International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
Grantová podpora
P01 AT009965
NCCIH NIH HHS - United States
RG/19/5/34463
British Heart Foundation - United Kingdom
P2C HD086844
NICHD NIH HHS - United States
OT2 OD023867
NIH HHS - United States
P20 GM109040
NIGMS NIH HHS - United States
PubMed
33854421
PubMed Central
PMC8040977
DOI
10.3389/fnhum.2020.568051
Knihovny.cz E-zdroje
- Klíčová slova
- guidelines & recommendations, minimum reporting standards, transcutaneous auricular vagus nerve stimulation, transcutaneous cervical vagus nerve stimulation, transcutaneous vagus nerve stimulation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice.
Center for Behavioral Brain Sciences Magdeburg Otto von Guericke University Magdeburg Germany
Center for Behavioral Brain Sciences Otto von Guericke University Magdeburg Germany
Cognitive Psychology Unit Institute of Psychology Leiden University Leiden Netherlands
Department of Anatomy Faculty of Medicine Mersin University Mersin Turkey
Department of Anesthesia McMaster University Hamilton ON Canada
Department of Anesthesiology University Medicine Greifswald Greifswald Germany
Department of Biomedical Engineering City College of New York New York NY United States
Department of Clinical Sciences and Community Health University of Milan Milan Italy
Department of Developmental Psychology and Socialisation University of Padova Padova Italy
Department of Human Movement Studies Faculty of Education University of Ostrava Ostrava Czechia
Department of Neurology Institute for Neuroscience 4Brain Ghent University Hospital Gent Belgium
Department of Neurology Otto von Guericke University Magdeburg Germany
Department of Neurosurgery University of Tübingen Tübingen Germany
Department of Pediatric Neuroscience Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
Department of Performance Psychology Institute of Psychology Deutsche Sporthochschule Köln Germany
Department of Psychiatry and Psychotherapy University Hospital LMU Munich Munich Germany
Department of Psychiatry and Psychotherapy University of Göttingen Göttingen Germany
Department of Psychiatry and Psychotherapy University of Tübingen Tübingen Germany
Department of Psychiatry Medical University of South Carolina Charleston SC United States
Department of Psychological Science University of California Irvine Irvine CA United States
Department of Psychology University of Greifswald Greifswald Germany
Department of Psychology University of Oslo Oslo Norway
Department of Radiology Logan University Chesterfield MO United States
Department of Surgery University Hospital Bonn Bonn Germany
Deutsches Zentrum für Neurodegenerative Erkrankungen Magdeburg Germany
Division for Vascular Surgery Department of Surgery Medical University of Vienna Vienna Austria
Division of Epileptology Fondazione IRCCS Istituto Neurologico C Besta Milan Italy
Faculty of Biological Science School of Biomedical Science University of Leeds Leeds United Kingdom
Faculty of Health Care University College Odisee Aalst Belgium
Faculty of Health Sciences Brandenburg University of Potsdam Potsdam Germany
German Center for Diabetes Research Munich Germany
Headache Research Unit Department of Neurology Citadelle Hospital University of Liège Liège Belgium
Heart Rhythm Institute University of Oklahoma Health Sciences Center Oklahoma City OK United States
Institute of Acupuncture and Moxibustion China Academy of Chinese Medical Sciences Beijing China
Institute of Cognitive Neuroscience University College London London United Kingdom
Institute of Electrodynamics Microwave and Circuit Engineering TU Wien Vienna Austria
KG Jebsen Centre for Neurodevelopmental Disorders University of Oslo Oslo Norway
Leibniz Institute for Neurobiology Magdeburg Germany
Leiden Institute for Brain and Cognition Leiden Netherlands
Mental Health and Wellbeing Research Group Vrije Universiteit Brussel Brussels Belgium
Migraine and Headache Clinic Koenigstein Königstein im Taunus Germany
Neuromodulatory Networks Leibniz Institute for Neurobiology Magdeburg Germany
School of Biomedical Science Faculty of Biological Science University of Leeds Leeds United Kingdom
Scientific Institute IRCCS E Medea Pasian di Prato Italy
Sheffield Institute for Translational Neuroscience University of Sheffield Sheffield United Kingdom
Zobrazit více v PubMed
Afanasiev S. A., Pavliukova E. N., Kuzmichkina M. A., Rebrova T. Y., Anfinogenova Y., Likhomanov K. S., et al. . (2016). Nonpharmacological correction of hypersympatheticotonia in patients with chronic coronary insufficiency and severe left ventricular dysfunction. Ann. Noninvasive Electrocardiol. 21, 548–556. 10.1111/anec.12349 PubMed DOI PMC
Aihua L., Lu S., Liping L., Xiuru W., Hua L., Yuping W. (2014). A controlled trial of transcutaneous vagus nerve stimulation for the treatment of pharmacoresistant epilepsy. Epilepsy Behav. 39, 105–110. 10.1016/j.yebeh.2014.08.005 PubMed DOI
Alexander G. M., Huang Y. Z., Soderblom E. J., He X.-P., Moseley M. A., McNamara J. O. (2017). Vagal nerve stimulation modifies neuronal activity and the proteome of excitatory synapses of amygdala/piriform cortex. J. Neurochem. 140, 629–644. 10.1111/jnc.13931 PubMed DOI PMC
Allchin R. E., Batten T. F., McWilliam P. N., Vaughan P. F. (1994). Electrical stimulation of the vagus increases extracellular glutamate recovered from the nucleus tractus solitarii of the cat by in vivo microdialysis. Exp. Physiol. 79, 265–268. 10.1113/expphysiol.1994.sp003761 PubMed DOI
Antonino D., Teixeira A. L., Maia-Lopes P. M., Souza M. C., Sabino-Carvalho J. L., Murray A. R., et al. . (2017). Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: a randomized placebo-controlled trial. Brain Stimul. 10, 875–881. 10.1016/j.brs.2017.05.006 PubMed DOI
Aston-Jones G., Waterhouse B. (2016). Locus coeruleus: from global projection system to adaptive regulation of behavior. Brain Res. 1645, 75–78. 10.1016/j.brainres.2016.03.001 PubMed DOI PMC
Ay I., Nasser R., Simon B., Ay H. (2016). Transcutaneous cervical vagus nerve stimulation ameliorates acute ischemic injury in rats. Brain Stimul. 9, 166–173. 10.1016/j.brs.2015.11.008 PubMed DOI PMC
Ay I., Sorensen A. G., Ay H. (2011). Vagus nerve stimulation reduces infarct size in rat focal cerebral ischemia: an unlikely role for cerebral blood flow. Brain Res. 1392, 110–115. 10.1016/j.brainres.2011.03.060 PubMed DOI PMC
Badran B. W., Brown J. C., Dowdle L. T., Mithoefer O. J., LaBate N. T., Coatsworth J., et al. . (2018a). Tragus or cymba conchae? Investigating the anatomical foundation of transcutaneous auricular vagus nerve stimulation (taVNS). Brain Stimul. 11, 947–948. 10.1016/j.brs.2018.06.003 PubMed DOI PMC
Badran B. W., Dowdle L. T., Mithoefer O. J., LaBate N. T., Coatsworth J., Brown J. C., et al. . (2018b). Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review. Brain Stimul. 11, 492–500. 10.1016/j.brs.2017.12.009 PubMed DOI PMC
Badran B. W., Jenkins D. D., Cook D., Thompson S., Dancy M., DeVries W. H., et al. . (2020). Transcutaneous auricular vagus nerve stimulation-paired rehabilitation for oromotor feeding problems in newborns: an open-label pilot study. Front. Hum. Neurosci. 14:77. 10.3389/fnhum.2020.00077 PubMed DOI PMC
Badran B. W., Mithoefer O. J., Summer C. E., LaBate N. T., Glusman C. E., Badran A. W., et al. . (2018c). Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul. 11, 699–708. 10.1016/j.brs.2018.04.004 PubMed DOI PMC
Badran B. W., Yu A. B., Adair D., Mappin G., DeVries W. H., Jenkins D. D., et al. . (2019). Laboratory administration of transcutaneous auricular vagus nerve stimulation (taVNS): technique, targeting, and considerations. J. Visual. Exp. 143:984. 10.3791/58984 PubMed DOI PMC
Banni S., Carta G., Murru E., Cordeddu L., Giordano E., Marrosu F., et al. . (2012). Vagus nerve stimulation reduces body weight and fat mass in rats. PLoS ONE. 7:e44813. 10.1371/journal.pone.0044813 PubMed DOI PMC
Barbanti P., Grazzi L., Egeo G., Padovan A. M., Liebler E., Bussone G. (2015). Non-invasive vagus nerve stimulation for acute treatment of high-frequency and chronic migraine: an open-label study. J. Headache Pain 16:61. 10.1186/s10194-015-0542-4 PubMed DOI PMC
Barbella G., Cocco I., Freri E., Marotta G., Visani E., Franceschetti S., et al. . (2018). Transcutaneous vagal nerve stimulatio (t-VNS): an adjunctive treatment option for refractory epilepsy. Seizure 60, 115–119. 10.1016/j.seizure.2018.06.016 PubMed DOI
Bauer S., Baier H., Baumgartner C., Bohlmann K., Fauser S., Graf W., et al. . (2016). Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain Stimul. 9, 356–363. 10.1016/j.brs.2015.11.003 PubMed DOI
Beaumont E., Campbell R. P., Andresen M. C., Scofield S., Singh K., Libbus I., et al. . (2017). Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract. Am. J. Physiol Heart Circ. Physiol. 313, H354–H367. 10.1152/ajpheart.00070.2017 PubMed DOI PMC
Beste C., Steenbergen L., Sellaro R., Grigoriadou S., Zhang R., Chmielewski W., et al. . (2016). Effects of concomitant stimulation of the GABAergic and norepinephrine system on inhibitory control—a study using transcutaneous vagus nerve stimulation. Brain Stimul. 9, 811–818. 10.1016/j.brs.2016.07.004 PubMed DOI
Betts M. J., Cardenas-Blanco A., Kanowski M., Jessen F., Düzel E. (2017). In vivo MRI assessment of the human locus coeruleus along its rostrocaudal extent in young and older adults. Neuroimage 163, 150–159. 10.1016/j.neuroimage.2017.09.042 PubMed DOI
Betts M. J., Kirilina E., Otaduy M. C. G., Ivanov D., Acosta-Cabronero J., Callaghan M. F., et al. . (2019). Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain 142, 2558–2571. 10.1093/brain/awz193 PubMed DOI PMC
Bianca R., Komisaruk B. R. (2007). Pupil dilatation in response to vagal afferent electrical stimulation is mediated by inhibition of parasympathetic outflow in the rat. Brain Res. 1177, 29–36. 10.1016/j.brainres.2007.06.104 PubMed DOI
Bikson M., Esmaeilpour Z., Adair D., Kronberg G., Tyler W. J., Antal A., et al. . (2019). Transcranial electrical stimulation nomenclature. Brain Stimul. 12, 1349–1366. 10.1016/j.brs.2019.07.010 PubMed DOI PMC
Bonaz B., Picq C., Sinniger V., Mayol J. F., Clarençon D. (2013). Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway. Neurogastroenterol. Motil. 25, 208–221. 10.1111/nmo.12076 PubMed DOI
Boon P., De Cock E., Mertens A., Trinka E. (2018). Neurostimulation for drug-resistant epilepsy: a systematic review of clinical evidence for efficacy, safety, contraindications and predictors for response. Curr. Opin. Neurol. 31, 198–210. 10.1097/WCO.0000000000000534 PubMed DOI
Borges U., Knops L., Laborde S., Klatt S., Raab M. (2020). Transcutaneous vagus nerve stimulation may enhance only specific aspects of the core executive functions. A randomized crossover trial. Front. Neurosci. 14:523. 10.3389/fnins.2020.00523 PubMed DOI PMC
Borges U., Laborde S., Raab M. (2019). Influence of transcutaneous vagus nerve stimulation on cardiac vagal activity: not different from sham stimulation and no effect of stimulation intensity. PLoS ONE 14:e0223848. 10.1371/journal.pone.0223848 PubMed DOI PMC
Borodovitsyna O., Flamini M. D., Chandler D. J. (2018). Acute stress persistently alters locus coeruleus function and anxiety-like behavior in adolescent rats. Neuroscience 373, 7–19. 10.1016/j.neuroscience.2018.01.020 PubMed DOI
Brack K. E., Coote J. H., Ng G. A. (2004). Interaction between direct sympathetic and vagus nerve stimulation on heart rate in the isolated rabbit heart. Exp. Physiol. 89, 128–139. 10.1113/expphysiol.2003.002654 PubMed DOI
Brázdil M., DoleŽalová I., Koritáková E., Chládek J., Roman R., Pail M., et al. . (2019). EEG Reactivity predicts individual efficacy of vagal nerve stimulation in intractable epileptics. Front. Neurol. 10:392. 10.3389/fneur.2019.00392 PubMed DOI PMC
Bretherton B., Atkinson L., Murray A., Clancy J., Deuchars S., Deuchars J. (2019). Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation. Aging 11, 4836–4857. 10.18632/aging.102074 PubMed DOI PMC
Brock C., Brock B., Aziz Q., Møller H. J., Pfeiffer Jensen M., Drewes A. M., et al. . (2017). Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha. Neurogastroenterol. Motil. 29:e12999. 10.1111/nmo.12999 PubMed DOI
Brooks C. M., Lange G. (1977). Interaction of myogenic and neurogenic mechanisms that control heart rate. Proc. Natl. Acad. Sci. U.S.A. 74, 1761–1762. 10.1073/pnas.74.4.1761 PubMed DOI PMC
Brooks J. C. W., Faull O. K., Pattinson K. T. S., Jenkinson M. (2013). Physiological noise in brainstem fMRI. Front. Hum. Neurosci. 7:623. 10.3389/fnhum.2013.00623 PubMed DOI PMC
Brown G. L., Eccles J. C. (1934). The action of a single vagal volley on the rhythm of the heart beat. J. Physiol. 82, 211–241. 10.1113/jphysiol.1934.sp003176 PubMed DOI PMC
Burger A. M., D'Agostini M., Verkuil B., Diest I. V. (2020a). Moving beyond belief: a narrative review of potential biomarkers for transcutaneous vagus nerve stimulation. Psychophysiology 57:e13571. 10.1111/psyp.13571 PubMed DOI
Burger A. M., Diest I. V., Does W. V., der Hysaj M., Thayer J. F., Brosschot J. F., et al. . (2018). Transcutaneous vagus nerve stimulation and extinction of prepared fear: a conceptual non-replication. Sci. Rep. 8:11471. 10.1038/s41598-018-29561-w PubMed DOI PMC
Burger A. M., Van der Does W., Brosschot J. F., Verkuil B. (2020b). From ear to eye? No effect of transcutaneous vagus nerve stimulation on human pupil dilation: a report of three studies. Biol. Psychol. 152:107863. 10.1016/j.biopsycho.2020.107863 PubMed DOI
Burger A. M., Van der Does W., Thayer J. F., Brosschot J. F., Verkuil B. (2019a). Transcutaneous vagus nerve stimulation reduces spontaneous but not induced negative thought intrusions in high worriers. Biol. Psychol. 142, 80–89. 10.1016/j.biopsycho.2019.01.014 PubMed DOI
Burger A. M., Van Diest I., Van der Does W., Korbee J. N., Waziri N., Brosschot J. F., et al. . (2019b). The effect of transcutaneous vagus nerve stimulation on fear generalization and subsequent fear extinction. Neurobiol. Learn. Mem. 161, 192–201. 10.1016/j.nlm.2019.04.006 PubMed DOI
Burger A. M., Verkuil B. (2018). Transcutaneous nerve stimulation via the tragus: are we really stimulating the vagus nerve? Brain Stimul. 11, 945–946. 10.1016/j.brs.2018.03.018 PubMed DOI
Burger A. M., Verkuil B., Fenlon H., Thijs L., Cools L., Miller H. C., et al. . (2017). Mixed evidence for the potential of non-invasive transcutaneous vagal nerve stimulation to improve the extinction and retention of fear. Behav. Res. Ther. 97, 64–74. 10.1016/j.brat.2017.07.005 PubMed DOI
Burger A. M., Verkuil B., Van Diest I., Van der Does W., Thayer J. F., Brosschot J. F. (2016). The effects of transcutaneous vagus nerve stimulation on conditioned fear extinction in humans. Neurobiol. Learn. Mem. 132, 49–56. 10.1016/j.nlm.2016.05.007 PubMed DOI
Burneo J. G., Faught E., Knowlton R., Morawetz R., Kuzniecky R. (2002). Weight loss associated with vagus nerve stimulation. Neurology 59, 463–464. 10.1212/WNL.59.3.463 PubMed DOI
Busch V., Zeman F., Heckel A., Menne F., Ellrich J., Eichhammer P. (2013). The effect of transcutaneous vagus nerve stimulation on pain perception – an experimental study. Brain Stimul. 6, 202–209. 10.1016/j.brs.2012.04.006 PubMed DOI
Butson C. R., McIntyre C. C. (2005). Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation. Clin. Neurophysiol. 116, 2490–2500. 10.1016/j.clinph.2005.06.023 PubMed DOI PMC
Butt M. F., Albusoda A., Farmer A. D., Aziz Q. (2020). The anatomical basis for transcutaneous auricular vagus nerve stimulation. J. Anat. 236, 588–611. 10.1111/joa.13122 PubMed DOI PMC
Cakmak Y. O., Apaydin H., Kiziltan G., Gunduz A., Ozsoy B., Urey H., et al. . (2017). Rapid alleviation of parkinson's disease symptoms via electrostimulation of intrinsic auricular muscle zones. Front. Hum. Neurosci. 11:338. 10.3389/fnhum.2017.00338 PubMed DOI PMC
Cakmak Y. O. (2019). Concerning auricular vagal nerve stimulation: occult neural networks. Front. Hum. Neurosci. 13:421. 10.3389/fnhum.2019.00421 PubMed DOI PMC
Capone F., Assenza G., Di Pino G., Musumeci G., Ranieri F., Florio L., et al. . (2015). The effect of transcutaneous vagus nerve stimulation on cortical excitability. J. Neural Transm. 122, 679–685. 10.1007/s00702-014-1299-7 PubMed DOI
Capone F., Miccinilli S., Pellegrino G., Zollo L., Simonetti D., Bressi F., et al. . (2017). Transcutaneous vagus nerve stimulation combined with robotic rehabilitation improves upper limb function after stroke. Neural Plasticity 2017:7876507. 10.1155/2017/7876507 PubMed DOI PMC
Cha W. W., Song K., Lee H. Y. (2016). Persistent geotropic direction-changing positional nystagmus treated with transcutaneous vagus nerve stimulation. Brain Stimul. 9, 469–470. 10.1016/j.brs.2016.03.011 PubMed DOI
Chakravarthy K., Chaudhry H., Williams K., Christo P. J. (2015). Review of the uses of vagal nerve stimulation in chronic pain management. Curr. Pain Headache Rep. 19:54. 10.1007/s11916-015-0528-6 PubMed DOI
Chandler D. J., Jensen P., McCall J. G., Pickering A. E., Schwarz L. A., Totah N. K. (2019). Redefining noradrenergic neuromodulation of behavior: impacts of a modular locus coeruleus architecture. J. Neurosci. 39, 8239–8249. 10.1523/JNEUROSCI.1164-19.2019 PubMed DOI PMC
Chen M., Yu L., Ouyang F., Liu Q., Wang Z., Wang S., et al. . (2015). The right side or left side of noninvasive transcutaneous vagus nerve stimulation: based on conventional wisdom or scientific evidence? Int. J. Cardiol. 187, 44–45. 10.1016/j.ijcard.2015.03.351 PubMed DOI
Clancy J. A., Mary D. A., Witte K. K., Greenwood J. P., Deuchars S. A., Deuchars J. (2014). Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 7, 871–877. 10.1016/j.brs.2014.07.031 PubMed DOI
Colzato L. S., Ritter S. M., Steenbergen L. (2018a). Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking. Neuropsychologia 111, 72–76. 10.1016/j.neuropsychologia.2018.01.003 PubMed DOI
Colzato L. S., Sellaro R., Beste C. (2017). Darwin revisited: the vagus nerve is a causal element in controlling recognition of other's emotions. Cortex 92, 95–102. 10.1016/j.cortex.2017.03.017 PubMed DOI
Colzato L. S., Wolters G., Peifer C. (2018b). Transcutaneous vagus nerve stimulation (tVNS) modulates flow experience. Exp. Brain Res. 236, 253–257. 10.1007/s00221-017-5123-0 PubMed DOI
Cork S. C. (2018). The role of the vagus nerve in appetite control: implications for the pathogenesis of obesity. J. Neuroendocrinol. 30:e12643. 10.1111/jne.12643 PubMed DOI
Cristancho P., Cristancho M. A., Baltuch G. H., Thase M. E., O'Reardon J. P. (2011). Effectiveness and safety of vagus nerve stimulation for severe treatment-resistant major depression in clinical practice after FDA approval: outcomes at 1 year. J. Clin. Psychiatry 72, 1376–1382. 10.4088/JCP.09m05888blu PubMed DOI
De Couck M., Cserjesi R., Caers R., Zijlstra W. P., Widjaja D., Wolf N., et al. . (2017). Effects of short and prolonged transcutaneous vagus nerve stimulation on heart rate variability in healthy subjects. Auton. Neurosci. 203, 88–96. 10.1016/j.autneu.2016.11.003 PubMed DOI
De Ferrari G. M., Schwartz P. J. (2011). Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions. Heart Fail. Rev. 16, 195–203. 10.1007/s10741-010-9216-0 PubMed DOI
De Icco R., Martinelli D., Bitetto V., Fresia M., Liebler E., Sandrini G., et al. . (2018). Peripheral vagal nerve stimulation modulates the nociceptive withdrawal reflex in healthy subjects: a randomized, cross-over, sham-controlled study. Cephalalgia 38, 1658–1664. 10.1177/0333102417742347 PubMed DOI
de Lartigue G. (2016). Role of the vagus nerve in the development and treatment of diet-induced obesity. J. Physiol. 594, 5791–5815. 10.1113/JP271538 PubMed DOI PMC
De Ridder D., Vanneste S., Engineer N. D., Kilgard M. P. (2014). Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series. Neuromodulation 17, 170–179. 10.1111/ner.12127 PubMed DOI
De Taeye L., Vonck K., van Bochove M., Boon P., Van Roost D., Mollet L., et al. . (2014). The P3 event-related potential is a biomarker for the efficacy of vagus nerve stimulation in patients with epilepsy. Neurotherapeutics 11, 612–622. 10.1007/s13311-014-0272-3 PubMed DOI PMC
Desbeaumes Jodoin V., Richer F., Miron J.-P., Fournier-Gosselin M.-P., Lespérance P. (2018). Long-term sustained cognitive benefits of vagus nerve stimulation in refractory depression. J. ECT 34, 283–290. 10.1097/YCT.0000000000000502 PubMed DOI
Dietrich S., Smith J., Scherzinger C., Hofmann-Preiß K., Freitag T., Eisenkolb A., et al. . (2008). A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI / funktionelle magnetresonanztomographie zeigt aktivierungen des hirnstamms und weiterer zerebraler strukturen unter transkutaner vagusnervstimulation. Biomed. Tech/Biomed. Eng. 53, 104–111. 10.1515/BMT.2008.022 PubMed DOI
Dorr A. E., Debonnel G. (2006). Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission. J. Pharmacol. Exp. Ther. 318, 890–898. 10.1124/jpet.106.104166 PubMed DOI
Du X. J., Dart A. M., Riemersma R. A. (1994). Sex differences in the parasympathetic nerve control of rat heart. Clin. Exp. Pharmacol. Physiol. 21, 485–493. 10.1111/j.1440-1681.1994.tb02545.x PubMed DOI
Ehlert U., Erni K., Hebisch G., Nater U. (2006). Salivary alpha-amylase levels after yohimbine challenge in healthy men. J. Clin. Endocrinol. Metab. 91, 5130–5133. 10.1210/jc.2006-0461 PubMed DOI
Ellrich J. (2011). Transcutaneous vagus nerve stimulation. Eur. Neurol. Rev. 6, 254–256. 10.17925/ENR.2011.06.04.254 DOI
Falkenberg L. E., Westerhausen R., Specht K., Hugdahl K. (2012). Resting-state glutamate level in the anterior cingulate predicts blood-oxygen level-dependent response to cognitive control. Proc. Natl Acad. Sci. U. S. A. 109, 5069–5073. 10.1073/pnas.1115628109 PubMed DOI PMC
Fallgatter A. J., Ehlis A.-C., Ringel T. M., Herrmann M. J. (2005). Age effect on far field potentials from the brain stem after transcutaneous vagus nerve stimulation. Int. J. Psychophysiol. 56, 37–43. 10.1016/j.ijpsycho.2004.09.007 PubMed DOI
Fallgatter A. J., Neuhauser B., Herrmann M. J., Ehlis A.-C., Wagener A., Scheuerpflug P., et al. . (2003). Far field potentials from the brain stem after transcutaneous vagus nerve stimulation. J. Neural Transm. 110, 1437–1443. 10.1007/s00702-003-0087-6 PubMed DOI
Fang J., Egorova N., Rong P., Liu J., Hong Y., Fan Y., et al. . (2017). Early cortical biomarkers of longitudinal transcutaneous vagus nerve stimulation treatment success in depression. Neuroimage Clin. 14, 105–111. 10.1016/j.nicl.2016.12.016 PubMed DOI PMC
Fang J., Rong P., Hong Y., Fan Y., Liu J., Wang H., et al. . (2016). Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biol. Psychiatry 79, 266–273. 10.1016/j.biopsych.2015.03.025 PubMed DOI PMC
Ferrari G. M. D., Crijns H. J. G. M., Borggrefe M., Milasinovic G., Smid J., Zabel M., et al. . (2011). Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur. Heart J. 32, 847–855. 10.1093/eurheartj/ehq391 PubMed DOI
Finisguerra A., Crescentini C., Urgesi C. (2019). Transcutaneous vagus nerve stimulation affects implicit spiritual self-representations. Neuroscience 412, 144–159. 10.1016/j.neuroscience.2019.05.059 PubMed DOI
Fischer R., Ventura-Bort C., Hamm A., Weymar M. (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control. Cogn. Affect. Behav. Neurosci. 18, 680–693. 10.3758/s13415-018-0596-2 PubMed DOI
Follesa P., Biggio F., Gorini G., Caria S., Talani G., Dazzi L., et al. . (2007). Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res. 1179, 28–34. 10.1016/j.brainres.2007.08.045 PubMed DOI
Frangos E., Ellrich J., Komisaruk B. R. (2015). Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: FMRI evidence in humans. Brain Stimul. 8, 624–636. 10.1016/j.brs.2014.11.018 PubMed DOI PMC
Frangos E., Komisaruk B. R. (2017). Access to vagal projections via cutaneous electrical stimulation of the neck: FMRI evidence in healthy humans. Brain Stimul. 10, 19–27. 10.1016/j.brs.2016.10.008 PubMed DOI
Frøkjaer J. B., Bergmann S., Brock C., Madzak A., Farmer A. D., Ellrich J., et al. . (2016). Modulation of vagal tone enhances gastroduodenal motility and reduces somatic pain sensitivity. Neurogastroenterol. Motil. 28, 592–598. 10.1111/nmo.12760 PubMed DOI
Gancheva S., Bierwagen A., Markgraf D. F., Bönhof G. J., Murphy K. G., Hatziagelaki E., et al. . (2018). Constant hepatic ATP concentrations during prolonged fasting and absence of effects of cerbomed nemos® on parasympathetic tone and hepatic energy metabolism. Mol. Metab. 7, 71–79. 10.1016/j.molmet.2017.10.002 PubMed DOI PMC
Garcia R. G., Lin R. L., Lee J., Kim J., Barbieri R., Sclocco R., et al. . (2017). Modulation of brainstem activity and connectivity by respiratory-gated auricular vagal afferent nerve stimulation in migraine patients. Pain 158, 1461–1472. 10.1097/j.pain.0000000000000930 PubMed DOI PMC
Gaul C., Diener H.-C., Silver N., Magis D., Reuter U., Andersson A., et al. . (2016). Non-invasive vagus nerve stimulation for PREVention and Acute treatment of chronic cluster headache (PREVA): a randomised controlled study. Cephalalgia 36, 534–546. 10.1177/0333102415607070 PubMed DOI PMC
Gee J. W., de Knapen T., Donner T. H. (2014). Decision-related pupil dilation reflects upcoming choice and individual bias. Proc. Natl. Acad. Sci. U.S.A. 111, E618–E625. 10.1073/pnas.1317557111 PubMed DOI PMC
Genheimer H., Andreatta M., Asan E., Pauli P. (2017). Reinstatement of contextual conditioned anxiety in virtual reality and the effects of transcutaneous vagus nerve stimulation in humans. Sci. Rep. 7:17886. 10.1038/s41598-017-18183-3 PubMed DOI PMC
Gidron Y., Deschepper R., De Couck M., Thayer J. F., Velkeniers B. (2018). The vagus nerve can predict and possibly modulate non-communicable chronic diseases: introducing a neuroimmunological paradigm to public health. J. Clin. Med. 7:371. 10.3390/jcm7100371 PubMed DOI PMC
Gil K., Bugajski A., Thor P. (2011). Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet. J. Physiol. Pharmacol. 62, 637–646. PubMed
Giraudier M., Ventura-Bort C., Weymar M. (2020). Transcutaneous vagus nerve stimulation (tVNS) improves high confidence recognition memory but not emotional word processing. Front. Psychol. 11:1276. 10.3389/fpsyg.2020.01276 PubMed DOI PMC
Goadsby P. J., Grosberg B. M., Mauskop A., Cady R., Simmons K. A. (2014). Effect of noninvasive vagus nerve stimulation on acute migraine: an open-label pilot study. Cephalalgia 34, 986–993. 10.1177/0333102414524494 PubMed DOI
Goldberger J. J., Arora R., Buckley U., Shivkumar K. (2019). Autonomic nervous system dysfunction. J. Am. College Cardiol. 73:64. 10.1016/j.jacc.2018.12.064 PubMed DOI PMC
Gourine A. V., Dale N., Korsak A., Llaudet E., Tian F., Huckstepp R., et al. . (2008). Release of ATP and glutamate in the nucleus tractus solitarii mediate pulmonary stretch receptor (Breuer–Hering) reflex pathway. J. Physiol. 586, 3963–3978. 10.1113/jphysiol.2008.154567 PubMed DOI PMC
Groves D. A., Bowman E. M., Brown V. J. (2005). Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat. Neurosci. Lett. 379, 174–179. 10.1016/j.neulet.2004.12.055 PubMed DOI
Guleyupoglu B., Schestatsky P., Edwards D., Fregni F., Bikson M. (2013). Classification of methods in transcranial electrical stimulation (tES) and evolving strategy from historical approaches to contemporary innovations. J. Neurosci. Methods 219, 297–311. 10.1016/j.jneumeth.2013.07.016 PubMed DOI PMC
Hämmerer D., Callaghan M. F., Hopkins A., Kosciessa J., Betts M., Cardenas-Blanco A., et al. . (2018). Locus coeruleus integrity in old age is selectively related to memories linked with salient negative events. Proc. Natl. Acad. Sci. U.S.A. 115, 2228–2233. 10.1073/pnas.1712268115 PubMed DOI PMC
Hansen N. (2019). Memory reinforcement and attenuation by activating the human locus coeruleus via transcutaneous vagus nerve stimulation. Front. Neurosci. 12:955. 10.3389/fnins.2018.00955 PubMed DOI PMC
Harden C. L., Pulver M. C., Ravdin L. D., Nikolov B., Halper J. P., Labar D. R. (2000). A pilot study of mood in epilepsy patients treated with vagus nerve stimulation. Epilepsy Behav. 1, 93–99. 10.1006/ebeh.2000.0046 PubMed DOI
Hasan A., Wolff-Menzler C., Pfeiffer S., Falkai P., Weidinger E., Jobst A., et al. . (2015). Transcutaneous noninvasive vagus nerve stimulation (tVNS) in the treatment of schizophrenia: a bicentric randomized controlled pilot study. Eur. Arch. Psychiatry Clin. Neurosci. 265, 589–600. 10.1007/s00406-015-0618-9 PubMed DOI
He W., Jing X., Wang X., Rong P., Li L., Shi H., et al. . (2013a). Transcutaneous auricular vagus nerve stimulation as a complementary therapy for pediatric epilepsy: a pilot trial. Epilepsy Behav. 28, 343–346. 10.1016/j.yebeh.2013.02.001 PubMed DOI
He W., Jing X.-H., Zhu B., Zhu X.-L., Li L., Bai W.-Z., et al. . (2013b). The auriculo-vagal afferent pathway and its role in seizure suppression in rats. BMC Neurosci. 14:85. 10.1186/1471-2202-14-85 PubMed DOI PMC
Heien M. L. A. V., Johnson M. A., Wightman R. M. (2004). Resolving neurotransmitters detected by fast-scan cyclic voltammetry. Anal. Chem. 76, 5697–5704. 10.1021/ac0491509 PubMed DOI
Hein E., Nowak M., Kiess O., Biermann T., Bayerlein K., Kornhuber J., et al. . (2013). Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J. Neural Transm. 120, 821–827. 10.1007/s00702-012-0908-6 PubMed DOI
Hirschberg S., Li Y., Randall A., Kremer E. J., Pickering A. E. (2017). Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats. ELife 6:e29808. 10.7554/eLife.29808.027 PubMed DOI PMC
Homma S., Yamazaki Y., Karakida T. (1993). Blood pressure and heart rate relationships during cervical sympathetic and vagus nerve stimulation in streptozotocin diabetic rats. Brain Res. 629, 342–344. 10.1016/0006-8993(93)91343-Q PubMed DOI
Hong G.-S., Pintea B., Lingohr P., Coch C., Randau T., Schaefer N., et al. . (2019). Effect of transcutaneous vagus nerve stimulation on muscle activity in the gastrointestinal tract (transVaGa): a prospective clinical trial. Int. J. Colorectal Dis. 34, 417–422. 10.1007/s00384-018-3204-6 PubMed DOI
Hosoi T., Okuma Y., Nomura Y. (2000). Electrical stimulation of afferent vagus nerve induces IL-1beta expression in the brain and activates HPA axis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R141–R147. 10.1152/ajpregu.2000.279.1.R141 PubMed DOI
Hou P. W., Hsu H. C., Lin Y. W., Tang N. Y., Cheng C. Y., Hsieh C. L. (2015). The history mechanism, and clinical application of auricular therapy in traditional Chinese medicine. Evid Based Complement. Alternat. Med. 2015:495684. 10.1155/2015/495684 PubMed DOI PMC
Howland R. H. (2014). Vagus nerve stimulation. Curr. Behav. Neurosci. Rep. 1, 64–73. 10.1007/s40473-014-0010-5 PubMed DOI PMC
Huang F., Dong J., Kong J., Wang H., Meng H., Spaeth R. B., et al. . (2014). Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study. BMC Complement. Alternat. Med. 14:203. 10.1186/1472-6882-14-203 PubMed DOI PMC
Huang H. (1974). Ear Acupuncture. Emmaus, PA: Rodale Press Emmaus.
Huang J., Wang Y., Jiang D., Zhou J., Huang X. (2010). The sympathetic-vagal balance against endotoxemia. J. Neural Transm. 117, 729–735. 10.1007/s00702-010-0407-6 PubMed DOI
Huffman W. J., Subramaniyan S., Rodriguiz R. M., Wetsel W. C., Grill W. M., Terrando N. (2019). Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimul. 12, 19–29. 10.1016/j.brs.2018.10.005 PubMed DOI PMC
Hulsey D. R., Riley J. R., Loerwald K. W., Rennaker R. L., Kilgard M. P., Hays S. A. (2017). Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation. Exp. Neurol. 289, 21–30. 10.1016/j.expneurol.2016.12.005 PubMed DOI PMC
Huston J. M., Gallowitsch-Puerta M., Ochani M., Ochani K., Yuan R., Rosas-Ballina M., et al. . (2007). Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit.Care Med. 35, 2762–2768. 10.1097/01.CCM.0000288102.15975.BA PubMed DOI
Hyvärinen P., Yrttiaho S., Lehtimäki J., Ilmoniemi R. J., Mäkitie A., Ylikoski J., et al. . (2015). Transcutaneous vagus nerve stimulation modulates tinnitus-related beta- and gamma-band activity. Ear Hear. 36, e76–e85. 10.1097/AUD.0000000000000123 PubMed DOI
Ikramuddin S., Blackstone R. P., Brancatisano A., Toouli J., Shah S. N., Wolfe B. M., et al. . (2014). Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the recharge randomized clinical trial. JAMA 312, 915–922. 10.1001/jama.2014.10540 PubMed DOI
Iseger T. A., van Bueren N. E. R., Kenemans J. L., Gevirtz R., Arns M. (2020). A frontal-vagal network theory for major depressive disorder: implications for optimizing neuromodulation techniques. Brain Stimul. 13, 1–9. 10.1016/j.brs.2019.10.006 PubMed DOI
Jacobs H. I. L., Riphagen J. M., Razat C. M., Wiese S., Sack A. T. (2015). Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiol. Aging 36, 1860–1867. 10.1016/j.neurobiolaging.2015.02.023 PubMed DOI
Jacquin M. F., Semba K., Rhoades R. W., Egger M. D. (1982). Trigeminal primary afferents project bilaterally to dorsal horn and ipsilaterally to cerebellum, reticular formation, and cuneate, solitary, supratrigeminal and vagal nuclei. Brain Res. 246, 285–291. 10.1016/0006-8993(82)91177-5 PubMed DOI
Jalife J., Slenter V. A., Salata J. J., Michaels D. C. (1983). Dynamic vagal control of pacemaker activity in the mammalian sinoatrial node. Circ. Res. 52, 642–656. 10.1161/01.RES.52.6.642 PubMed DOI
Janner H., Klausenitz C., Gürtler N., Hahnenkamp K., Usichenko T. I. (2018). Effects of electrical transcutaneous vagus nerve stimulation on the perceived intensity of repetitive painful heat stimuli: a blinded placebo- and sham-controlled randomized crossover investigation. Anesthesia Analgesia 126, 2085–2092. 10.1213/ANE.0000000000002820 PubMed DOI
Jiang Y., Li L., Ma J., Zhang L., Niu F., Feng T., et al. . (2016). Auricular vagus nerve stimulation promotes functional recovery and enhances the post-ischemic angiogenic response in an ischemia/reperfusion rat model. Neurochem. Int. 97, 73–82. 10.1016/j.neuint.2016.02.009 PubMed DOI
Jin Y., Kong J. (2016). Transcutaneous vagus nerve stimulation: a promising method for treatment of autism spectrum disorders. Front. Neurosci. 10:609. 10.3389/fnins.2016.00609 PubMed DOI PMC
Jodoin V. D., Lespérance P., Nguyen D. K., Fournier-Gosselin M.-P., Richer F., Centre Hospitalier de l'Université de Montréal Canada. (2018). Effects of vagus nerve stimulation on pupillary function. Int. J. Psychophysiol. 98(3 Pt 1), 455–459. 10.1016/j.ijpsycho.2015.10.001 PubMed DOI
John C. E., Jones S. R. (2007). “Fast scan cyclic voltammetry of dopamine and serotonin in mouse brain slices,” in Electrochemical Methods for Neuroscience, eds A. C. Michael and L. M. Borland (Francis:CRC Press/Taylor; ). Available onlie at: http://www.ncbi.nlm.nih.gov/books/NBK2579/ PubMed
Johnson R. L., Wilson C. G. (2018). A review of vagus nerve stimulation as a therapeutic intervention. J. Inflamm. Res. 11, 203–213. 10.2147/JIR.S163248 PubMed DOI PMC
Jongkees B. J., Immink M. A., Finisguerra A., Colzato L. S. (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during sequential action. Front. Psychol. 9:1159. 10.3389/fpsyg.2018.01159 PubMed DOI PMC
Joshi S., Li Y., Kalwani R. M., Gold J. I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89, 221–234. 10.1016/j.neuron.2015.11.028 PubMed DOI PMC
Juel J., Brock C., Olesen S., Madzak A., Farmer A., Aziz Q., et al. . (2017). Acute physiological and electrical accentuation of vagal tone has no effect on pain or gastrointestinal motility in chronic pancreatitis. J. Pain Res. 10, 1347–1355. 10.2147/JPR.S133438 PubMed DOI PMC
Kaczmarczyk R., Tejera D., Simon B. J., Heneka M. T. (2017). Microglia modulation through external vagus nerve stimulation in a murine model of Alzheimer's disease. J. Neurochem. 146, 76–85. 10.1111/jnc.14284 PubMed DOI
Kalia M., Sullivan J. M. (1982). Brainstem projections of sensory and motor components of the vagus nerve in the rat. J. Comp. Neurol. 211, 248–265. 10.1002/cne.902110304 PubMed DOI
Kampusch S., Kaniusas E., Széles J. C. (2013). “New approaches in multi-punctual percutaneous stimulation of the auricular vagus nerve,” in 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) (San Diego, CA: ), 263–266. 10.1109/NER.2013.6695922 DOI
Kaniusas E. (2019). Biomedical Signals and Sensors III: Linking Electric Biosignals and Biomedical Sensors. Available online at: https://www.springer.com/de/book/9783319749167
Kaniusas E., Kampusch S., Tittgemeyer M., Panetsos F., Gines R. F., Papa M., et al. . (2019a). Current directions in the auricular vagus nerve stimulation II – an engineering perspective. Front. Neurosci. 13:772. 10.3389/fnins.2019.00772 PubMed DOI PMC
Kaniusas E., Kampusch S., Tittgemeyer M., Panetsos F., Gines R. F., Papa M., et al. . (2019b). Current directions in the auricular vagus nerve stimulation I – a physiological perspective. Front. Neurosci. 13:854. 10.3389/fnins.2019.00854 PubMed DOI PMC
Kaniusas E., Samoudi A. M., Kampusch S., Bald K., Tanghe E., Martens L., et al. . (2020). Stimulation pattern efficiency in percutaneous auricular vagus nerve stimulation: experimental versus numerical data. IEEE Trans. Biomed. Eng. 67, 1921–1935. 10.1109/TBME.2019.2950777 PubMed DOI
Kemp J., Després O., Pebayle T., Dufour A. (2014). Age-related decrease in sensitivity to electrical stimulation is unrelated to skin conductance: an evoked potentials study. Clin. Neurophysiol. 125, 602–607. 10.1016/j.clinph.2013.08.020 PubMed DOI
Keute M., Boehrer L., Ruhnau P., Heinze H.-J., Zaehle T. (2019a). Transcutaneous vagus nerve stimulation (tVNS) and the dynamics of visual bistable perception. Front. Neurosci. 13:227. 10.3389/fnins.2019.00227 PubMed DOI PMC
Keute M., Demirezen M., Graf A., Mueller N. G., Zaehle T. (2019b). No modulation of pupil size and event-related pupil response by transcutaneous auricular vagus nerve stimulation (taVNS). Sci. Rep. 9:11452. 10.1038/s41598-019-47961-4 PubMed DOI PMC
Keute M., Ruhnau P., Heinze H.-J., Zaehle T. (2018). Behavioral and electrophysiological evidence for GABAergic modulation through transcutaneous vagus nerve stimulation. Clin. Neurophysiol. 129, 1789–1795. 10.1016/j.clinph.2018.05.026 PubMed DOI
Khadka N., Borges H., Zannou A. L., Jang J., Kim B., Lee K., et al. . (2018). Dry tDCS: Tolerability of a novel multilayer hydrogel composite non-adhesive electrode for transcranial direct current stimulation. Brain Stimul. 11, 1044–1053. 10.1016/j.brs.2018.07.049 PubMed DOI
Kile B. M., Walsh P. L., McElligott Z. A., Bucher E. S., Guillot T. S., Salahpour A., et al. . (2012). Optimizing the temporal resolution of fast-scan cyclic voltammetry. ACS Chem. Neurosci. 3, 285–292. 10.1021/cn200119u PubMed DOI PMC
Koenig J., Parzer P., Haigis N., Liebemann J., Jung T., Resch F., et al. . (2019). Effects of acute transcutaneous vagus nerve stimulation on emotion recognition in adolescent depression. Psychol. Med. 1–10. 10.1017/S0033291719003490. [Epub ahead of print]. PubMed DOI PMC
Koenig J., Rash J. A., Campbell T. S., Thayer J. F., Kaess M. (2017). A meta-analysis on sex differences in resting-state vagal activity in children and adolescents. Front. Physiol. 8:582. 10.3389/fphys.2017.00582 PubMed DOI PMC
Koenig J., Thayer J. F. (2016). Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci. Biobehav. Rev. 64, 288–310. 10.1016/j.neubiorev.2016.03.007 PubMed DOI
Kong J., Fang J., Park J., Li S., Rong P. (2018). Treating depression with transcutaneous auricular vagus nerve stimulation: state of the art and future perspectives. Front. Psychiatry 9:20. 10.3389/fpsyt.2018.00020 PubMed DOI PMC
Koopman F. A., Chavan S. S., Miljko S., Grazio S., Sokolovic S., Schuurman P. R., et al. . (2016). Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl. Acad. Sci. U.S.A. 113, 8284–8289. 10.1073/pnas.1605635113 PubMed DOI PMC
Krahl S. E., Clark K. B. (2012). Vagus nerve stimulation for epilepsy: a review of central mechanisms. Surg. Neurol. Int. 3, S255–S259. 10.4103/2152-7806.103015 PubMed DOI PMC
Krahl S. E., Senanayake S. S., Handforth A. (2003). Right-sided vagus nerve stimulation reduces generalized seizure severity in rats as effectively as left-sided. Epilepsy Res. 56, 1–4. 10.1016/s0920-1211(03)00122-0 PubMed DOI
Kraus T., Hösl K., Kiess O., Schanze A., Kornhuber J., Forster C. (2007). BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. J. Neural Transm. 114, 1485–1493. 10.1007/s00702-007-0755-z PubMed DOI
Kraus T., Kiess O., Hösl K., Terekhin P., Kornhuber J., Forster C. (2013). CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal – a pilot study. Brain Stimul. 6, 798–804. 10.1016/j.brs.2013.01.011 PubMed DOI
Krause B., Cohen Kadosh R. (2014). Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation. Front. Syst. Neurosci. 8:25. 10.3389/fnsys.2014.00025 PubMed DOI PMC
Kreuzer P. M., Landgrebe M., Husser O., Resch M., Schecklmann M., Geisreiter F., et al. . (2012). Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study. Front. Psychiatry 3:70. 10.3389/fpsyt.2012.00070 PubMed DOI PMC
Kreuzer P. M., Landgrebe M., Resch M., Husser O., Schecklmann M., Geisreiter F., et al. . (2014). Feasibility, safety and efficacy of transcutaneous vagus nerve stimulation in chronic tinnitus: an open pilot study. Brain Stimul. 7, 740–747. 10.1016/j.brs.2014.05.003 PubMed DOI
Kuo T. B., Lin T., Yang C. C., Li C. L., Chen C. F., Chou P. (1999). Effect of aging on gender differences in neural control of heart rate. Am. J. Physiol. 277, H2233–H2239. 10.1152/ajpheart.1999.277.6.H2233 PubMed DOI
Kuo T. B. J., Lai C. J., Huang Y.-T., Yang C. C. H. (2005). Regression analysis between heart rate variability and baroreflex-related vagus nerve activity in rats. J. Cardiovasc. Electrophysiol. 16, 864–869. 10.1111/j.1540-8167.2005.40656.x PubMed DOI
Lamb D. G., Porges E. C., Lewis G. F., Williamson J. B. (2017). Non-invasive vagal nerve stimulation effects on hyperarousal and autonomic state in patients with posttraumatic stress disorder and history of mild traumatic brain injury: preliminary evidence. Front. Med. 4:124. 10.3389/fmed.2017.00124 PubMed DOI PMC
Lange G., Janal M. N., Maniker A., Fitzgibbons J., Fobler M., Cook D., et al. . (2011). Safety and efficacy of vagus nerve stimulation in fibromyalgia: a phase I/II proof of concept trial. Pain Med. 12, 1406–1413. 10.1111/j.1526-4637.2011.01203.x PubMed DOI PMC
Lanska D. J. (2002). Corning and vagal nerve stimulation for seizures in the 1880s. Neurology 58, 452–459. 10.1212/WNL.58.3.452 PubMed DOI
Laqua R., Leutzow B., Wendt M., Usichenko T. (2014). Transcutaneous vagal nerve stimulation may elicit anti- and pro-nociceptive effects under experimentally-induced pain—a crossover placebo-controlled investigation. Auton. Neurosci. Basic Clin. 185, 120–122. 10.1016/j.autneu.2014.07.008 PubMed DOI
Lehtimäki J., Hyvärinen P., Ylikoski M., Bergholm M., Mäkel,ä J. P., Aarnisalo A., et al. . (2013). Transcutaneous vagus nerve stimulation in tinnitus: a pilot study. Acta Oto Laryngol. 133, 378–382. 10.3109/00016489.2012.750736 PubMed DOI
Lerman I., Hauger R., Sorkin L., Proudfoot J., Davis B., Huang A., et al. . (2016). Noninvasive transcutaneous vagus nerve stimulation decreases whole blood culture-derived cytokines and chemokines: a randomized, blinded, healthy control pilot trial: noninvasive vagus nerve stimulation modulates peripheral inflammation. Neuromodulation 19, 283–290. 10.1111/ner.12398 PubMed DOI
Leutzow B., Lange J., Gibb A., Schroeder H., Nowak A., Wendt M., et al. . (2013). Vagal sensory evoked potentials disappear under the neuromuscular block – an experimental study. Brain Stimul. 6, 812–816. 10.1016/j.brs.2013.03.005 PubMed DOI
Levine Y. A., Koopman F., Faltys M., Zitnik R., Tak P.-P. (2014). Neurostimulation of the cholinergic antiinflammatory pathway in rheumatoid arthritis and inflammatory bowel disease. Bioelectron. Med. 1, 34–43. 10.15424/bioelectronmed.2014.00008 DOI
Levy M. N., Martin P. J., Lano T., Zieske H. (1969). Paradoxical effect of vagus nerve stimulation on heart rate in dogs. Circ. Res. 25, 303–314. 10.1161/01.RES.25.3.303 PubMed DOI
Lewine J. D., Paulson K., Bangera N., Simon B. J. (2019). Exploration of the impact of brief noninvasive vagal nerve stimulation on EEG and event-related potentials: impact of nVNS on brain electrophysiology. Neuromodulation 22, 564–572. 10.1111/ner.12864 PubMed DOI
Liporace J., Hucko D., Morrow R., Barolat G., Nei M., Schnur J., et al. . (2001). Vagal nerve stimulation: adjustments to reduce painful side effects. Neurology 57, 885–886. 10.1212/WNL.57.5.885 PubMed DOI
Liu J., Fang J., Wang Z., Rong P., Hong Y., Fan Y., et al. . (2016). Transcutaneous vagus nerve stimulation modulates amygdala functional connectivity in patients with depression. J. Affect. Disord. 205, 319–326. 10.1016/j.jad.2016.08.003 PubMed DOI
Liu K. Y., Acosta-Cabronero J., Cardenas-Blanco A., Loane C., Berry A. J., Betts M. J., et al. . (2019). In vivo visualization of age-related differences in the locus coeruleus. Neurobiol. Aging 74, 101–111. 10.1016/j.neurobiolaging.2018.10.014 PubMed DOI PMC
Liu K. Y., Marijatta F., Hämmerer D., Acosta-Cabronero J., Düzel E., Howard R. J. (2017). Magnetic resonance imaging of the human locus coeruleus: a systematic review. Neurosci. Biobehav. Rev. 83, 325–355. 10.1016/j.neubiorev.2017.10.023 PubMed DOI
Liugan M., Zhang M., Cakmak Y. O. (2018). Neuroprosthetics for auricular muscles: neural networks and clinical aspects. Front. Neurol. 8:752. 10.3389/fneur.2017.00752 PubMed DOI PMC
Lv H., Zhao Y., Chen J., Wang D., Chen H. (2019). Vagus nerve stimulation for depression: a systematic review. Front. Psychol. 10:64. 10.3389/fpsyg.2019.00064 PubMed DOI PMC
Maffiuletti N. A., Herrero A. J., Jubeau M., Impellizzeri F. M., Bizzini M. (2008). Differences in electrical stimulation thresholds between men and women. Ann. Neurol. 63, 507–512. 10.1002/ana.21346 PubMed DOI
Malik M. (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use: task force of the European Society of Cardiology and the North American Society for Pacing and Electrophysiology. Annals Noninv. Electrocardiol. 1, 151–181. 10.1111/j.1542-474X.1996.tb00275.x PubMed DOI
Manta S., Dong J., Debonnel G., Blier P. (2009). Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation. J. Psychiatry Neurosci. 34, 272–280. PubMed PMC
Manta S., El Mansari M., Debonnel G., Blier P. (2013). Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems. Int. J. Neuropsychopharmacol. 16, 459–470. 10.1017/S1461145712000387 PubMed DOI
Marrosu F., Serra A., Maleci A., Puligheddu M., Biggio G., Piga M. (2003). Correlation between GABAA receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsy. Epilepsy Res. 55, 59–70. 10.1016/S0920-1211(03)00107-4 PubMed DOI
McGough J. J., Sturm A., Cowen J., Tung K., Salgari G. C., Leuchter A. F., et al. . (2019). Double-blind, sham-controlled, pilot study of trigeminal nerve stimulation for attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 58, 403–411.e3. 10.1016/j.jaac.2018.11.013 PubMed DOI PMC
Merrill D. R., Bikson M., Jefferys J. G. R. (2005). Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–198. 10.1016/j.jneumeth.2004.10.020 PubMed DOI
Mertens A., Naert L., Miatton M., Poppa T., Carrette E., Gadeyne S., et al. . (2020). Transcutaneous vagus nerve stimulation does not affect verbal memory performance in healthy volunteers. Front. Psychol. 11:551. 10.3389/fpsyg.2020.00551 PubMed DOI PMC
Mertens A., Raedt R., Gadeyne S., Carrette E., Boon P., Vonck K. (2018). Recent advances in devices for vagus nerve stimulation. Expert Rev. Med. Devices 15, 527–539. 10.1080/17434440.2018.1507732 PubMed DOI
Minhas P., Bansal V., Patel J., Ho J. S., Diaz J., Datta A., et al. . (2010). Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS. J. Neurosci. Methods 190, 188–197. 10.1016/j.jneumeth.2010.05.007 PubMed DOI PMC
Mirza K. B., Golden C. T., Nikolic K., Toumazou C. (2019). Closed-loop implantable therapeutic neuromodulation systems based on neurochemical monitoring. Front. Neurosci. 13:808. 10.3389/fnins.2019.00808 PubMed DOI PMC
Moher D. Schulz K. F. Altman D. CONSORT Group Consolidated Standards of Reporting Trials (2001). The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. JAMA 285, 1987–1991. 10.1001/jama.285.15.1987 PubMed DOI
Moodithaya S., Avadhany S. T. (2012). Gender differences in age-related changes in cardiac autonomic nervous function. J. Aging Res. 2012:679345. 10.1155/2012/679345 PubMed DOI PMC
Morris G. L., Gloss D., Buchhalter J., Mack K. J., Nickels K., Harden C. (2013). Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy. Epilepsy Curr. 13, 297–303. 10.5698/1535-7597-13.6.297 PubMed DOI PMC
Morris J., Straube A., Diener H.-C., Ahmed F., Silver N., Walker S., et al. . (2016). Cost-effectiveness analysis of non-invasive vagus nerve stimulation for the treatment of chronic cluster headache. J. Headache Pain 17:43. 10.1186/s10194-016-0633-x PubMed DOI PMC
Mourdoukoutas A. P., Truong D. Q., Adair D. K., Simon B. J., Bikson M. (2018). High-resolution multi-scale computational model for non-invasive cervical vagus nerve stimulation. Neuromodulation 21, 261–268. 10.1111/ner.12706 PubMed DOI PMC
Mridha Z., de Gee J. W., Shi Y., Alkashgari R., Williams J., Suminski A., et al. . (2019). Graded recruitment of pupil-linked neuromodulation by parametric stimulation of the vagus nerve | bioRxiv [Preprint]. 10.1101/2019.12.28.890111 PubMed DOI PMC
Murphy P. R., Robertson I. H., Balsters J. H., O'connell R. G. (2011). Pupillometry and P3 index the locus coeruleus-noradrenergic arousal function in humans. Psychophysiology 48, 1532–1543. 10.1111/j.1469-8986.2011.01226.x PubMed DOI
Murray A. R., Atkinson L., Mahadi M. K., Deuchars S. A., Deuchars J. (2016a). The strange case of the ear and the heart: the auricular vagus nerve and its influence on cardiac control. Auton. Neurosci. Basic Clin. 199, 48–53. 10.1016/j.autneu.2016.06.004 PubMed DOI
Murray A. R., Clancy J. A., Deuchars S. A., Deuchars J. (2016b). Transcutaneous vagus nerve stimulation (tVNS) decreases sympathetic nerve activity in older healthy human subjects. FASEB J. 30(1 Suppl), 754.3. 10.1136/heartjnl-2016-309890.215 DOI
Napadow V. (2019). When a white horse is a horse: embracing the overlap between acupuncture and neuromodulation. J. Altern. Complement. Med. 24, 621–623. 10.1089/acm.2018.29047.vtn PubMed DOI
Napadow V., Edwards R. R., Cahalan C. M., Mensing G., Greenbaum S., Valovska A., et al. . (2012). Evoked pain analgesia in chronic pelvic pain patients using respiratory-gated auricular vagal afferent nerve stimulation. Pain Med. 13, 777–789. 10.1111/j.1526-4637.2012.01385.x PubMed DOI PMC
Nassi J. J., Cepko C. L., Born R. T., Beier K. T. (2015). Neuroanatomy goes viral! Front. Neuroanat. 9:80. 10.3389/fnana.2015.00080 PubMed DOI PMC
Nemeroff C. B., Mayberg H. S., Krahl S. E., McNamara J., Frazer A., Henry T. R., et al. . (2006). VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms. Neuropsychopharmacology 31, 1345–1355. 10.1038/sj.npp.1301082 PubMed DOI
Nesbitt A. D., Marin J. C. A., Tompkins E., Ruttledge M. H., Goadsby P. J. (2015). Initial use of a novel noninvasive vagus nerve stimulator for cluster headache treatment. Neurology 84, 1249–1253. 10.1212/WNL.0000000000001394 PubMed DOI
Neuhaus A. H., Luborzewski A., Rentzsch J., Brakemeier E. L., Opgen-Rhein C., Gallinat J., et al. . (2007). P300 is enhanced in responders to vagus nerve stimulation for treatment of major depressive disorder. J. Affect. Disord. 100, 123–128. 10.1016/j.jad.2006.10.005 PubMed DOI
Neuser M. P., Teckentrup V., Kühnel A., Hallschmid M., Walter M., Kroemer N. B. (2019). Vagus nerve stimulation increases vigor to work for rewards. BioRxiv [Preprint]. 789982. 10.1101/789982 PubMed DOI
Ng G. A., Brack K. E., Coote J. H. (2001). Effects of direct sympathetic and vagus nerve stimulation on the physiology of the whole heart—a novel model of isolated langendorff perfused rabbit heart with intact dual autonomic innervation. Exp. Physiol. 86, 319–329. 10.1113/eph8602146 PubMed DOI
Nieuwenhuis S., Aston-Jones G., Cohen J. D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychol. Bull. 131, 510–532. 10.1037/0033-2909.131.4.510 PubMed DOI
Njagi J., Chernov M. M., Leiter J. C., Andreescu S. (2010). Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Anal. Chem. 82, 989–996. 10.1021/ac9022605 PubMed DOI
Nogier P. M. F. (1957). Über die akupunktur der ohrmuschel. Dt Ztschr Akup 6, 25–35.
Noller C. M., Levine Y. A., Urakov T. M., Aronson J. P., Nash M. S. (2019). Vagus nerve stimulation in rodent models: an overview of technical considerations. Front. Neurosci. 13:911. 10.3389/fnins.2019.00911 PubMed DOI PMC
Paleczny B., Seredyński R., Ponikowska B. (2019). Inspiratory- and expiratory-gated transcutaneous vagus nerve stimulation have different effects on heart rate in healthy subjects: preliminary results. Clin. Auton. Res. 10.1007/s10286-019-00604-0. [Epub ahead of print]. PubMed DOI PMC
Panebianco M., Zavanone C., Dupont S., Restivo D. A., Pavone A. (2016). Vagus nerve stimulation therapy in partial epilepsy: a review. Acta Neurol. Belgica 116, 241–248. 10.1007/s13760-016-0616-3 PubMed DOI
Pardo J., Sheikh S., Kuskowski M., Surerus-Johnson C., Hagen M., Lee J., et al. . (2007). Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity. Int. J. Obesity 31, 1756–1759. 10.1038/sj.ijo.0803666 PubMed DOI PMC
Pavlov V. A., Tracey K. J. (2012). The vagus nerve and the inflammatory reflex–linking immunity and metabolism. Nat. Rev. Endocrinol. 8, 743–754. 10.1038/nrendo.2012.189 PubMed DOI PMC
Peng L., Mu K., Liu A., Zhou L., Gao Y., Shenoy I. T., et al. . (2018). Transauricular vagus nerve stimulation at auricular acupoints kindey (CO10), yidan (CO11), liver (CO12) and shenmen (TF4) can induce auditory and limbic cortices activation measured by fMRI. Hear. Res. 359, 1–12. 10.1016/j.heares.2017.12.003 PubMed DOI
Penry J. K., Dean J. C. (1990). Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results. Epilepsia 31, S40–S43. 10.1111/j.1528-1157.1990.tb05848.x PubMed DOI
Perkins D. O. (2002). Predictors of noncompliance in patients with schizophrenia. J. Clin. Psychiatry 63, 1121–1128. 10.4088/JCP.v63n1206 PubMed DOI
Peterchev A. V., Wagner T. A., Miranda P. C., Nitsche M. A., Paulus W., Lisanby S. H., et al. . (2012). Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain Stimul. 5, 435–453. 10.1016/j.brs.2011.10.001 PubMed DOI PMC
Peuker E. T., Filler T. J. (2002). The nerve supply of the human auricle. Clin. Anat. 15, 35–37. 10.1002/ca.1089 PubMed DOI
Polak T., Markulin F., Ehlis A.-C., Langer J. B. M., Ringel T. M., Fallgatter A. J. (2009). Far field potentials from brain stem after transcutaneous vagus nerve stimulation: optimization of stimulation and recording parameters. J. Neural Transm. 116, 1237–1242. 10.1007/s00702-009-0282-1 PubMed DOI
Premchand R. K., Sharma K., Mittal S., Monteiro R., Dixit S., Libbus I., et al. . (2014). Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J. Cardiac Failure 20, 808–816. 10.1016/j.cardfail.2014.08.009 PubMed DOI
Priovoulos N., Jacobs H. I. L., Ivanov D., Uludag K., Verhey F. R. J., Poser B. A. (2018). High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3T and 7T. Neuroimage 168, 427–436. 10.1016/j.neuroimage.2017.07.045 PubMed DOI
Raedt R., Clinckers R., Mollet L., Vonck K., El Tahry R., Wyckhuys T., et al. . (2011). Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. J. Neurochem. 117, 461–469. 10.1111/j.1471-4159.2011.07214.x PubMed DOI
Rajkowski J. (1993). Correlations between locus coeruleus (LC) neural activity, pupil diameter and behavior in monkey support a role of LC in attention. Soc. Neurosc. Available online at: https://ci.nii.ac.jp/naid/10021384962/en/
Rawat J. K., Roy S., Singh M., Guatam S., Yadav R. K., Ansari M. N., et al. . (2019). Transcutaneous vagus nerve stimulation regulates the cholinergic anti-inflammatory pathway to counteract 1, 2-dimethylhydrazine induced colon carcinogenesis in albino wistar rats. Front. Pharmacol. 10:353. 10.3389/fphar.2019.00353 PubMed DOI PMC
Redgrave J., Day D., Leung H., Laud P. J., Ali A., Lindert R., et al. . (2018). Safety and tolerability of transcutaneous vagus nerve stimulation in humans; a systematic review. Brain Stimul. 11, 1225–1238. 10.1016/j.brs.2018.08.010 PubMed DOI
Rong P., Liu A., Zhang J., Wang Y., He W., Yang A., et al. . (2014). Transcutaneous vagus nerve stimulation for refractory epilepsy: a randomized controlled trial. Clin. Sci. 10.1042/CS20130518. [Epub ahead of print]. PubMed DOI
Rong P., Liu J., Wang L., Liu R., Fang J., Zhao J., et al. . (2016). Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study. J. Affect. Disord. 195, 172–179. 10.1016/j.jad.2016.02.031 PubMed DOI PMC
Roosevelt R. W., Smith D. C., Clough R. W., Jensen R. A., Browning R. A. (2006). Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res. 1119, 124–132. 10.1016/j.brainres.2006.08.048 PubMed DOI PMC
Roslin M., Kurian M. (2001). The use of electrical stimulation of the vagus nerve to treat morbid obesity. Epilepsy Behav. 2, S11–S16. 10.1006/ebeh.2001.0213 DOI
Rufener K. S., Geyer U., Janitzky K., Heinze H.-J., Zaehle T. (2018). Modulating auditory selective attention by non-invasive brain stimulation: differential effects of transcutaneous vagal nerve stimulation and transcranial random noise stimulation. Eur. J. Neurosci. 48, 2301–2309. 10.1111/ejn.14128 PubMed DOI
Salman I. M. (2015). Cardiovascular autonomic dysfunction in chronic kidney disease: a comprehensive review. Curr. Hypertens. Rep. 17:59. 10.1007/s11906-015-0571-z PubMed DOI
Sasaki M., Shibata E., Tohyama K., Takahashi J., Otsuka K., Tsuchiya K., et al. . (2006). Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease. Neuroreport 17, 1215–1218. 10.1097/01.wnr.0000227984.84927.a7 PubMed DOI
Sator-Katzenschlager S. M., Scharbert G., Kozek-Langenecker S. A., Szeles J. C., Finster G., Schiesser A. W., et al. . (2004). The short- and long-term benefit in chronic low back pain through adjuvant electrical versus manual auricular acupuncture. Anesthesia Analgesia 98, 1359–1364. 10.1213/01.ANE.0000107941.16173.F7 PubMed DOI
Schevernels H., van Bochove M. E., De Taeye L., Bombeke K., Vonck K., Van Roost D., et al. . (2016). The effect of vagus nerve stimulation on response inhibition. Epilepsy Behav. 64, 171–179. 10.1016/j.yebeh.2016.09.014 PubMed DOI
Schulz-Stübner S., Kehl F. (2011). Treatment of persistent hiccups with transcutaneous phrenic and vagal nerve stimulation. Intensive Care Med. 37, 1048–1049. 10.1007/s00134-011-2150-3 PubMed DOI
Schwarz L. A., Miyamichi K., Gao X. J., Beier K. T., Weissbourd B., DeLoach K. E., et al. . (2015). Viral-genetic tracing of the input–output organization of a central noradrenaline circuit. Nature 524, 88–92. 10.1038/nature14600 PubMed DOI PMC
Sclocco R., Beissner F., Bianciardi M., Polimeni J. R., Napadow V. (2018). Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI. Neuroimage 168, 412–426. 10.1016/j.neuroimage.2017.02.052 PubMed DOI PMC
Sclocco R., Garcia R. G., Gabriel A., Kettner N. W., Napadow V., Barbieri R. (2017). “Respiratory-gated auricular vagal afferent nerve stimulation (RAVANS) effects on autonomic outflow in hypertension,” in 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Jeju: ), 3130–3133. 10.1109/EMBC.2017.8037520 PubMed DOI
Sclocco R., Garcia R. G., Kettner N. W., Fisher H. P., Isenburg K., Makarovsky M., et al. . (2020). Stimulus frequency modulates brainstem response to respiratory-gated transcutaneous auricular vagus nerve stimulation. Brain Stimul. 13, 970–978. 10.1016/j.brs.2020.03.011 PubMed DOI PMC
Sclocco R., Garcia R. G., Kettner N. W., Isenburg K., Fisher H. P., Hubbard C. S., et al. . (2019). The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: a multimodal ultrahigh-field (7T) fMRI study. Brain Stimul. 12, 911–921. 10.1016/j.brs.2019.02.003 PubMed DOI PMC
Sellaro R., de Gelder B., Finisguerra A., Colzato L. S. (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances recognition of emotions in faces but not bodies. Cortex 99, 213–223. 10.1016/j.cortex.2017.11.007 PubMed DOI
Sellaro R., Steenbergen L., Verkuil B., van IJzendoorn M. H., Colzato L. S. (2015a). Transcutaneous vagus nerve stimulation (tVNS) does not increase prosocial behavior in cyberball. Front. Psychol. 6:499. 10.3389/fpsyg.2015.00499 PubMed DOI PMC
Sellaro R., van Leusden J. W. R., Tona K.-D., Verkuil B., Nieuwenhuis S., Colzato L. S. (2015b). Transcutaneous vagus nerve stimulation enhances post-error slowing. J. Cogn. Neurosci. 27, 2126–2132. 10.1162/jocn_a_00851 PubMed DOI
Shikora S., Toouli J., Herrera M. F., Kulseng B., Zulewski H., Brancatisano R., et al. . (2013). Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus. J. Obes. 2013:245683. 10.1155/2013/245683 PubMed DOI PMC
Shim H. J., Kwak M. Y., An Y.-H., Kim D. H., Kim Y. J., Kim H. J. (2015). Feasibility and safety of transcutaneous vagus nerve stimulation paired with notched music therapy for the treatment of chronic tinnitus. J. Audiol. Otol. 19, 159–167. 10.7874/jao.2015.19.3.159 PubMed DOI PMC
Silberstein S. D., Calhoun A. H., Lipton R. B., Grosberg B. M., Cady R. K., Dorlas S., et al. . (2016a). Chronic migraine headache prevention with noninvasive vagus nerve stimulation: the EVENT study. Neurology 87, 529–538. 10.1212/WNL.0000000000002918 PubMed DOI PMC
Silberstein S. D., Mechtler L. L., Kudrow D. B., Calhoun A. H., McClure C., Saper J. R., et al. . (2016b). Non-invasive vagus nerve stimulation for the acute treatment of cluster headache: findings from the randomized, double-blind, sham-controlled ACT1 study. Headache 56, 1317–1332. 10.1111/head.12896 PubMed DOI PMC
Silvanto J., Muggleton N., Walsh V. (2008). State-dependency in brain stimulation studies of perception and cognition. Trends Cogn. Sci. 12, 447–454. 10.1016/j.tics.2008.09.004 PubMed DOI
Slenter V. A., Salata J. J., Jalife J. (1984). Vagal control of pacemaker periodicity and intranodal conduction in the rabbit sinoatrial node. Circ. Res. 54, 436–446. 10.1161/01.RES.54.4.436 PubMed DOI
Sooksood K., Stieglitz T., Ortmanns M. (2009). “Recent advances in charge balancing for functional electrical stimulation,” in Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference (Minneapolis: ), 2009, 5518–5521. 10.1109/IEMBS.2009.5333181 PubMed DOI
Sooksood K., Stieglitz T., Ortmanns M. (2010). An active approach for charge balancing in functional electrical stimulation. IEEE Trans. Biomed. Circ. Syst. 4, 162–170. 10.1109/TBCAS.2010.2040277 PubMed DOI
Stavrakis S., Humphrey M. B., Scherlag B. J., Hu Y., Jackman W. M., Nakagawa H., et al. . (2015). Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J. Am. Coll. Cardiol. 65, 867–875. 10.1016/j.jacc.2014.12.026 PubMed DOI PMC
Steenbergen L., Colzato L. S., Maraver M. J. (2020). Vagal signaling and the somatic marker hypothesis: the effect of transcutaneous vagal nerve stimulation on delay discounting is modulated by positive mood. Int. J. Psychophysiol. 148, 84–92. 10.1016/j.ijpsycho.2019.10.010 PubMed DOI
Steenbergen L., Sellaro R., Stock A.-K., Verkuil B., Beste C., Colzato L. S. (2015). Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes. Eur. Neuropsychopharmacol. 25, 773–778. 10.1016/j.euroneuro.2015.03.015 PubMed DOI
Stefan H., Kreiselmeyer G., Kerling F., Kurzbuch K., Rauch C., Heers M., et al. . (2012). Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: a proof of concept trial. Epilepsia 53, e115–e118. 10.1111/j.1528-1167.2012.03492.x PubMed DOI
Straube A., Ellrich J., Eren O., Blum B., Ruscheweyh R. (2015). Treatment of chronic migraine with transcutaneous stimulation of the auricular branch of the vagal nerve (auricular t-VNS): A randomized, monocentric clinical trial. J. Headache Pain 16:543. 10.1186/s10194-015-0543-3 PubMed DOI PMC
Sun P., Zhou K., Wang S., Li P., Chen S., Lin G., et al. . (2013). Involvement of MAPK/NF-κB signaling in the activation of the cholinergic anti-inflammatory pathway in experimental colitis by chronic vagus nerve stimulation. PLoS ONE 8:e69424. 10.1371/journal.pone.0069424 PubMed DOI PMC
Szeska C., Richter J., Wendt J., Weymar M., Hamm A. O. (2020). Promoting long-term inhibition of human fear responses by non-invasive transcutaneous vagus nerve stimulation during extinction training. Sci. Rep. 10:1529. 10.1038/s41598-020-58412-w PubMed DOI PMC
Sztajzel J., Jung M., Bayes de Luna A. (2008). Reproducibility and gender-related differences of heart rate variability during all-day activity in young men and women. Ann. Noninvasive Electrocardiol. 13, 270–277. 10.1111/j.1542-474X.2008.00231.x PubMed DOI PMC
Takemura M., Sugimoto T., Sakai A. (1987). Topographic organization of central terminal region of different sensory branches of the rat mandibular nerve. Exp. Neurol. 96, 540–557. 10.1016/0014-4886(87)90217-2 PubMed DOI
Teckentrup V., Neubert S., Santiago J. C. P., Hallschmid M., Walter M., Kroemer N. B. (2020). Non-invasive stimulation of vagal afferents reduces gastric frequency. Brain Stimul. 13, 470–473. 10.1016/j.brs.2019.12.018 PubMed DOI
Tekdemir I., Aslan A., Elhan A. (1998). A clinico-anatomic study of the auricular branch of the vagus nerve and Arnold's ear-cough reflex. Surg. Radiol. Anat. 20, 253–257. 10.1007/s00276-998-0253-5 PubMed DOI
Thayer J. F., Lane R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. J. Affect. Disord. 61, 201–216. 10.1016/S0165-0327(00)00338-4 PubMed DOI
Thayer J. F., Lane R. D. (2009). Claude bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 33, 81–88. 10.1016/j.neubiorev.2008.08.004 PubMed DOI
Tobaldini E., Toschi-Dias E., Appratto de Souza L., Rabello Casali K., Vicenzi M., Sandrone G., et al. . (2019). Cardiac and peripheral autonomic responses to orthostatic stress during transcutaneous vagus nerve stimulation in healthy subjects. J. Clin. Med. 8:496. 10.3390/jcm8040496 PubMed DOI PMC
Tomagra G., Picollo F., Battiato A., Picconi B., De Marchis S., Pasquarelli A., et al. . (2019). Quantal release of dopamine and action potential firing detected in midbrain neurons by multifunctional diamond-based microarrays. Front. Neurosci. 13:288. 10.3389/fnins.2019.00288 PubMed DOI PMC
Tona K.-D., Revers H., Verkuil B., Nieuwenhuis S. (2020). Noradrenergic regulation of cognitive flexibility: no effects of stress, transcutaneous vagus nerve stimulation, and atomoxetine on task-switching in humans. J. Cogn. Neurosci. 32:1881–1895. 10.1162/jocn_a_01603 PubMed DOI
Totah N. K. B., Logothetis N. K., Eschenko O. (2019). Noradrenergic ensemble-based modulation of cognition over multiple timescales. Brain Res. 1709, 50–66. 10.1016/j.brainres.2018.12.031 PubMed DOI
Tran N., Asad Z., Elkholey K., Scherlag B. J., Po S. S., Stavrakis S. (2019). Autonomic neuromodulation acutely ameliorates left ventricular strain in humans. J. Cardiovasc. Transl. Res. 12, 221–230. 10.1007/s12265-018-9853-6 PubMed DOI PMC
Trujillo P., Petersen K. J., Cronin M. J., Lin Y.-C., Kang H., Donahue M. J., et al. . (2019). Quantitative magnetization transfer imaging of the human locus coeruleus. Neuroimage 200, 191–198. 10.1016/j.neuroimage.2019.06.049 PubMed DOI PMC
Tu Y., Fang J., Cao J., Wang Z., Park J., Jorgenson K., et al. . (2018). A distinct biomarker of continuous transcutaneous vagus nerve stimulation treatment in major depressive disorder. Brain Stimul. 11, 501–508. 10.1016/j.brs.2018.01.006 PubMed DOI PMC
Usichenko T., Hacker H., Lotze M. (2017a). Transcutaneous auricular vagal nerve stimulation (taVNS) might be a mechanism behind the analgesic effects of auricular acupuncture. Brain Stimul. 10, 1042–1044. 10.1016/j.brs.2017.07.013 PubMed DOI
Usichenko T., Laqua R., Leutzow B., Lotze M. (2017b). Preliminary findings of cerebral responses on transcutaneous vagal nerve stimulation on experimental heat pain. Brain Imaging Behav. 11, 30–37. 10.1007/s11682-015-9502-5 PubMed DOI
Uthman B. M., Wilder B. J., Penry J. K., Dean C., Ramsay R. E., Reid S. A., et al. . (1993). Treatment of epilepsy by stimulation of the vagus nerve. Neurology 43, 1338–1345. 10.1212/WNL.43.7.1338 PubMed DOI
Val-Laillet D., Biraben A., Randuineau G., Malbert C. H. (2010). Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs. Appetite 55, 245–252. 10.1016/j.appet.2010.06.008 PubMed DOI
Valsalva A. M. (1704). De Aura Humana Tractatus and Trajecti ad Rhenum Urecht. Utrecht:Trajecti ad Rhenum.
van Kempen J., Loughnane G. M., Newman D. P., Kelly S. P., Thiele A., O'Connell R. G., et al. . (2019). Behavioural and neural signatures of perceptual decision-making are modulated by pupil-linked arousal. ELife 8:e42541. 10.7554/eLife.42541 PubMed DOI PMC
Van Leusden J. W. R., Sellaro R., Colzato L. S. (2015). Transcutaneous vagal nerve stimulation (tVNS): a new neuromodulation tool in healthy humans? Front. Psychol. 6:102. 10.3389/fpsyg.2015.00102 PubMed DOI PMC
Vanneste S., Martin J., Rennaker R. L., Kilgard M. P. (2017). Pairing sound with vagus nerve stimulation modulates cortical synchrony and phase coherence in tinnitus: an exploratory retrospective study. Sci. Rep. 7:17345. 10.1038/s41598-017-17750-y PubMed DOI PMC
Vargas Luna J. L., Krenn M., Cortés J. A., Mayr W. (2013). Comparison of current and voltage control techniques for neuromuscular electrical stimulation in the anterior thigh. Biomed. Tech. 58:1–2. 10.1515/bmt-2013-4021 PubMed DOI
Vázquez-Oliver A., Brambilla-Pisoni C., Domingo-Gainza M., Maldonado R., Ivorra A., Ozaita A. (2020). Auricular transcutaneous vagus nerve stimulation improves memory persistence in naïve mice and in an intellectual disability mouse model. Brain Stimul. 13, 494–498. 10.1016/j.brs.2019.12.024 PubMed DOI
Ventura-Bort C., Wirkner J., Genheimer H., Wendt J., Hamm A. O., Weymar M. (2018). Effects of transcutaneous vagus nerve stimulation (tVNS) on the P300 and alpha-amylase level: a pilot study. Front. Hum. Neurosci. 12:202. 10.3389/fnhum.2018.00202 PubMed DOI PMC
Verkuil B., Burger A. M. (2019). Transcutaneous vagus nerve stimulation does not affect attention to fearful faces in high worriers. Behav. Res. Ther. 113, 25–31. 10.1016/j.brat.2018.12.009 PubMed DOI
Vieira A., Reis A. M., Matos L. C., Machado J., Moreira A. (2018). Does auriculotherapy have therapeutic effectiveness? an overview of systematic reviews. Complement. Ther. Clin. Pract. 33, 61–70. 10.1016/j.ctcp.2018.08.005 PubMed DOI
von Elm E., Altman D. G., Egger M., Pocock S. J., Gøtzsche P. C., Vandenbroucke J. P., et al. . (2008). The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. J. Clin. Epidemiol. 61, 344–349. 10.1016/j.jclinepi.2007.11.008 PubMed DOI
Wang D.-W., Yin Y.-M., Yao Y.-M. (2016). Vagal modulation of the inflammatory response in sepsis. Int. Rev. Immunol. 35, 415–433. 10.3109/08830185.2015.1127369 PubMed DOI
Wang Z., Zhou X., Sheng X., Yu L., Jiang H. (2015a). Unilateral low-level transcutaneous electrical vagus nerve stimulation: a novel noninvasive treatment for myocardial infarction. Int. J. Cardiol. 190, 9–10. 10.1016/j.ijcard.2015.04.087 PubMed DOI
Wang Z., Zhou X., Sheng X., Yu L., Jiang H. (2015b). Noninvasive vagal nerve stimulation for heart failure: was it practical or just a stunt? Int. J. Cardiol. 187, 637–638. 10.1016/j.ijcard.2015.03.430 PubMed DOI
Wang Z.engjian, Fang, J., Liu J., Rong P., Jorgenson K., Park J., Lang C., et al. . (2018). Frequency-dependent functional connectivity of the nucleus accumbens during continuous transcutaneous vagus nerve stimulation in major depressive disorder. J. Psychiatric Res. 102, 123–131. 10.1016/j.jpsychires.2017.12.018 PubMed DOI PMC
Warren C. M., Tona K. D., Ouwerkerk L., van Paridon J., Poletiek F., van Steenbergen H., et al. . (2019). The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential. Brain Stimul. 12, 635–642. 10.1016/j.brs.2018.12.224 PubMed DOI
Warren C. M., van den Brink R. L., Nieuwenhuis S., Bosch J. A. (2017). Norepinephrine transporter blocker atomoxetine increases salivary alpha amylase. Psychoneuroendocrinology 78, 233–236. 10.1016/j.psyneuen.2017.01.029 PubMed DOI
Weise D., Adamidis M., Pizzolato F., Rumpf J.-J., Fricke C., Classen J. (2015). Assessment of brainstem function with auricular branch of vagus nerve stimulation in Parkinson's disease. PLoS ONE 10:e0120786. 10.1371/journal.pone.0120786 PubMed DOI PMC
Woodbury D. M. Woodbury J. W . (1990), Effects of vagal stimulation on experimentally induced seizures in rats. Epilepsia 31, S7–S19. 10.1111/j.1528-1157.1990.tb05852.x PubMed DOI
Woods A. J., Antal A., Bikson M., Boggio P. S., Brunoni A. R., Celnik P., et al. . (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol. 127, 1031–1048. 10.1016/j.clinph.2015.11.012 PubMed DOI PMC
Wostyn S., Staljanssens W., De Taeye L., Strobbe G., Gadeyne S., Van Roost D., et al. . (2017). EEG derived brain activity reflects treatment response from vagus nerve stimulation in patients with epilepsy. Int. J. Neural Syst. 27:1650048. 10.1142/S0129065716500489 PubMed DOI
Xiong J., Xue F. S., Liu J. H., Xu Y. C., Liao X., Zhang Y. M., et al. . (2009). Transcutaneous vagus nerve stimulation may attenuate postoperative cognitive dysfunction in elderly patients. Med. Hypoth. 73, 938–941. 10.1016/j.mehy.2009.06.033 PubMed DOI
Yakunina N., Kim S. S., Nam E.-C. (2017). Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation 20, 290−300. 10.1111/ner.12541 PubMed DOI
Yakunina N., Kim S. S., Nam E.-C. (2018). BOLD fMRI effects of transcutaneous vagus nerve stimulation in patients with chronic tinnitus. PLoS ONE 13:e0207281. 10.1371/journal.pone.0207281 PubMed DOI PMC
Yang G., Xue F., Sun C., Liao X., Liu J. (2017). Vagal nerve stimulation: a potentially useful adjuvant to treatment of sepsis. J Anesth Perioper Med. (2017). 10.24015/JAPM.2017.0012 DOI
Yao G., Kang L., Li J., Long Y., Wei H., Ferreira C. A., et al. . (2018). Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 9:5349. 10.1038/s41467-018-07764-z PubMed DOI PMC
Yavich L., Jäkälä P., Tanila H. (2005). Noradrenaline overflow in mouse dentate gyrus following locus coeruleus and natural stimulation: real-time monitoring by in vivo voltammetry. J. Neurochem. 95, 641–650. 10.1111/j.1471-4159.2005.03390.x PubMed DOI
Ye R., Rua C., O'Callaghan C., Jones P. S., Hezemans F., Kaalund S. S., et al. . (2020). An in vivo probabilistic atlas of the human locus coeruleus at ultra-high field. BioRxiv [Preprint]. 932087. 10.1101/2020.02.03.932087 PubMed DOI PMC
Ylikoski J., Lehtimäki J., Pirvola U., Mäkitie A., Aarnisalo A., Hyvärinen P., et al. . (2017). Non-invasive vagus nerve stimulation reduces sympathetic preponderance in patients with tinnitus. Acta Oto Laryngol. 137, 426–431. 10.1080/00016489.2016.1269197 PubMed DOI
Yoo P. B., Liu H., Hincapie J. G., Ruble S. B., Hamann J. J., Grill W. M. (2016). Modulation of heart rate by temporally patterned vagus nerve stimulation in the anesthetized dog. Physiol. Rep. 4:e12689. 10.14814/phy2.12689 PubMed DOI PMC
Yu L., Huang B., Po S. S., Tan T., Wang M., Zhou L., et al. . (2017). Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction: a proof-of-concept study. JACC Cardiovasc. Interv. 10, 1511–1520. 10.1016/j.jcin.2017.04.036 PubMed DOI
Yuan H., Silberstein S. D. (2016a). Vagus nerve and vagus nerve stimulation, a comprehensive review: Part I. Headache 56, 71–78. 10.1111/head.12647 PubMed DOI
Yuan H., Silberstein S. D. (2016b). Vagus nerve and vagus nerve stimulation, a comprehensive review: Part II. Headache 56, 259–266. 10.1111/head.12650 PubMed DOI
Zabara J. (1985). Time course of seizure control to brief, repetitive stimuli. Epilepsia 28:604.
Zabara J. (1992). Inhibition of experimental seizures in canines by repetitive vagal stimulation. Epilepsia 33, 1005–1012. 10.1111/j.1528-1157.1992.tb01751.x PubMed DOI
Zhang S., Song Y., Jia J., Xiao G., Yang L., Sun M., et al. . (2016). “An implantable microelectrode array for dopamine and electrophysiological recordings in response to L-dopa therapy for Parkinson's disease,” in Conference Proceedings: …Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference (Orlando: ), 2016, 1922–1925. 10.1109/EMBC.2016.7591098 PubMed DOI
Zhang S., Song Y., Wang M., Xiao G., Gao F., Li Z., et al. . (2018). Real-time simultaneous recording of electrophysiological activities and dopamine overflow in the deep brain nuclei of a non-human primate with Parkinson's disease using nano-based microelectrode arrays. Microsyst. Nanoeng. 4, 1–9. 10.1038/micronano.2017.70 PubMed DOI
Zhang Y., Liu J., Li H., Yan Z., Liu X., Cao J., et al. . (2019). Transcutaneous auricular vagus nerve stimulation at 1 Hz modulates locus coeruleus activity and resting state functional connectivity in patients with migraine: an fMRI study. Neuroimage Clin. 24:101971. 10.1016/j.nicl.2019.101971 PubMed DOI PMC
Ziemann U., Tam A., Bütefisch C., Cohen L. G. (2002). Dual modulating effects of amphetamine on neuronal excitability and stimulation-induced plasticity in human motor cortex. Clin. Neurophysiol. 113, 1308–1315. 10.1016/S1388-2457(02)00171-2 PubMed DOI