowlton R., Morawetz R., Kuzniecky R. (2002). Weight loss associated with vagus nerve stimulation. Neurology 59, 463–464. 10.1212/WNL.59.3.463 PubMed DOI

Busch V., Zeman F., Heckel A., Menne F., Ellrich J., Eichhammer P. (2013). The effect of transcutaneous vagus nerve stimulation on pain perception – an experimental study. Brain Stimul. 6, 202–209. 10.1016/j.brs.2012.04.006 PubMed DOI

Butson C. R., McIntyre C. C. (2005). Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation. Clin. Neurophysiol. 116, 2490–2500. 10.1016/j.clinph.2005.06.023 PubMed DOI PMC

Butt M. F., Albusoda A., Farmer A. D., Aziz Q. (2020). The anatomical basis for transcutaneous auricular vagus nerve stimulation. J. Anat. 236, 588–611. 10.1111/joa.13122 PubMed DOI PMC

Cakmak Y. O., Apaydin H., Kiziltan G., Gunduz A., Ozsoy B., Urey H., et al. . (2017). Rapid alleviation of parkinson's disease symptoms via electrostimulation of intrinsic auricular muscle zones. Front. Hum. Neurosci. 11:338. 10.3389/fnhum.2017.00338 PubMed DOI PMC

Cakmak Y. O. (2019). Concerning auricular vagal nerve stimulation: occult neural networks. Front. Hum. Neurosci. 13:421. 10.3389/fnhum.2019.00421 PubMed DOI PMC

Capone F., Assenza G., Di Pino G., Musumeci G., Ranieri F., Florio L., et al. . (2015). The effect of transcutaneous vagus nerve stimulation on cortical excitability. J. Neural Transm. 122, 679–685. 10.1007/s00702-014-1299-7 PubMed DOI

Capone F., Miccinilli S., Pellegrino G., Zollo L., Simonetti D., Bressi F., et al. . (2017). Transcutaneous vagus nerve stimulation combined with robotic rehabilitation improves upper limb function after stroke. Neural Plasticity 2017:7876507. 10.1155/2017/7876507 PubMed DOI PMC

Cha W. W., Song K., Lee H. Y. (2016). Persistent geotropic direction-changing positional nystagmus treated with transcutaneous vagus nerve stimulation. Brain Stimul. 9, 469–470. 10.1016/j.brs.2016.03.011 PubMed DOI

Chakravarthy K., Chaudhry H., Williams K., Christo P. J. (2015). Review of the uses of vagal nerve stimulation in chronic pain management. Curr. Pain Headache Rep. 19:54. 10.1007/s11916-015-0528-6 PubMed DOI

Chandler D. J., Jensen P., McCall J. G., Pickering A. E., Schwarz L. A., Totah N. K. (2019). Redefining noradrenergic neuromodulation of behavior: impacts of a modular locus coeruleus architecture. J. Neurosci. 39, 8239–8249. 10.1523/JNEUROSCI.1164-19.2019 PubMed DOI PMC

Chen M., Yu L., Ouyang F., Liu Q., Wang Z., Wang S., et al. . (2015). The right side or left side of noninvasive transcutaneous vagus nerve stimulation: based on conventional wisdom or scientific evidence? Int. J. Cardiol. 187, 44–45. 10.1016/j.ijcard.2015.03.351 PubMed DOI

Clancy J. A., Mary D. A., Witte K. K., Greenwood J. P., Deuchars S. A., Deuchars J. (2014). Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 7, 871–877. 10.1016/j.brs.2014.07.031 PubMed DOI

Colzato L. S., Ritter S. M., Steenbergen L. (2018a). Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking. Neuropsychologia 111, 72–76. 10.1016/j.neuropsychologia.2018.01.003 PubMed DOI

Colzato L. S., Sellaro R., Beste C. (2017). Darwin revisited: the vagus nerve is a causal element in controlling recognition of other's emotions. Cortex 92, 95–102. 10.1016/j.cortex.2017.03.017 PubMed DOI

Colzato L. S., Wolters G., Peifer C. (2018b). Transcutaneous vagus nerve stimulation (tVNS) modulates flow experience. Exp. Brain Res. 236, 253–257. 10.1007/s00221-017-5123-0 PubMed DOI

Cork S. C. (2018). The role of the vagus nerve in appetite control: implications for the pathogenesis of obesity. J. Neuroendocrinol. 30:e12643. 10.1111/jne.12643 PubMed DOI

Cristancho P., Cristancho M. A., Baltuch G. H., Thase M. E., O'Reardon J. P. (2011). Effectiveness and safety of vagus nerve stimulation for severe treatment-resistant major depression in clinical practice after FDA approval: outcomes at 1 year. J. Clin. Psychiatry 72, 1376–1382. 10.4088/JCP.09m05888blu PubMed DOI

De Couck M., Cserjesi R., Caers R., Zijlstra W. P., Widjaja D., Wolf N., et al. . (2017). Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects. Auton. Neurosci. 203, 88–96. 10.1016/j.autneu.2016.11.003 PubMed DOI

De Ferrari G. M., Schwartz P. J. (2011). Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions. Heart Fail. Rev. 16, 195–203. 10.1007/s10741-010-9216-0 PubMed DOI

De Icco R., Martinelli D., Bitetto V., Fresia M., Liebler E., Sandrini G., et al. . (2018). Peripheral vagal nerve stimulation modulates the nociceptive withdrawal reflex in healthy subjects: a randomized, cross-over, sham-controlled study. Cephalalgia 38, 1658–1664. 10.1177/0333102417742347 PubMed DOI

de Lartigue G. (2016). Role of the vagus nerve in the development and treatment of diet-induced obesity. J. Physiol. 594, 5791–5815. 10.1113/JP271538 PubMed DOI PMC

De Ridder D., Vanneste S., Engineer N. D., Kilgard M. P. (2014). Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series. Neuromodulation 17, 170–179. 10.1111/ner.12127 PubMed DOI

De Taeye L., Vonck K., van Bochove M., Boon P., Van Roost D., Mollet L., et al. . (2014). The P3 event-related potential is a biomarker for the efficacy of vagus nerve stimulation in patients with epilepsy. Neurotherapeutics 11, 612–622. 10.1007/s13311-014-0272-3 PubMed DOI PMC

Desbeaumes Jodoin V., Richer F., Miron J.-P., Fournier-Gosselin M.-P., Lespérance P. (2018). Long-term sustained cognitive benefits of vagus nerve stimulation in refractory depression. J. ECT 34, 283–290. 10.1097/YCT.0000000000000502 PubMed DOI

Dietrich S., Smith J., Scherzinger C., Hofmann-Preiß K., Freitag T., Eisenkolb A., et al. . (2008). A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI / funktionelle magnetresonanztomographie zeigt aktivierungen des hirnstamms und weiterer zerebraler strukturen unter transkutaner vagusnervstimulation. Biomed. Tech/Biomed. Eng. 53, 104–111. 10.1515/BMT.2008.022 PubMed DOI

Dorr A. E., Debonnel G. (2006). Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission. J. Pharmacol. Exp. Ther. 318, 890–898. 10.1124/jpet.106.104166 PubMed DOI

Du X. J., Dart A. M., Riemersma R. A. (1994). Sex differences in the parasympathetic nerve control of rat heart. Clin. Exp. Pharmacol. Physiol. 21, 485–493. 10.1111/j.1440-1681.1994.tb02545.x PubMed DOI

Ehlert U., Erni K., Hebisch G., Nater U. (2006). Salivary alpha-amylase levels after yohimbine challenge in healthy men. J. Clin. Endocrinol. Metab. 91, 5130–5133. 10.1210/jc.2006-0461 PubMed DOI

Ellrich J. (2011). Transcutaneous vagus nerve stimulation. Eur. Neurol. Rev. 6, 254–256. 10.17925/ENR.2011.06.04.254 DOI

Falkenberg L. E., Westerhausen R., Specht K., Hugdahl K. (2012). Resting-state glutamate level in the anterior cingulate predicts blood-oxygen level-dependent response to cognitive control. Proc. Natl Acad. Sci. U. S. A. 109, 5069–5073. 10.1073/pnas.1115628109 PubMed DOI PMC

Fallgatter A. J., Ehlis A.-C., Ringel T. M., Herrmann M. J. (2005). Age effect on far field potentials from the brain stem after transcutaneous vagus nerve stimulation. Int. J. Psychophysiol. 56, 37–43. 10.1016/j.ijpsycho.2004.09.007 PubMed DOI

Fallgatter A. J., Neuhauser B., Herrmann M. J., Ehlis A.-C., Wagener A., Scheuerpflug P., et al. . (2003). Far field potentials from the brain stem after transcutaneous vagus nerve stimulation. J. Neural Transm. 110, 1437–1443. 10.1007/s00702-003-0087-6 PubMed DOI

Fang J., Egorova N., Rong P., Liu J., Hong Y., Fan Y., et al. . (2017). Early cortical biomarkers of longitudinal transcutaneous vagus nerve stimulation treatment success in depression. Neuroimage Clin. 14, 105–111. 10.1016/j.nicl.2016.12.016 PubMed DOI PMC

Fang J., Rong P., Hong Y., Fan Y., Liu J., Wang H., et al. . (2016). Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biol. Psychiatry 79, 266–273. 10.1016/j.biopsych.2015.03.025 PubMed DOI PMC

Ferrari G. M. D., Crijns H. J. G. M., Borggrefe M., Milasinovic G., Smid J., Zabel M., et al. . (2011). Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur. Heart J. 32, 847–855. 10.1093/eurheartj/ehq391 PubMed DOI

Finisguerra A., Crescentini C., Urgesi C. (2019). Transcutaneous vagus nerve stimulation affects implicit spiritual self-representations. Neuroscience 412, 144–159. 10.1016/j.neuroscience.2019.05.059 PubMed DOI

Fischer R., Ventura-Bort C., Hamm A., Weymar M. (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control. Cogn. Affect. Behav. Neurosci. 18, 680–693. 10.3758/s13415-018-0596-2 PubMed DOI

Follesa P., Biggio F., Gorini G., Caria S., Talani G., Dazzi L., et al. . (2007). Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res. 1179, 28–34. 10.1016/j.brainres.2007.08.045 PubMed DOI

Frangos E., Ellrich J., Komisaruk B. R. (2015). Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: FMRI evidence in humans. Brain Stimul. 8, 624–636. 10.1016/j.brs.2014.11.018 PubMed DOI PMC

Frangos E., Komisaruk B. R. (2017). Access to vagal projections via cutaneous electrical stimulation of the neck: FMRI evidence in healthy humans. Brain Stimul. 10, 19–27. 10.1016/j.brs.2016.10.008 PubMed DOI

Frøkjaer J. B., Bergmann S., Brock C., Madzak A., Farmer A. D., Ellrich J., et al. . (2016). Modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity. Neurogastroenterol. Motil. 28, 592–598. 10.1111/nmo.12760 PubMed DOI

Gancheva S., Bierwagen A., Markgraf D. F., Bönhof G. J., Murphy K. G., Hatziagelaki E., et al. . (2018). Constant hepatic ATP concentrations during prolonged fasting and absence of effects of cerbomed nemos® on parasympathetic tone and hepatic energy metabolism. Mol. Metab. 7, 71–79. 10.1016/j.molmet.2017.10.002 PubMed DOI PMC

Garcia R. G., Lin R. L., Lee J., Kim J., Barbieri R., Sclocco R., et al. . (2017). Modulation of brainstem activity and connectivity by respiratory-gated auricular vagal afferent nerve stimulation in migraine patients. Pain 158, 1461–1472. 10.1097/j.pain.0000000000000930 PubMed DOI PMC

Gaul C., Diener H.-C., Silver N., Magis D., Reuter U., Andersson A., et al. . (2016). Non-invasive vagus nerve stimulation for PREVention and Acute treatment of chronic cluster headache (PREVA): a randomised controlled study. Cephalalgia 36, 534–546. 10.1177/0333102415607070 PubMed DOI PMC

Gee J. W., de Knapen T., Donner T. H. (2014). Decision-related pupil dilation reflects upcoming choice and individual bias. Proc. Natl. Acad. Sci. U.S.A. 111, E618–E625. 10.1073/pnas.1317557111 PubMed DOI PMC

Genheimer H., Andreatta M., Asan E., Pauli P. (2017). Reinstatement of contextual conditioned anxiety in virtual reality and the effects of transcutaneous vagus nerve stimulation in humans. Sci. Rep. 7:17886. 10.1038/s41598-017-18183-3 PubMed DOI PMC

Gidron Y., Deschepper R., De Couck M., Thayer J. F., Velkeniers B. (2018). The vagus nerve can predict and possibly modulate non-communicable chronic diseases: introducing a neuroimmunological paradigm to public health. J. Clin. Med. 7:371. 10.3390/jcm7100371 PubMed DOI PMC

Gil K., Bugajski A., Thor P. (2011). Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet. J. Physiol. Pharmacol. 62, 637–646. PubMed

Giraudier M., Ventura-Bort C., Weymar M. (2020). Transcutaneous vagus nerve stimulation (tVNS) improves high confidence recognition memory but not emotional word processing. Front. Psychol. 11:1276. 10.3389/fpsyg.2020.01276 PubMed DOI PMC

Goadsby P. J., Grosberg B. M., Mauskop A., Cady R., Simmons K. A. (2014). Effect of noninvasive vagus nerve stimulation on acute migraine: an open-label pilot study. Cephalalgia 34, 986–993. 10.1177/0333102414524494 PubMed DOI

Goldberger J. J., Arora R., Buckley U., Shivkumar K. (2019). Autonomic nervous system dysfunction. J. Am. College Cardiol. 73:64. 10.1016/j.jacc.2018.12.064 PubMed DOI PMC

Gourine A. V., Dale N., Korsak A., Llaudet E., Tian F., Huckstepp R., et al. . (2008). Release of ATP and glutamate in the nucleus tractus solitarii mediate pulmonary stretch receptor (Breuer–Hering) reflex pathway. J. Physiol. 586, 3963–3978. 10.1113/jphysiol.2008.154567 PubMed DOI PMC

Groves D. A., Bowman E. M., Brown V. J. (2005). Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat. Neurosci. Lett. 379, 174–179. 10.1016/j.neulet.2004.12.055 PubMed DOI

Guleyupoglu B., Schestatsky P., Edwards D., Fregni F., Bikson M. (2013). Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. J. Neurosci. Methods 219, 297–311. 10.1016/j.jneumeth.2013.07.016 PubMed DOI PMC

Hämmerer D., Callaghan M. F., Hopkins A., Kosciessa J., Betts M., Cardenas-Blanco A., et al. . (2018). Locus coeruleus integrity in old age is selectively related to memories linked with salient negative events. Proc. Natl. Acad. Sci. U.S.A. 115, 2228–2233. 10.1073/pnas.1712268115 PubMed DOI PMC

Hansen N. (2019). Memory reinforcement and attenuation by activating the human locus coeruleus via transcutaneous vagus nerve stimulation. Front. Neurosci. 12:955. 10.3389/fnins.2018.00955 PubMed DOI PMC

Harden C. L., Pulver M. C., Ravdin L. D., Nikolov B., Halper J. P., Labar D. R. (2000). A pilot study of mood in epilepsy patients treated with vagus nerve stimulation. Epilepsy Behav. 1, 93–99. 10.1006/ebeh.2000.0046 PubMed DOI

Hasan A., Wolff-Menzler C., Pfeiffer S., Falkai P., Weidinger E., Jobst A., et al. . (2015). Transcutaneous noninvasive vagus nerve stimulation (tVNS) in the treatment of schizophrenia: a bicentric randomized controlled pilot study. Eur. Arch. Psychiatry Clin. Neurosci. 265, 589–600. 10.1007/s00406-015-0618-9 PubMed DOI

He W., Jing X., Wang X., Rong P., Li L., Shi H., et al. . (2013a). Transcutaneous auricular vagus nerve stimulation as a complementary therapy for pediatric epilepsy: a pilot trial. Epilepsy Behav. 28, 343–346. 10.1016/j.yebeh.2013.02.001 PubMed DOI

He W., Jing X.-H., Zhu B., Zhu X.-L., Li L., Bai W.-Z., et al. . (2013b). The auriculo-vagal afferent pathway and its role in seizure suppression in rats. BMC Neurosci. 14:85. 10.1186/1471-2202-14-85 PubMed DOI PMC

Heien M. L. A. V., Johnson M. A., Wightman R. M. (2004). Resolving neurotransmitters detected by fast-scan cyclic voltammetry. Anal. Chem. 76, 5697–5704. 10.1021/ac0491509 PubMed DOI

Hein E., Nowak M., Kiess O., Biermann T., Bayerlein K., Kornhuber J., et al. . (2013). Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J. Neural Transm. 120, 821–827. 10.1007/s00702-012-0908-6 PubMed DOI

Hirschberg S., Li Y., Randall A., Kremer E. J., Pickering A. E. (2017). Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats. ELife 6:e29808. 10.7554/eLife.29808.027 PubMed DOI PMC

Homma S., Yamazaki Y., Karakida T. (1993). Blood pressure and heart rate relationships during cervical sympathetic and vagus nerve stimulation in streptozotocin diabetic rats. Brain Res. 629, 342–344. 10.1016/0006-8993(93)91343-Q PubMed DOI

Hong G.-S., Pintea B., Lingohr P., Coch C., Randau T., Schaefer N., et al. . (2019). Effect of transcutaneous vagus nerve stimulation on muscle activity in the gastrointestinal tract (transVaGa): a prospective clinical trial. Int. J. Colorectal Dis. 34, 417–422. 10.1007/s00384-018-3204-6 PubMed DOI

Hosoi T., Okuma Y., Nomura Y. (2000). Electrical stimulation of afferent vagus nerve induces IL-1beta expression in the brain and activates HPA axis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R141–R147. 10.1152/ajpregu.2000.279.1.R141 PubMed DOI

Hou P. W., Hsu H. C., Lin Y. W., Tang N. Y., Cheng C. Y., Hsieh C. L. (2015). The history mechanism, and clinical application of auricular therapy in traditional Chinese medicine. Evid Based Complement. Alternat. Med. 2015:495684. 10.1155/2015/495684 PubMed DOI PMC

Howland R. H. (2014). Vagus nerve stimulation. Curr. Behav. Neurosci. Rep. 1, 64–73. 10.1007/s40473-014-0010-5 PubMed DOI PMC

Huang F., Dong J., Kong J., Wang H., Meng H., Spaeth R. B., et al. . (2014). Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study. BMC Complement. Alternat. Med. 14:203. 10.1186/1472-6882-14-203 PubMed DOI PMC

Huang H. (1974). Ear Acupuncture. Emmaus, PA: Rodale Press Emmaus.

Huang J., Wang Y., Jiang D., Zhou J., Huang X. (2010). The sympathetic-vagal balance against endotoxemia. J. Neural Transm. 117, 729–735. 10.1007/s00702-010-0407-6 PubMed DOI

Huffman W. J., Subramaniyan S., Rodriguiz R. M., Wetsel W. C., Grill W. M., Terrando N. (2019). Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimul. 12, 19–29. 10.1016/j.brs.2018.10.005 PubMed DOI PMC

Hulsey D. R., Riley J. R., Loerwald K. W., Rennaker R. L., Kilgard M. P., Hays S. A. (2017). Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation. Exp. Neurol. 289, 21–30. 10.1016/j.expneurol.2016.12.005 PubMed DOI PMC

Huston J. M., Gallowitsch-Puerta M., Ochani M., Ochani K., Yuan R., Rosas-Ballina M., et al. . (2007). Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit.Care Med. 35, 2762–2768. 10.1097/01.CCM.0000288102.15975.BA PubMed DOI

Hyvärinen P., Yrttiaho S., Lehtimäki J., Ilmoniemi R. J., Mäkitie A., Ylikoski J., et al. . (2015). Transcutaneous vagus nerve stimulation modulates tinnitus-related beta- and gamma-band activity. Ear Hear. 36, e76–e85. 10.1097/AUD.0000000000000123 PubMed DOI

Ikramuddin S., Blackstone R. P., Brancatisano A., Toouli J., Shah S. N., Wolfe B. M., et al. . (2014). Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the recharge randomized clinical trial. JAMA 312, 915–922. 10.1001/jama.2014.10540 PubMed DOI

Iseger T. A., van Bueren N. E. R., Kenemans J. L., Gevirtz R., Arns M. (2020). A frontal-vagal network theory for major depressive disorder: implications for optimizing neuromodulation techniques. Brain Stimul. 13, 1–9. 10.1016/j.brs.2019.10.006 PubMed DOI

Jacobs H. I. L., Riphagen J. M., Razat C. M., Wiese S., Sack A. T. (2015). Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiol. Aging 36, 1860–1867. 10.1016/j.neurobiolaging.2015.02.023 PubMed DOI

Jacquin M. F., Semba K., Rhoades R. W., Egger M. D. (1982). Trigeminal primary afferents project bilaterally to dorsal horn and ipsilaterally to cerebellum, reticular formation, and cuneate, solitary, supratrigeminal and vagal nuclei. Brain Res. 246, 285–291. 10.1016/0006-8993(82)91177-5 PubMed DOI

Jalife J., Slenter V. A., Salata J. J., Michaels D. C. (1983). Dynamic vagal control of pacemaker activity in the mammalian sinoatrial node. Circ. Res. 52, 642–656. 10.1161/01.RES.52.6.642 PubMed DOI

Janner H., Klausenitz C., Gürtler N., Hahnenkamp K., Usichenko T. I. (2018). Effects of electrical transcutaneous vagus nerve stimulation on the perceived intensity of repetitive painful heat stimuli: a blinded placebo- and sham-controlled randomized crossover investigation. Anesthesia Analgesia 126, 2085–2092. 10.1213/ANE.0000000000002820 PubMed DOI

Jiang Y., Li L., Ma J., Zhang L., Niu F., Feng T., et al. . (2016). Auricular vagus nerve stimulation promotes functional recovery and enhances the post-ischemic angiogenic response in an ischemia/reperfusion rat model. Neurochem. Int. 97, 73–82. 10.1016/j.neuint.2016.02.009 PubMed DOI

Jin Y., Kong J. (2016). Transcutaneous vagus nerve stimulation: a promising method for treatment of autism spectrum disorders. Front. Neurosci. 10:609. 10.3389/fnins.2016.00609 PubMed DOI PMC

Jodoin V. D., Lespérance P., Nguyen D. K., Fournier-Gosselin M.-P., Richer F., Centre Hospitalier de l'Université de Montréal Canada. (2018). Effects of vagus nerve stimulation on pupillary function. Int. J. Psychophysiol. 98(3 Pt 1), 455–459. 10.1016/j.ijpsycho.2015.10.001 PubMed DOI

John C. E., Jones S. R. (2007). “Fast scan cyclic voltammetry of dopamine and serotonin in mouse brain slices,” in Electrochemical Methods for Neuroscience, eds A. C. Michael and L. M. Borland (Francis:CRC Press/Taylor; ). Available onlie at: http://www.ncbi.nlm.nih.gov/books/NBK2579/ PubMed

Johnson R. L., Wilson C. G. (2018). A review of vagus nerve stimulation as a therapeutic intervention. J. Inflamm. Res. 11, 203–213. 10.2147/JIR.S163248 PubMed DOI PMC

Jongkees B. J., Immink M. A., Finisguerra A., Colzato L. S. (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during sequential action. Front. Psychol. 9:1159. 10.3389/fpsyg.2018.01159 PubMed DOI PMC

Joshi S., Li Y., Kalwani R. M., Gold J. I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89, 221–234. 10.1016/j.neuron.2015.11.028 PubMed DOI PMC

Juel J., Brock C., Olesen S., Madzak A., Farmer A., Aziz Q., et al. . (2017). Acute physiological and electrical accentuation of vagal tone has no effect on pain or gastrointestinal motility in chronic pancreatitis. J. Pain Res. 10, 1347–1355. 10.2147/JPR.S133438 PubMed DOI PMC

Kaczmarczyk R., Tejera D., Simon B. J., Heneka M. T. (2017). Microglia modulation through external vagus nerve stimulation in a murine model of Alzheimer's disease. J. Neurochem. 146, 76–85. 10.1111/jnc.14284 PubMed DOI

Kalia M., Sullivan J. M. (1982). Brainstem projections of sensory and motor components of the vagus nerve in the rat. J. Comp. Neurol. 211, 248–265. 10.1002/cne.902110304 PubMed DOI

Kampusch S., Kaniusas E., Széles J. C. (2013). “New approaches in multi-punctual percutaneous stimulation of the auricular vagus nerve,” in 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) (San Diego, CA: ), 263–266. 10.1109/NER.2013.6695922 DOI

Kaniusas E. (2019). Biomedical Signals and Sensors III: Linking Electric Biosignals and Biomedical Sensors. Available online at: https://www.springer.com/de/book/9783319749167

Kaniusas E., Kampusch S., Tittgemeyer M., Panetsos F., Gines R. F., Papa M., et al. . (2019a). Current directions in the auricular vagus nerve stimulation II – an engineering perspective. Front. Neurosci. 13:772. 10.3389/fnins.2019.00772 PubMed DOI PMC

Kaniusas E., Kampusch S., Tittgemeyer M., Panetsos F., Gines R. F., Papa M., et al. . (2019b). Current directions in the auricular vagus nerve stimulation I – a physiological perspective. Front. Neurosci. 13:854. 10.3389/fnins.2019.00854 PubMed DOI PMC

Kaniusas E., Samoudi A. M., Kampusch S., Bald K., Tanghe E., Martens L., et al. . (2020). Stimulation pattern efficiency in percutaneous auricular vagus nerve stimulation: experimental versus numerical data. IEEE Trans. Biomed. Eng. 67, 1921–1935. 10.1109/TBME.2019.2950777 PubMed DOI

Kemp J., Després O., Pebayle T., Dufour A. (2014). Age-related decrease in sensitivity to electrical stimulation is unrelated to skin conductance: an evoked potentials study. Clin. Neurophysiol. 125, 602–607. 10.1016/j.clinph.2013.08.020 PubMed DOI

Keute M., Boehrer L., Ruhnau P., Heinze H.-J., Zaehle T. (2019a). Transcutaneous vagus nerve stimulation (tVNS) and the dynamics of visual bistable perception. Front. Neurosci. 13:227. 10.3389/fnins.2019.00227 PubMed DOI PMC

Keute M., Demirezen M., Graf A., Mueller N. G., Zaehle T. (2019b). No modulation of pupil size and event-related pupil response by transcutaneous auricular vagus nerve stimulation (taVNS). Sci. Rep. 9:11452. 10.1038/s41598-019-47961-4 PubMed DOI PMC

Keute M., Ruhnau P., Heinze H.-J., Zaehle T. (2018). Behavioral and electrophysiological evidence for GABAergic modulation through transcutaneous vagus nerve stimulation. Clin. Neurophysiol. 129, 1789–1795. 10.1016/j.clinph.2018.05.026 PubMed DOI

Khadka N., Borges H., Zannou A. L., Jang J., Kim B., Lee K., et al. . (2018). Dry tDCS: Tolerability of a novel multilayer hydrogel composite non-adhesive electrode for transcranial direct current stimulation. Brain Stimul. 11, 1044–1053. 10.1016/j.brs.2018.07.049 PubMed DOI

Kile B. M., Walsh P. L., McElligott Z. A., Bucher E. S., Guillot T. S., Salahpour A., et al. . (2012). Optimizing the temporal resolution of fast-scan cyclic voltammetry. ACS Chem. Neurosci. 3, 285–292. 10.1021/cn200119u PubMed DOI PMC

Koenig J., Parzer P., Haigis N., Liebemann J., Jung T., Resch F., et al. . (2019). Effects of acute transcutaneous vagus nerve stimulation on emotion recognition in adolescent depression. Psychol. Med. 1–10. 10.1017/S0033291719003490. [Epub ahead of print]. PubMed DOI PMC

Koenig J., Rash J. A., Campbell T. S., Thayer J. F., Kaess M. (2017). A meta-analysis on sex differences in resting-state vagal activity in children and adolescents. Front. Physiol. 8:582. 10.3389/fphys.2017.00582 PubMed DOI PMC

Koenig J., Thayer J. F. (2016). Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci. Biobehav. Rev. 64, 288–310. 10.1016/j.neubiorev.2016.03.007 PubMed DOI

Kong J., Fang J., Park J., Li S., Rong P. (2018). Treating depression with transcutaneous auricular vagus nerve stimulation: state of the art and future perspectives. Front. Psychiatry 9:20. 10.3389/fpsyt.2018.00020 PubMed DOI PMC

Koopman F. A., Chavan S. S., Miljko S., Grazio S., Sokolovic S., Schuurman P. R., et al. . (2016). Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl. Acad. Sci. U.S.A. 113, 8284–8289. 10.1073/pnas.1605635113 PubMed DOI PMC

Krahl S. E., Clark K. B. (2012). Vagus nerve stimulation for epilepsy: a review of central mechanisms. Surg. Neurol. Int. 3, S255–S259. 10.4103/2152-7806.103015 PubMed DOI PMC

Krahl S. E., Senanayake S. S., Handforth A. (2003). Right-sided vagus nerve stimulation reduces generalized seizure severity in rats as effectively as left-sided. Epilepsy Res. 56, 1–4. 10.1016/s0920-1211(03)00122-0 PubMed DOI

Kraus T., Hösl K., Kiess O., Schanze A., Kornhuber J., Forster C. (2007). BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. J. Neural Transm. 114, 1485–1493. 10.1007/s00702-007-0755-z PubMed DOI

Kraus T., Kiess O., Hösl K., Terekhin P., Kornhuber J., Forster C. (2013). CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal – a pilot study. Brain Stimul. 6, 798–804. 10.1016/j.brs.2013.01.011 PubMed DOI

Krause B., Cohen Kadosh R. (2014). Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation. Front. Syst. Neurosci. 8:25. 10.3389/fnsys.2014.00025 PubMed DOI PMC

Kreuzer P. M., Landgrebe M., Husser O., Resch M., Schecklmann M., Geisreiter F., et al. . (2012). Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study. Front. Psychiatry 3:70. 10.3389/fpsyt.2012.00070 PubMed DOI PMC

Kreuzer P. M., Landgrebe M., Resch M., Husser O., Schecklmann M., Geisreiter F., et al. . (2014). Feasibility, safety and efficacy of transcutaneous vagus nerve stimulation in chronic tinnitus: an open pilot study. Brain Stimul. 7, 740–747. 10.1016/j.brs.2014.05.003 PubMed DOI

Kuo T. B., Lin T., Yang C. C., Li C. L., Chen C. F., Chou P. (1999). Effect of aging on gender differences in neural control of heart rate. Am. J. Physiol. 277, H2233–H2239. 10.1152/ajpheart.1999.277.6.H2233 PubMed DOI

Kuo T. B. J., Lai C. J., Huang Y.-T., Yang C. C. H. (2005). Regression analysis between heart rate variability and baroreflex-related vagus nerve activity in rats. J. Cardiovasc. Electrophysiol. 16, 864–869. 10.1111/j.1540-8167.2005.40656.x PubMed DOI

Lamb D. G., Porges E. C., Lewis G. F., Williamson J. B. (2017). Non-invasive vagal nerve stimulation effects on hyperarousal and autonomic state in patients with posttraumatic stress disorder and history of mild traumatic brain injury: preliminary evidence. Front. Med. 4:124. 10.3389/fmed.2017.00124 PubMed DOI PMC

Lange G., Janal M. N., Maniker A., Fitzgibbons J., Fobler M., Cook D., et al. . (2011). Safety and efficacy of vagus nerve stimulation in fibromyalgia: a phase I/II proof of concept trial. Pain Med. 12, 1406–1413. 10.1111/j.1526-4637.2011.01203.x PubMed DOI PMC

Lanska D. J. (2002). Corning and vagal nerve stimulation for seizures in the 1880s. Neurology 58, 452–459. 10.1212/WNL.58.3.452 PubMed DOI

Laqua R., Leutzow B., Wendt M., Usichenko T. (2014). Transcutaneous vagal nerve stimulation may elicit anti- and pro-nociceptive effects under experimentally-induced pain—a crossover placebo-controlled investigation. Auton. Neurosci. Basic Clin. 185, 120–122. 10.1016/j.autneu.2014.07.008 PubMed DOI

Lehtimäki J., Hyvärinen P., Ylikoski M., Bergholm M., Mäkel,ä J. P., Aarnisalo A., et al. . (2013). Transcutaneous vagus nerve stimulation in tinnitus: a pilot study. Acta Oto Laryngol. 133, 378–382. 10.3109/00016489.2012.750736 PubMed DOI

Lerman I., Hauger R., Sorkin L., Proudfoot J., Davis B., Huang A., et al. . (2016). Noninvasive transcutaneous vagus nerve stimulation decreases whole blood culture-derived cytokines and chemokines: a randomized, blinded, healthy control pilot trial: noninvasive vagus nerve stimulation modulates peripheral inflammation. Neuromodulation 19, 283–290. 10.1111/ner.12398 PubMed DOI

Leutzow B., Lange J., Gibb A., Schroeder H., Nowak A., Wendt M., et al. . (2013). Vagal sensory evoked potentials disappear under the neuromuscular block – an experimental study. Brain Stimul. 6, 812–816. 10.1016/j.brs.2013.03.005 PubMed DOI

Levine Y. A., Koopman F., Faltys M., Zitnik R., Tak P.-P. (2014). Neurostimulation of the cholinergic antiinflammatory pathway in rheumatoid arthritis and inflammatory bowel disease. Bioelectron. Med. 1, 34–43. 10.15424/bioelectronmed.2014.00008 DOI

Levy M. N., Martin P. J., Lano T., Zieske H. (1969). Paradoxical effect of vagus nerve stimulation on heart rate in dogs. Circ. Res. 25, 303–314. 10.1161/01.RES.25.3.303 PubMed DOI

Lewine J. D., Paulson K., Bangera N., Simon B. J. (2019). Exploration of the impact of brief noninvasive vagal nerve stimulation on EEG and event-related potentials: impact of nVNS on brain electrophysiology. Neuromodulation 22, 564–572. 10.1111/ner.12864 PubMed DOI

Liporace J., Hucko D., Morrow R., Barolat G., Nei M., Schnur J., et al. . (2001). Vagal nerve stimulation: adjustments to reduce painful side effects. Neurology 57, 885–886. 10.1212/WNL.57.5.885 PubMed DOI

Liu J., Fang J., Wang Z., Rong P., Hong Y., Fan Y., et al. . (2016). Transcutaneous vagus nerve stimulation modulates amygdala functional connectivity in patients with depression. J. Affect. Disord. 205, 319–326. 10.1016/j.jad.2016.08.003 PubMed DOI

Liu K. Y., Acosta-Cabronero J., Cardenas-Blanco A., Loane C., Berry A. J., Betts M. J., et al. . (2019). In vivo visualization of age-related differences in the locus coeruleus. Neurobiol. Aging 74, 101–111. 10.1016/j.neurobiolaging.2018.10.014 PubMed DOI PMC

Liu K. Y., Marijatta F., Hämmerer D., Acosta-Cabronero J., Düzel E., Howard R. J. (2017). Magnetic resonance imaging of the human locus coeruleus: a systematic review. Neurosci. Biobehav. Rev. 83, 325–355. 10.1016/j.neubiorev.2017.10.023 PubMed DOI

Liugan M., Zhang M., Cakmak Y. O. (2018). Neuroprosthetics for auricular muscles: neural networks and clinical aspects. Front. Neurol. 8:752. 10.3389/fneur.2017.00752 PubMed DOI PMC

Lv H., Zhao Y., Chen J., Wang D., Chen H. (2019). Vagus nerve stimulation for depression: a systematic review. Front. Psychol. 10:64. 10.3389/fpsyg.2019.00064 PubMed DOI PMC

Maffiuletti N. A., Herrero A. J., Jubeau M., Impellizzeri F. M., Bizzini M. (2008). Differences in electrical stimulation thresholds between men and women. Ann. Neurol. 63, 507–512. 10.1002/ana.21346 PubMed DOI

Malik M. (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use: task force of the European Society of Cardiology and the North American Society for Pacing and Electrophysiology. Annals Noninv. Electrocardiol. 1, 151–181. 10.1111/j.1542-474X.1996.tb00275.x PubMed DOI

Manta S., Dong J., Debonnel G., Blier P. (2009). Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation. J. Psychiatry Neurosci. 34, 272–280. PubMed PMC

Manta S., El Mansari M., Debonnel G., Blier P. (2013). Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems. Int. J. Neuropsychopharmacol. 16, 459–470. 10.1017/S1461145712000387 PubMed DOI

Marrosu F., Serra A., Maleci A., Puligheddu M., Biggio G., Piga M. (2003). Correlation between GABAA receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsy. Epilepsy Res. 55, 59–70. 10.1016/S0920-1211(03)00107-4 PubMed DOI

McGough J. J., Sturm A., Cowen J., Tung K., Salgari G. C., Leuchter A. F., et al. . (2019). Double-blind, sham-controlled, pilot study of trigeminal nerve stimulation for attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 58, 403–411.e3. 10.1016/j.jaac.2018.11.013 PubMed DOI PMC

Merrill D. R., Bikson M., Jefferys J. G. R. (2005). Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–198. 10.1016/j.jneumeth.2004.10.020 PubMed DOI

Mertens A., Naert L., Miatton M., Poppa T., Carrette E., Gadeyne S., et al. . (2020). Transcutaneous vagus nerve stimulation does not affect verbal memory performance in healthy volunteers. Front. Psychol. 11:551. 10.3389/fpsyg.2020.00551 PubMed DOI PMC

Mertens A., Raedt R., Gadeyne S., Carrette E., Boon P., Vonck K. (2018). Recent advances in devices for vagus nerve stimulation. Expert Rev. Med. Devices 15, 527–539. 10.1080/17434440.2018.1507732 PubMed DOI

Minhas P., Bansal V., Patel J., Ho J. S., Diaz J., Datta A., et al. . (2010). Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS. J. Neurosci. Methods 190, 188–197. 10.1016/j.jneumeth.2010.05.007 PubMed DOI PMC

Mirza K. B., Golden C. T., Nikolic K., Toumazou C. (2019). Closed-loop implantable therapeutic neuromodulation systems based on neurochemical monitoring. Front. Neurosci. 13:808. 10.3389/fnins.2019.00808 PubMed DOI PMC

Moher D. Schulz K. F. Altman D. CONSORT Group Consolidated Standards of Reporting Trials (2001). The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. JAMA 285, 1987–1991. 10.1001/jama.285.15.1987 PubMed DOI

Moodithaya S., Avadhany S. T. (2012). Gender differences in age-related changes in cardiac autonomic nervous function. J. Aging Res. 2012:679345. 10.1155/2012/679345 PubMed DOI PMC

Morris G. L., Gloss D., Buchhalter J., Mack K. J., Nickels K., Harden C. (2013). Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy. Epilepsy Curr. 13, 297–303. 10.5698/1535-7597-13.6.297 PubMed DOI PMC

Morris J., Straube A., Diener H.-C., Ahmed F., Silver N., Walker S., et al. . (2016). Cost-effectiveness analysis of non-invasive vagus nerve stimulation for the treatment of chronic cluster headache. J. Headache Pain 17:43. 10.1186/s10194-016-0633-x PubMed DOI PMC

Mourdoukoutas A. P., Truong D. Q., Adair D. K., Simon B. J., Bikson M. (2018). High-resolution multi-scale computational model for non-invasive cervical vagus nerve stimulation. Neuromodulation 21, 261–268. 10.1111/ner.12706 PubMed DOI PMC

Mridha Z., de Gee J. W., Shi Y., Alkashgari R., Williams J., Suminski A., et al. . (2019). Graded recruitment of pupil-linked neuromodulation by parametric stimulation of the vagus nerve | bioRxiv [Preprint]. 10.1101/2019.12.28.890111 PubMed DOI PMC

Murphy P. R., Robertson I. H., Balsters J. H., O'connell R. G. (2011). Pupillometry and P3 index the locus coeruleus-noradrenergic arousal function in humans. Psychophysiology 48, 1532–1543. 10.1111/j.1469-8986.2011.01226.x PubMed DOI

Murray A. R., Atkinson L., Mahadi M. K., Deuchars S. A., Deuchars J. (2016a). The strange case of the ear and the heart: the auricular vagus nerve and its influence on cardiac control. Auton. Neurosci. Basic Clin. 199, 48–53. 10.1016/j.autneu.2016.06.004 PubMed DOI

Murray A. R., Clancy J. A., Deuchars S. A., Deuchars J. (2016b). Transcutaneous vagus nerve stimulation (tVNS) decreases sympathetic nerve activity in older healthy human subjects. FASEB J. 30(1 Suppl), 754.3. 10.1136/heartjnl-2016-309890.215 DOI

Napadow V. (2019). When a white horse is a horse: embracing the overlap between acupuncture and neuromodulation. J. Altern. Complement. Med. 24, 621–623. 10.1089/acm.2018.29047.vtn PubMed DOI

Napadow V., Edwards R. R., Cahalan C. M., Mensing G., Greenbaum S., Valovska A., et al. . (2012). Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation. Pain Med. 13, 777–789. 10.1111/j.1526-4637.2012.01385.x PubMed DOI PMC

Nassi J. J., Cepko C. L., Born R. T., Beier K. T. (2015). Neuroanatomy goes viral! Front. Neuroanat. 9:80. 10.3389/fnana.2015.00080 PubMed DOI PMC

Nemeroff C. B., Mayberg H. S., Krahl S. E., McNamara J., Frazer A., Henry T. R., et al. . (2006). VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms. Neuropsychopharmacology 31, 1345–1355. 10.1038/sj.npp.1301082 PubMed DOI

Nesbitt A. D., Marin J. C. A., Tompkins E., Ruttledge M. H., Goadsby P. J. (2015). Initial use of a novel noninvasive vagus nerve stimulator for cluster headache treatment. Neurology 84, 1249–1253. 10.1212/WNL.0000000000001394 PubMed DOI

Neuhaus A. H., Luborzewski A., Rentzsch J., Brakemeier E. L., Opgen-Rhein C., Gallinat J., et al. . (2007). P300 is enhanced in responders to vagus nerve stimulation for treatment of major depressive disorder. J. Affect. Disord. 100, 123–128. 10.1016/j.jad.2006.10.005 PubMed DOI

Neuser M. P., Teckentrup V., Kühnel A., Hallschmid M., Walter M., Kroemer N. B. (2019). Vagus nerve stimulation increases vigor to work for rewards. BioRxiv [Preprint]. 789982. 10.1101/789982 PubMed DOI

Ng G. A., Brack K. E., Coote J. H. (2001). Effects of direct sympathetic and vagus nerve stimulation on the physiology of the whole heart—a novel model of isolated langendorff perfused rabbit heart with intact dual autonomic innervation. Exp. Physiol. 86, 319–329. 10.1113/eph8602146 PubMed DOI

Nieuwenhuis S., Aston-Jones G., Cohen J. D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol. Bull. 131, 510–532. 10.1037/0033-2909.131.4.510 PubMed DOI

Njagi J., Chernov M. M., Leiter J. C., Andreescu S. (2010). Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Anal. Chem. 82, 989–996. 10.1021/ac9022605 PubMed DOI

Nogier P. M. F. (1957). Über die akupunktur der ohrmuschel. Dt Ztschr Akup 6, 25–35.

Noller C. M., Levine Y. A., Urakov T. M., Aronson J. P., Nash M. S. (2019). Vagus nerve stimulation in rodent models: an overview of technical considerations. Front. Neurosci. 13:911. 10.3389/fnins.2019.00911 PubMed DOI PMC

Paleczny B., Seredyński R., Ponikowska B. (2019). Inspiratory- and expiratory-gated transcutaneous vagus nerve stimulation have different effects on heart rate in healthy subjects: preliminary results. Clin. Auton. Res. 10.1007/s10286-019-00604-0. [Epub ahead of print]. PubMed DOI PMC

Panebianco M., Zavanone C., Dupont S., Restivo D. A., Pavone A. (2016). Vagus nerve stimulation therapy in partial epilepsy: a review. Acta Neurol. Belgica 116, 241–248. 10.1007/s13760-016-0616-3 PubMed DOI

Pardo J., Sheikh S., Kuskowski M., Surerus-Johnson C., Hagen M., Lee J., et al. . (2007). Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity. Int. J. Obesity 31, 1756–1759. 10.1038/sj.ijo.0803666 PubMed DOI PMC

Pavlov V. A., Tracey K. J. (2012). The vagus nerve and the inflammatory reflex–linking immunity and metabolism. Nat. Rev. Endocrinol. 8, 743–754. 10.1038/nrendo.2012.189 PubMed DOI PMC

Peng L., Mu K., Liu A., Zhou L., Gao Y., Shenoy I. T., et al. . (2018). Transauricular vagus nerve stimulation at auricular acupoints kindey (CO10), yidan (CO11), liver (CO12) and shenmen (TF4) can induce auditory and limbic cortices activation measured by fMRI. Hear. Res. 359, 1–12. 10.1016/j.heares.2017.12.003 PubMed DOI

Penry J. K., Dean J. C. (1990). Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results. Epilepsia 31, S40–S43. 10.1111/j.1528-1157.1990.tb05848.x PubMed DOI

Perkins D. O. (2002). Predictors of noncompliance in patients with schizophrenia. J. Clin. Psychiatry 63, 1121–1128. 10.4088/JCP.v63n1206 PubMed DOI

Peterchev A. V., Wagner T. A., Miranda P. C., Nitsche M. A., Paulus W., Lisanby S. H., et al. . (2012). Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul. 5, 435–453. 10.1016/j.brs.2011.10.001 PubMed DOI PMC

Peuker E. T., Filler T. J. (2002). The nerve supply of the human auricle. Clin. Anat. 15, 35–37. 10.1002/ca.1089 PubMed DOI

Polak T., Markulin F., Ehlis A.-C., Langer J. B. M., Ringel T. M., Fallgatter A. J. (2009). Far field potentials from brain stem after transcutaneous vagus nerve stimulation: optimization of stimulation and recording parameters. J. Neural Transm. 116, 1237–1242. 10.1007/s00702-009-0282-1 PubMed DOI

Premchand R. K., Sharma K., Mittal S., Monteiro R., Dixit S., Libbus I., et al. . (2014). Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J. Cardiac Failure 20, 808–816. 10.1016/j.cardfail.2014.08.009 PubMed DOI

Priovoulos N., Jacobs H. I. L., Ivanov D., Uludag K., Verhey F. R. J., Poser B. A. (2018). High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3T and 7T. Neuroimage 168, 427–436. 10.1016/j.neuroimage.2017.07.045 PubMed DOI

Raedt R., Clinckers R., Mollet L., Vonck K., El Tahry R., Wyckhuys T., et al. . (2011). Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. J. Neurochem. 117, 461–469. 10.1111/j.1471-4159.2011.07214.x PubMed DOI

Rajkowski J. (1993). Correlations between locus coeruleus (LC) neural activity, pupil diameter and behavior in monkey support a role of LC in attention. Soc. Neurosc. Available online at: https://ci.nii.ac.jp/naid/10021384962/en/

Rawat J. K., Roy S., Singh M., Guatam S., Yadav R. K., Ansari M. N., et al. . (2019). Transcutaneous vagus nerve stimulation regulates the cholinergic anti-inflammatory pathway to counteract 1, 2-dimethylhydrazine induced colon carcinogenesis in albino wistar rats. Front. Pharmacol. 10:353. 10.3389/fphar.2019.00353 PubMed DOI PMC

Redgrave J., Day D., Leung H., Laud P. J., Ali A., Lindert R., et al. . (2018). Safety and tolerability of transcutaneous vagus nerve stimulation in humans; a systematic review. Brain Stimul. 11, 1225–1238. 10.1016/j.brs.2018.08.010 PubMed DOI

Rong P., Liu A., Zhang J., Wang Y., He W., Yang A., et al. . (2014). Transcutaneous vagus nerve stimulation for refractory epilepsy: a randomized controlled trial. Clin. Sci. 10.1042/CS20130518. [Epub ahead of print]. PubMed DOI

Rong P., Liu J., Wang L., Liu R., Fang J., Zhao J., et al. . (2016). Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study. J. Affect. Disord. 195, 172–179. 10.1016/j.jad.2016.02.031 PubMed DOI PMC

Roosevelt R. W., Smith D. C., Clough R. W., Jensen R. A., Browning R. A. (2006). Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res. 1119, 124–132. 10.1016/j.brainres.2006.08.048 PubMed DOI PMC

Roslin M., Kurian M. (2001). The use of electrical stimulation of the vagus nerve to treat morbid obesity. Epilepsy Behav. 2, S11–S16. 10.1006/ebeh.2001.0213 DOI

Rufener K. S., Geyer U., Janitzky K., Heinze H.-J., Zaehle T. (2018). Modulating auditory selective attention by non-invasive brain stimulation: differential effects of transcutaneous vagal nerve stimulation and transcranial random noise stimulation. Eur. J. Neurosci. 48, 2301–2309. 10.1111/ejn.14128 PubMed DOI

Salman I. M. (2015). Cardiovascular autonomic dysfunction in chronic kidney disease: a comprehensive review. Curr. Hypertens. Rep. 17:59. 10.1007/s11906-015-0571-z PubMed DOI

Sasaki M., Shibata E., Tohyama K., Takahashi J., Otsuka K., Tsuchiya K., et al. . (2006). Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease. Neuroreport 17, 1215–1218. 10.1097/01.wnr.0000227984.84927.a7 PubMed DOI

Sator-Katzenschlager S. M., Scharbert G., Kozek-Langenecker S. A., Szeles J. C., Finster G., Schiesser A. W., et al. . (2004). The short- and long-term benefit in chronic low back pain through adjuvant electrical versus manual auricular acupuncture. Anesthesia Analgesia 98, 1359–1364. 10.1213/01.ANE.0000107941.16173.F7 PubMed DOI

Schevernels H., van Bochove M. E., De Taeye L., Bombeke K., Vonck K., Van Roost D., et al. . (2016). The effect of vagus nerve stimulation on response inhibition. Epilepsy Behav. 64, 171–179. 10.1016/j.yebeh.2016.09.014 PubMed DOI

Schulz-Stübner S., Kehl F. (2011). Treatment of persistent hiccups with transcutaneous phrenic and vagal nerve stimulation. Intensive Care Med. 37, 1048–1049. 10.1007/s00134-011-2150-3 PubMed DOI

Schwarz L. A., Miyamichi K., Gao X. J., Beier K. T., Weissbourd B., DeLoach K. E., et al. . (2015). Viral-genetic tracing of the input–output organization of a central noradrenaline circuit. Nature 524, 88–92. 10.1038/nature14600 PubMed DOI PMC

Sclocco R., Beissner F., Bianciardi M., Polimeni J. R., Napadow V. (2018). Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI. Neuroimage 168, 412–426. 10.1016/j.neuroimage.2017.02.052 PubMed DOI PMC

Sclocco R., Garcia R. G., Gabriel A., Kettner N. W., Napadow V., Barbieri R. (2017). “Respiratory-gated auricular vagal afferent nerve stimulation (RAVANS) effects on autonomic outflow in hypertension,” in 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Jeju: ), 3130–3133. 10.1109/EMBC.2017.8037520 PubMed DOI

Sclocco R., Garcia R. G., Kettner N. W., Fisher H. P., Isenburg K., Makarovsky M., et al. . (2020). Stimulus frequency modulates brainstem response to respiratory-gated transcutaneous auricular vagus nerve stimulation. Brain Stimul. 13, 970–978. 10.1016/j.brs.2020.03.011 PubMed DOI PMC

Sclocco R., Garcia R. G., Kettner N. W., Isenburg K., Fisher H. P., Hubbard C. S., et al. . (2019). The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: a multimodal ultrahigh-field (7T) fMRI study. Brain Stimul. 12, 911–921. 10.1016/j.brs.2019.02.003 PubMed DOI PMC

Sellaro R., de Gelder B., Finisguerra A., Colzato L. S. (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances recognition of emotions in faces but not bodies. Cortex 99, 213–223. 10.1016/j.cortex.2017.11.007 PubMed DOI

Sellaro R., Steenbergen L., Verkuil B., van IJzendoorn M. H., Colzato L. S. (2015a). Transcutaneous vagus nerve stimulation (tVNS) does not increase prosocial behavior in cyberball. Front. Psychol. 6:499. 10.3389/fpsyg.2015.00499 PubMed DOI PMC

Sellaro R., van Leusden J. W. R., Tona K.-D., Verkuil B., Nieuwenhuis S., Colzato L. S. (2015b). Transcutaneous vagus nerve stimulation enhances post-error slowing. J. Cogn. Neurosci. 27, 2126–2132. 10.1162/jocn_a_00851 PubMed DOI

Shikora S., Toouli J., Herrera M. F., Kulseng B., Zulewski H., Brancatisano R., et al. . (2013). Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus. J. Obes. 2013:245683. 10.1155/2013/245683 PubMed DOI PMC

Shim H. J., Kwak M. Y., An Y.-H., Kim D. H., Kim Y. J., Kim H. J. (2015). Feasibility and safety of transcutaneous vagus nerve stimulation paired with notched music therapy for the treatment of chronic tinnitus. J. Audiol. Otol. 19, 159–167. 10.7874/jao.2015.19.3.159 PubMed DOI PMC

Silberstein S. D., Calhoun A. H., Lipton R. B., Grosberg B. M., Cady R. K., Dorlas S., et al. . (2016a). Chronic migraine headache prevention with noninvasive vagus nerve stimulation: the EVENT study. Neurology 87, 529–538. 10.1212/WNL.0000000000002918 PubMed DOI PMC

Silberstein S. D., Mechtler L. L., Kudrow D. B., Calhoun A. H., McClure C., Saper J. R., et al. . (2016b). Non-invasive vagus nerve stimulation for the acute treatment of cluster headache: findings from the randomized, double-blind, sham-controlled ACT1 study. Headache 56, 1317–1332. 10.1111/head.12896 PubMed DOI PMC

Silvanto J., Muggleton N., Walsh V. (2008). State-dependency in brain stimulation studies of perception and cognition. Trends Cogn. Sci. 12, 447–454. 10.1016/j.tics.2008.09.004 PubMed DOI

Slenter V. A., Salata J. J., Jalife J. (1984). Vagal control of pacemaker periodicity and intranodal conduction in the rabbit sinoatrial node. Circ. Res. 54, 436–446. 10.1161/01.RES.54.4.436 PubMed DOI

Sooksood K., Stieglitz T., Ortmanns M. (2009). “Recent advances in charge balancing for functional electrical stimulation,” in Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference (Minneapolis: ), 2009, 5518–5521. 10.1109/IEMBS.2009.5333181 PubMed DOI

Sooksood K., Stieglitz T., Ortmanns M. (2010). An active approach for charge balancing in functional electrical stimulation. IEEE Trans. Biomed. Circ. Syst. 4, 162–170. 10.1109/TBCAS.2010.2040277 PubMed DOI

Stavrakis S., Humphrey M. B., Scherlag B. J., Hu Y., Jackman W. M., Nakagawa H., et al. . (2015). Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J. Am. Coll. Cardiol. 65, 867–875. 10.1016/j.jacc.2014.12.026 PubMed DOI PMC

Steenbergen L., Colzato L. S., Maraver M. J. (2020). Vagal signaling and the somatic marker hypothesis: the effect of transcutaneous vagal nerve stimulation on delay discounting is modulated by positive mood. Int. J. Psychophysiol. 148, 84–92. 10.1016/j.ijpsycho.2019.10.010 PubMed DOI

Steenbergen L., Sellaro R., Stock A.-K., Verkuil B., Beste C., Colzato L. S. (2015). Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes. Eur. Neuropsychopharmacol. 25, 773–778. 10.1016/j.euroneuro.2015.03.015 PubMed DOI

Stefan H., Kreiselmeyer G., Kerling F., Kurzbuch K., Rauch C., Heers M., et al. . (2012). Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia 53, e115–e118. 10.1111/j.1528-1167.2012.03492.x PubMed DOI

Straube A., Ellrich J., Eren O., Blum B., Ruscheweyh R. (2015). Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): A randomized, monocentric clinical trial. J. Headache Pain 16:543. 10.1186/s10194-015-0543-3 PubMed DOI PMC

Sun P., Zhou K., Wang S., Li P., Chen S., Lin G., et al. . (2013). Involvement of MAPK/NF-κB signaling in the activation of the cholinergic anti-inflammatory pathway in experimental colitis by chronic vagus nerve stimulation. PLoS ONE 8:e69424. 10.1371/journal.pone.0069424 PubMed DOI PMC

Szeska C., Richter J., Wendt J., Weymar M., Hamm A. O. (2020). Promoting long-term inhibition of human fear responses by non-invasive transcutaneous vagus nerve stimulation during extinction training. Sci. Rep. 10:1529. 10.1038/s41598-020-58412-w PubMed DOI PMC

Sztajzel J., Jung M., Bayes de Luna A. (2008). Reproducibility and gender-related differences of heart rate variability during all-day activity in young men and women. Ann. Noninvasive Electrocardiol. 13, 270–277. 10.1111/j.1542-474X.2008.00231.x PubMed DOI PMC

Takemura M., Sugimoto T., Sakai A. (1987). Topographic organization of central terminal region of different sensory branches of the rat mandibular nerve. Exp. Neurol. 96, 540–557. 10.1016/0014-4886(87)90217-2 PubMed DOI

Teckentrup V., Neubert S., Santiago J. C. P., Hallschmid M., Walter M., Kroemer N. B. (2020). Non-invasive stimulation of vagal afferents reduces gastric frequency. Brain Stimul. 13, 470–473. 10.1016/j.brs.2019.12.018 PubMed DOI

Tekdemir I., Aslan A., Elhan A. (1998). A clinico-anatomic study of the auricular branch of the vagus nerve and Arnold's ear-cough reflex. Surg. Radiol. Anat. 20, 253–257. 10.1007/s00276-998-0253-5 PubMed DOI

Thayer J. F., Lane R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. J. Affect. Disord. 61, 201–216. 10.1016/S0165-0327(00)00338-4 PubMed DOI

Thayer J. F., Lane R. D. (2009). Claude bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 33, 81–88. 10.1016/j.neubiorev.2008.08.004 PubMed DOI

Tobaldini E., Toschi-Dias E., Appratto de Souza L., Rabello Casali K., Vicenzi M., Sandrone G., et al. . (2019). Cardiac and peripheral autonomic responses to orthostatic stress during transcutaneous vagus nerve stimulation in healthy subjects. J. Clin. Med. 8:496. 10.3390/jcm8040496 PubMed DOI PMC

Tomagra G., Picollo F., Battiato A., Picconi B., De Marchis S., Pasquarelli A., et al. . (2019). Quantal release of dopamine and action potential firing detected in midbrain neurons by multifunctional diamond-based microarrays. Front. Neurosci. 13:288. 10.3389/fnins.2019.00288 PubMed DOI PMC

Tona K.-D., Revers H., Verkuil B., Nieuwenhuis S. (2020). Noradrenergic regulation of cognitive flexibility: no effects of stress, transcutaneous vagus nerve stimulation, and atomoxetine on task-switching in humans. J. Cogn. Neurosci. 32:1881–1895. 10.1162/jocn_a_01603 PubMed DOI

Totah N. K. B., Logothetis N. K., Eschenko O. (2019). Noradrenergic ensemble-based modulation of cognition over multiple timescales. Brain Res. 1709, 50–66. 10.1016/j.brainres.2018.12.031 PubMed DOI

Tran N., Asad Z., Elkholey K., Scherlag B. J., Po S. S., Stavrakis S. (2019). Autonomic neuromodulation acutely ameliorates left ventricular strain in humans. J. Cardiovasc. Transl. Res. 12, 221–230. 10.1007/s12265-018-9853-6 PubMed DOI PMC

Trujillo P., Petersen K. J., Cronin M. J., Lin Y.-C., Kang H., Donahue M. J., et al. . (2019). Quantitative magnetization transfer imaging of the human locus coeruleus. Neuroimage 200, 191–198. 10.1016/j.neuroimage.2019.06.049 PubMed DOI PMC

Tu Y., Fang J., Cao J., Wang Z., Park J., Jorgenson K., et al. . (2018). A distinct biomarker of continuous transcutaneous vagus nerve stimulation treatment in major depressive disorder. Brain Stimul. 11, 501–508. 10.1016/j.brs.2018.01.006 PubMed DOI PMC

Usichenko T., Hacker H., Lotze M. (2017a). Transcutaneous auricular vagal nerve stimulation (taVNS) might be a mechanism behind the analgesic effects of auricular acupuncture. Brain Stimul. 10, 1042–1044. 10.1016/j.brs.2017.07.013 PubMed DOI

Usichenko T., Laqua R., Leutzow B., Lotze M. (2017b). Preliminary findings of cerebral responses on transcutaneous vagal nerve stimulation on experimental heat pain. Brain Imaging Behav. 11, 30–37. 10.1007/s11682-015-9502-5 PubMed DOI

Uthman B. M., Wilder B. J., Penry J. K., Dean C., Ramsay R. E., Reid S. A., et al. . (1993). Treatment of epilepsy by stimulation of the vagus nerve. Neurology 43, 1338–1345. 10.1212/WNL.43.7.1338 PubMed DOI

Val-Laillet D., Biraben A., Randuineau G., Malbert C. H. (2010). Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs. Appetite 55, 245–252. 10.1016/j.appet.2010.06.008 PubMed DOI

Valsalva A. M. (1704). De Aura Humana Tractatus and Trajecti ad Rhenum Urecht. Utrecht:Trajecti ad Rhenum.

van Kempen J., Loughnane G. M., Newman D. P., Kelly S. P., Thiele A., O'Connell R. G., et al. . (2019). Behavioural and neural signatures of perceptual decision-making are modulated by pupil-linked arousal. ELife 8:e42541. 10.7554/eLife.42541 PubMed DOI PMC

Van Leusden J. W. R., Sellaro R., Colzato L. S. (2015). Transcutaneous vagal nerve stimulation (tVNS): a new neuromodulation tool in healthy humans? Front. Psychol. 6:102. 10.3389/fpsyg.2015.00102 PubMed DOI PMC

Vanneste S., Martin J., Rennaker R. L., Kilgard M. P. (2017). Pairing sound with vagus nerve stimulation modulates cortical synchrony and phase coherence in tinnitus: an exploratory retrospective study. Sci. Rep. 7:17345. 10.1038/s41598-017-17750-y PubMed DOI PMC

Vargas Luna J. L., Krenn M., Cortés J. A., Mayr W. (2013). Comparison of current and voltage control techniques for neuromuscular electrical stimulation in the anterior thigh. Biomed. Tech. 58:1–2. 10.1515/bmt-2013-4021 PubMed DOI

Vázquez-Oliver A., Brambilla-Pisoni C., Domingo-Gainza M., Maldonado R., Ivorra A., Ozaita A. (2020). Auricular transcutaneous vagus nerve stimulation improves memory persistence in naïve mice and in an intellectual disability mouse model. Brain Stimul. 13, 494–498. 10.1016/j.brs.2019.12.024 PubMed DOI

Ventura-Bort C., Wirkner J., Genheimer H., Wendt J., Hamm A. O., Weymar M. (2018). Effects of transcutaneous vagus nerve stimulation (tVNS) on the P300 and alpha-amylase level: a pilot study. Front. Hum. Neurosci. 12:202. 10.3389/fnhum.2018.00202 PubMed DOI PMC

Verkuil B., Burger A. M. (2019). Transcutaneous vagus nerve stimulation does not affect attention to fearful faces in high worriers. Behav. Res. Ther. 113, 25–31. 10.1016/j.brat.2018.12.009 PubMed DOI

Vieira A., Reis A. M., Matos L. C., Machado J., Moreira A. (2018). Does auriculotherapy have therapeutic effectiveness? an overview of systematic reviews. Complement. Ther. Clin. Pract. 33, 61–70. 10.1016/j.ctcp.2018.08.005 PubMed DOI

von Elm E., Altman D. G., Egger M., Pocock S. J., Gøtzsche P. C., Vandenbroucke J. P., et al. . (2008). The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. J. Clin. Epidemiol. 61, 344–349. 10.1016/j.jclinepi.2007.11.008 PubMed DOI

Wang D.-W., Yin Y.-M., Yao Y.-M. (2016). Vagal modulation of the inflammatory response in sepsis. Int. Rev. Immunol. 35, 415–433. 10.3109/08830185.2015.1127369 PubMed DOI

Wang Z., Zhou X., Sheng X., Yu L., Jiang H. (2015a). Unilateral low-level transcutaneous electrical vagus nerve stimulation: a novel noninvasive treatment for myocardial infarction. Int. J. Cardiol. 190, 9–10. 10.1016/j.ijcard.2015.04.087 PubMed DOI

Wang Z., Zhou X., Sheng X., Yu L., Jiang H. (2015b). Noninvasive vagal nerve stimulation for heart failure: was it practical or just a stunt? Int. J. Cardiol. 187, 637–638. 10.1016/j.ijcard.2015.03.430 PubMed DOI

Wang Z.engjian, Fang, J., Liu J., Rong P., Jorgenson K., Park J., Lang C., et al. . (2018). Frequency-dependent functional connectivity of the nucleus accumbens during continuous transcutaneous vagus nerve stimulation in major depressive disorder. J. Psychiatric Res. 102, 123–131. 10.1016/j.jpsychires.2017.12.018 PubMed DOI PMC

Warren C. M., Tona K. D., Ouwerkerk L., van Paridon J., Poletiek F., van Steenbergen H., et al. . (2019). The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential. Brain Stimul. 12, 635–642. 10.1016/j.brs.2018.12.224 PubMed DOI

Warren C. M., van den Brink R. L., Nieuwenhuis S., Bosch J. A. (2017). Norepinephrine transporter blocker atomoxetine increases salivary alpha amylase. Psychoneuroendocrinology 78, 233–236. 10.1016/j.psyneuen.2017.01.029 PubMed DOI

Weise D., Adamidis M., Pizzolato F., Rumpf J.-J., Fricke C., Classen J. (2015). Assessment of brainstem function with auricular branch of vagus nerve stimulation in Parkinson's disease. PLoS ONE 10:e0120786. 10.1371/journal.pone.0120786 PubMed DOI PMC

Woodbury D. M. Woodbury J. W . (1990), Effects of vagal stimulation on experimentally induced seizures in rats. Epilepsia 31, S7–S19. 10.1111/j.1528-1157.1990.tb05852.x PubMed DOI

Woods A. J., Antal A., Bikson M., Boggio P. S., Brunoni A. R., Celnik P., et al. . (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol. 127, 1031–1048. 10.1016/j.clinph.2015.11.012 PubMed DOI PMC

Wostyn S., Staljanssens W., De Taeye L., Strobbe G., Gadeyne S., Van Roost D., et al. . (2017). EEG derived brain activity reflects treatment response from vagus nerve stimulation in patients with epilepsy. Int. J. Neural Syst. 27:1650048. 10.1142/S0129065716500489 PubMed DOI

Xiong J., Xue F. S., Liu J. H., Xu Y. C., Liao X., Zhang Y. M., et al. . (2009). Transcutaneous vagus nerve stimulation may attenuate postoperative cognitive dysfunction in elderly patients. Med. Hypoth. 73, 938–941. 10.1016/j.mehy.2009.06.033 PubMed DOI

Yakunina N., Kim S. S., Nam E.-C. (2017). Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation 20, 290−300. 10.1111/ner.12541 PubMed DOI

Yakunina N., Kim S. S., Nam E.-C. (2018). BOLD fMRI effects of transcutaneous vagus nerve stimulation in patients with chronic tinnitus. PLoS ONE 13:e0207281. 10.1371/journal.pone.0207281 PubMed DOI PMC

Yang G., Xue F., Sun C., Liao X., Liu J. (2017). Vagal nerve stimulation: a potentially useful adjuvant to treatment of sepsis. J Anesth Perioper Med. (2017). 10.24015/JAPM.2017.0012 DOI

Yao G., Kang L., Li J., Long Y., Wei H., Ferreira C. A., et al. . (2018). Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 9:5349. 10.1038/s41467-018-07764-z PubMed DOI PMC

Yavich L., Jäkälä P., Tanila H. (2005). Noradrenaline overflow in mouse dentate gyrus following locus coeruleus and natural stimulation: real-time monitoring by in vivo voltammetry. J. Neurochem. 95, 641–650. 10.1111/j.1471-4159.2005.03390.x PubMed DOI

Ye R., Rua C., O'Callaghan C., Jones P. S., Hezemans F., Kaalund S. S., et al. . (2020). An in vivo probabilistic atlas of the human locus coeruleus at ultra-high field. BioRxiv [Preprint]. 932087. 10.1101/2020.02.03.932087 PubMed DOI PMC

Ylikoski J., Lehtimäki J., Pirvola U., Mäkitie A., Aarnisalo A., Hyvärinen P., et al. . (2017). Non-invasive vagus nerve stimulation reduces sympathetic preponderance in patients with tinnitus. Acta Oto Laryngol. 137, 426–431. 10.1080/00016489.2016.1269197 PubMed DOI

Yoo P. B., Liu H., Hincapie J. G., Ruble S. B., Hamann J. J., Grill W. M. (2016). Modulation of heart rate by temporally patterned vagus nerve stimulation in the anesthetized dog. Physiol. Rep. 4:e12689. 10.14814/phy2.12689 PubMed DOI PMC

Yu L., Huang B., Po S. S., Tan T., Wang M., Zhou L., et al. . (2017). Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction: a proof-of-concept study. JACC Cardiovasc. Interv. 10, 1511–1520. 10.1016/j.jcin.2017.04.036 PubMed DOI

Yuan H., Silberstein S. D. (2016a). Vagus nerve and vagus nerve stimulation, a comprehensive review: Part I. Headache 56, 71–78. 10.1111/head.12647 PubMed DOI

Yuan H., Silberstein S. D. (2016b). Vagus nerve and vagus nerve stimulation, a comprehensive review: Part II. Headache 56, 259–266. 10.1111/head.12650 PubMed DOI

Zabara J. (1985). Time course of seizure control to brief, repetitive stimuli. Epilepsia 28:604.

Zabara J. (1992). Inhibition of experimental seizures in canines by repetitive vagal stimulation. Epilepsia 33, 1005–1012. 10.1111/j.1528-1157.1992.tb01751.x PubMed DOI

Zhang S., Song Y., Jia J., Xiao G., Yang L., Sun M., et al. . (2016). “An implantable microelectrode array for dopamine and electrophysiological recordings in response to L-dopa therapy for Parkinson's disease,” in Conference Proceedings: …Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference (Orlando: ), 2016, 1922–1925. 10.1109/EMBC.2016.7591098 PubMed DOI

Zhang S., Song Y., Wang M., Xiao G., Gao F., Li Z., et al. . (2018). Real-time simultaneous recording of electrophysiological activities and dopamine overflow in the deep brain nuclei of a non-human primate with Parkinson's disease using nano-based microelectrode arrays. Microsyst. Nanoeng. 4, 1–9. 10.1038/micronano.2017.70 PubMed DOI

Zhang Y., Liu J., Li H., Yan Z., Liu X., Cao J., et al. . (2019). Transcutaneous auricular vagus nerve stimulation at 1 Hz modulates locus coeruleus activity and resting state functional connectivity in patients with migraine: an fMRI study. Neuroimage Clin. 24:101971. 10.1016/j.nicl.2019.101971 PubMed DOI PMC

Ziemann U., Tam A., Bütefisch C., Cohen L. G. (2002). Dual modulating effects of amphetamine on neuronal excitability and stimulation-induced plasticity in human motor cortex. Clin. Neurophysiol. 113, 1308–1315. 10.1016/S1388-2457(02)00171-2 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...