Influence of a 2-week transcutaneous auricular vagus nerve stimulation on memory: findings from a randomized placebo controlled trial in non-clinical adults
Language English Country Germany Media print-electronic
Document type Journal Article, Randomized Controlled Trial
Grant support
GACR17-22346Y
Grantová Agentura České Republiky
SGS07/LF/2023
Student Grant Award
CZ.02.1.01/0.0/0.0/16_019/0000798
Operational program Research, development and education
PubMed
39039354
PubMed Central
PMC11732881
DOI
10.1007/s10286-024-01053-0
PII: 10.1007/s10286-024-01053-0
Knihovny.cz E-resources
- Keywords
- Immediate recall, Memory, Memory modulation, Transcutaneous vagus nerve stimulation, Vagus nerve,
- MeSH
- Adult MeSH
- Single-Blind Method MeSH
- Middle Aged MeSH
- Humans MeSH
- Memory * physiology MeSH
- Transcutaneous Electric Nerve Stimulation * methods MeSH
- Vagus Nerve Stimulation * methods MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH
PURPOSE: Memory plays an essential role in daily life and is one of the first functions to deteriorate in cognitive impairment and dementia. Transcutaneous vagus nerve stimulation (tVNS) is a promising therapeutic method; however, its ability to enhance memory is underexplored, especially considering long-term stimulation. We aimed to investigate the effect of a 2-week course of auricular tVNS (taVNS) on memory in a non-clinical population. METHODS: This single-blind randomized placebo-wait-list controlled trial recruited 76 participants (30 men; mean age 48.32 years) and randomized them into four groups: early active/sham taVNS and late active/sham taVNS. Participation in the study lasted 4 weeks; early groups underwent 2 weeks intervention immediately following the first study site visit (days 0-13) and late groups 2 weeks after the first study site visit (days 14-27). Active and sham taVNS included 2 weeks of daily 4-h neurostimulation at the tragus or earlobe, respectively. To assess memory, we used the Rey Auditory Verbal Learning Test. RESULTS: Two weeks of active taVNS, but not sham taVNS, improved immediate recall and short-term memory score both in early and late groups. Furthermore, the improvements persisted over subsequent follow-up in early active taVNS. Importantly, the effect of active taVNS was superior to sham for immediate recall in both early and late groups. There were no statistical differences in delayed recall. CONCLUSION: Our findings suggest that taVNS has potential to improve memory, particularly immediate recall, and may be an effective method in preventing memory loss and mitigating cognitive aging.
See more in PubMed
Matthews BR (2015) Memory dysfunction. Behav Neurol Neuropsychiatry 21(3):613–26. 10.1212/01.CON.0000466656.59413.29 PubMed PMC
Saint Martin M, Sforza E, Thomas-Anterion C, Barthélémy JC, Roche F (2013) Baroreflex sensitivity, vascular risk factors, and cognitive function in a healthy elderly population: the PROOF cohort. J Am Geriatr Soc 61(12):2096–2102. 10.1111/jgs.12548 PubMed
Allan LM, Ballard CG, Allen J, Murray A, Davidson AW, McKeith IG, Kenny RA (2007) Autonomic dysfunction in dementia. J Neurol Neurosurg Psychiatry 78(7):671–677. 10.1136/jnnp.2006.102343 PubMed PMC
Cheng Y-C, Huang Y-C, Huang W-L (2022) Heart rate variability in patients with dementia or neurocognitive disorders: a systematic review and meta-analysis. Aust N Z J Psychiatry 56(1):16–27. 10.1177/0004867420976853 PubMed
Liu KY, Elliott T, Knowles M, Howard R (2022) Heart rate variability in relation to cognition and behavior in neurodegenerative diseases: a systematic review and meta-analysis. Ageing Res Rev 73:101539. 10.1016/j.arr.2021.101539 PubMed PMC
Dolphin H, Dukelow T, Finucane C, Commins S, McElwaine P, Kennelly SP (2022) “The wandering nerve linking heart and mind”—the complementary role of transcutaneous vagus nerve stimulation in modulating neuro-cardiovascular and cognitive performance. Front Neurosci. 10.3389/fnins.2022.897303 PubMed PMC
Frewen J, Finucane C, Savva GM, Boyle G, Coen RF, Kenny RA (2013) Cognitive function is associated with impaired heart rate variability in ageing adults: the Irish longitudinal study on ageing wave one results. Clin Auton Res 23(6):313–323. 10.1007/s10286-013-0214-x PubMed
Kaniusas E, Kampusch S, Tittgemeyer M, Panetsos F, Gines RF, Papa M, Kiss A, Podesser B, Cassara AM, Tanghe E, Samoudi AM, Tarnaud T, Joseph W, Marozas V, Lukosevicius A, Ištuk N, Lechner S, Klonowski W, Varoneckas G, Šarolić A (2019) Current directions in the auricular vagus nerve stimulation II—an engineering perspective. Front Neurosci 13(July):1–16. 10.3389/fnins.2019.00772 PubMed PMC
Olsen LK, Solis E, McIntire LK, Hatcher-Solis CN (2023) Vagus nerve stimulation: mechanisms and factors involved in memory enhancement. Front Human Neurosci. 10.3389/fnhum.2023.1152064 PubMed PMC
Yoo HJ, Nashiro K, Dutt S, Min J, Cho C, Thayer JF, Lehrer P, Chang C, Mather M (2023) Daily biofeedback to modulate heart rate oscillations affects structural volume in hippocampal subregions targeted by the locus coeruleus in older adults but not younger adults. MedRxiv. 10.1101/2023.03.02.23286715 PubMed PMC
Konjusha A, Yu S, Mückschel M, Colzato L, Ziemssen T, Beste C (2023) Auricular transcutaneous vagus nerve stimulation specifically enhances working memory gate closing mechanism: a system neurophysiological study. J Neurosci 43(25):4709–4724. 10.1523/JNEUROSCI.2004-22.2023 PubMed PMC
Sjögren MJC, Hellström PTO, Jonsson MAG, Runnerstam M, Silander HC-S, Ben-Menachem E (2002) Cognition-enhancing effect of vagus nerve stimulation in patients with Alzheimer’s disease: a pilot study. J Clin Psychiatry 63(11):972–980. 10.4088/jcp.v63n1103 PubMed
Merrill CA, Jonsson MAG, Minthon L, Ejnell H, Silander HC, Blennow K, Karlsson M, Nordlund A, Rolstad S, Warkentin S, Ben-Menachem E, Sjögren MJC (2006) Vagus nerve stimulation in patients with Alzheimer’s disease. J Clin Psychiatry 67(08):1171–1178. 10.4088/JCP.v67n0801 PubMed
Desbeaumes Jodoin V, Richer F, Miron JP, Fournier-Gosselin MP, Lespérance P (2018) Long-term sustained cognitive benefits of vagus nerve stimulation in refractory depression. J ECT 34(4):283–290. 10.1097/YCT.0000000000000502 PubMed
Broncel A, Bliźniewska K, Talarowska M (2017) How does vagus nerve stimulation (VNS) affect cognition? A review. Med Sci Technol 58:67–72. 10.12659/mst.904180
Fahy BG (2010) Intraoperative and perioperative complications with a vagus nerve stimulation device. J Clin Anesth 22(3):213–222. 10.1016/j.jclinane.2009.10.002 PubMed
Redgrave J, Day D, Leung H, Laud PJ, Ali A, Lindert R, Majid A (2018) Safety and tolerability of transcutaneous vagus nerve stimulation in humans; a systematic review. Brain Stimul 11(6):1225–1238. 10.1016/j.brs.2018.08.010 PubMed
Broncel A, Bocian R, Kłos-Wojtczak P, Kulbat-Warycha K, Konopacki J (2020) Vagal nerve stimulation as a promising tool in the improvement of cognitive disorders. Brain Res Bull 155(2019):37–47. 10.1016/j.brainresbull.2019.11.011 PubMed
Murphy AJ, O’Neal AG, Cohen RA, Lamb DG, Porges EC, Bottari SA, Ho B, Trifilio E, DeKosky ST, Heilman KM, Williamson JB (2023) The effects of transcutaneous vagus nerve stimulation on functional connectivity within semantic and hippocampal networks in mild cognitive impairment. Neurotherapeutics 20(2):419–430. 10.1007/s13311-022-01318-4 PubMed PMC
Zhao R, Chang MY, Cheng C, Tian QQ, Yang XJ, Du MY, Cui YP, He ZY, Wang FM, Kong Y, Deng H, Lu LM, Tang CZ, Xu NG, Sun JB, Qin W (2023) Transcutaneous auricular vagus stimulation (taVNS) improves human working memory performance under sleep deprivation stress. Behav Brain Res. 10.1016/j.bbr.2022.114247 PubMed
Sun JB, Cheng C, Tian QQ, Yuan H, Yang XJ, Deng H, Guo XY, Cui YP, Zhang MK, Yin ZX, Wang C, Qin W (2021) Transcutaneous auricular vagus nerve stimulation improves spatial working memory in healthy young adults. Front Neurosci. 10.3389/fnins.2021.790793 PubMed PMC
Tian QQ, Cheng C, Liu PH, Yin ZX, Zhang MK, Cui YP, Zhao R, Deng H, Lu LM, Tang CZ, Xu NG, Yang XJ, Sun JB, Qin W (2023) Combined effect of transcutaneous auricular vagus nerve stimulation and 0.1 Hz slow-paced breathing on working memory. Front Neurosci 17(March):1–11. 10.3389/fnins.2023.1133964 PubMed PMC
Giraudier M, Ventura-Bort C, Weymar M (2020) Transcutaneous vagus nerve stimulation (tVNS) improves high-confidence recognition memory but not emotional word processing. Front Psychol 11(July):1–13. 10.3389/fpsyg.2020.01276 PubMed PMC
Mertens A, Naert L, Miatton M, Poppa T, Carrette E, Gadeyne S, Raedt R, Boon P, Vonck K (2020) Transcutaneous vagus nerve stimulation does not affect verbal memory performance in healthy volunteers. Front Psychol. 10.3389/fpsyg.2020.00551 PubMed PMC
Jacobs HIL, Riphagen JM, Razat CM, Wiese S, Sack AT (2015) Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiol Aging 36(5):1860–1867. 10.1016/j.neurobiolaging.2015.02.023 PubMed
Sellaro R, van Leusden JWR, Tona K-D, Verkuil B, Nieuwenhuis S, Colzato LS (2015) Transcutaneous vagus nerve stimulation enhances post-error slowing. J Cogn Neurosci 27(11):2126–2132. 10.1162/jocn_a_00851 PubMed
Jongkees BJ, Immink MA, Finisguerra A, Colzato LS (2018) Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during sequential action. Front Psychol. 10.3389/fpsyg.2018.01159 PubMed PMC
Steenbergen L, Sellaro R, Stock AK, Verkuil B, Beste C, Colzato LS (2015) Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes. Eur Neuropsychopharmacol 25(6):773–778. 10.1016/j.euroneuro.2015.03.015 PubMed
Colzato LS, Ritter SM, Steenbergen L (2018) Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking. Neuropsychologia 111(2017):72–76. 10.1016/j.neuropsychologia.2018.01.003 PubMed
Ridgewell C, Heaton KJ, Hildebrandt A, Couse J, Leeder T, Neumeier WH (2021) The effects of transcutaneous auricular vagal nerve stimulation on cognition in healthy individuals: a meta-analysis. Neuropsychology 35(4):352–365. 10.1037/neu0000735 PubMed
Gidron Y, Deschepper R, De Couck M, Thayer J, Velkeniers B (2018) The vagus nerve can predict and possibly modulate non-communicable chronic diseases: introducing a neuroimmunological paradigm to public health. J Clin Med 7(10):371. 10.3390/jcm7100371 PubMed PMC
Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG (2010) CONSORT 2010 Explanation and Elaboration: updated guidelines for reporting parallel group randomised trials. BMJ 340:c869–c869. 10.1136/bmj.c869 PubMed PMC
Bretherton B, Atkinson L, Murray A, Clancy J, Deuchars S, Deuchars J (2019) Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation. Aging. 10.18632/aging.102074 PubMed PMC
Radloff LS (1977) The CES-D Scale. Appl Psychol Meas 1(3):385–401. 10.1177/014662167700100306
Jackowska M, Koenig J, Vasendova V, Jandackova VK (2022) A two-week course of transcutaneous vagal nerve stimulation improves global sleep: findings from a randomised trial in community-dwelling adults. Auto Neurosci. 10.1016/j.autneu.2022.102972 PubMed
Preiss M, Laing H, Rodriguez Manchola RV (2002) Neuropsychologická baterie Psychiatrického centra Praha: klinické vyšetření základních kognitivních funkcí. Psychiatrické centrum
Paštrnák M, Sulcová K, Dorazilová A, Rodriguez M (2018) Alternative forms parallel to the Czech versions of rey auditory verbal learning test, complex figure test and verbal fluency. Ces Slov Neurol Neurochir 81(1):73–80. 10.14735/amcsnn201873
Peuker ET, Filler TJ (2002) The nerve supply of the human auricle. Clin Anat 15(1):35–37. 10.1002/ca.1089 PubMed
Badran BW, Dowdle LT, Mithoefer OJ, LaBate NT, Coatsworth J, Brown JC, DeVries WH, Austelle CW, McTeague LM, George MS (2018) Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review. Brain Stimul 11(3):492–500. 10.1016/j.brs.2017.12.009 PubMed PMC
Burger AM, Verkuil B, Van Diest I, Van der Does W, Thayer JF, Brosschot JF (2016) The effects of transcutaneous vagus nerve stimulation on conditioned fear extinction in humans. Neurobiol Learn Mem 132:49–56. 10.1016/j.nlm.2016.05.007 PubMed
Parasym™. (n.d.). Parasym™ tVNS Device: Instructions For Use. Parasym Ltd, 4th Floor, 18 St. Cross Street, London, EC1N 8UN.
Peng X, Baker-Vogel B, Sarhan M, Short EB, Zhu W, Liu H, Kautz S, Badran BW (2023) Left or right ear? A neuroimaging study using combined taVNS/fMRI to understand the interaction between ear stimulation target and lesion location in chronic stroke. Brain Stimul 16(4):1144–1153. 10.1016/j.brs.2023.07.050 PubMed
Yap JYY, Keatch C, Lambert E, Woods W, Stoddart PR, Kameneva T (2020) Critical review of transcutaneous vagus nerve stimulation: challenges for translation to clinical practice. Front Neurosci. 10.3389/fnins.2020.00284 PubMed PMC
Chen M, Yu L, Ouyang F, Liu Q, Wang Z, Wang S, Zhou L, Jiang H, Zhou S (2015) The right side or left side of noninvasive transcutaneous vagus nerve stimulation: based on conventional wisdom or scientific evidence? Int J Cardiol 187:44–45. 10.1016/j.ijcard.2015.03.351 PubMed
Chen Y, Yang H, Wang F, Lu X, Hu L (2023) Modulatory effects of transcutaneous auricular vagus nerve stimulation (taVNS) on attentional processes. Gen Psych. 10.1136/gpsych-2023-101176 PubMed PMC
Urbin MA, Lafe CW, Simpson TW, Wittenberg GF, Chandrasekaran B, Weber DJ (2021) Electrical stimulation of the external ear acutely activates noradrenergic mechanisms in humans. Brain Stimul 14(4):990–1001. 10.1016/j.brs.2021.06.002 PubMed
Yakunina N, Kim SS, Nam EC (2017) Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation 20(3):290–300. 10.1111/ner.12541 PubMed
Groves DA, Brown VJ (2005) Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev 29(3):493–500. 10.1016/j.neubiorev.2005.01.004 PubMed
Thompson SL, O’Leary GH, Austelle CW, Gruber E, Kahn AT, Manett AJ, Short B, Badran BW (2021) A review of parameter settings for invasive and non-invasive vagus nerve stimulation (VNS) applied in neurological and psychiatric disorders. Front Neurosci. 10.3389/fnins.2021.709436 PubMed PMC
Sant’ Anna FM, Resende RCL, Sant’ Anna LB, Couceiro SLM, Pinto RBS, Sant’ Anna MB, Chao LW, Szeles JC, Kaniusas E (2023) Auricular vagus nerve stimulation: a new option to treat inflammation in COVID-19? Rev Assoc Med Bras. 10.1590/1806-9282.20230345 PubMed PMC
Kaniusas E, Kampusch S, Tittgemeyer M, Panetsos F, Gines RF, Papa M, Kiss A, Podesser B, Cassara AM, Tanghe E, Samoudi AM, Tarnaud T, Joseph W, Marozas V, Lukosevicius A, Ištuk N, Šarolić A, Lechner S, Klonowski W, Széles JC (2019) Current directions in the auricular vagus nerve stimulation I—a physiological perspective. Front Neurosci. 10.3389/fnins.2019.00854 PubMed PMC
Farmer AD, Strzelczyk A, Finisguerra A, Gourine AV, Gharabaghi A, Hasan A, Burger AM, Jaramillo AM, Mertens A, Majid A, Verkuil B, Badran BW, Ventura-Bort C, Gaul C, Beste C, Warren CM, Quintana DS, Hämmerer D, Freri E, Koenig J (2021) International consensus based review and recommendations for minimum reporting standards in research on transcutaneous vagus nerve stimulation (Version 2020). Front Human Neurosci. 10.3389/fnhum.2020.568051 PubMed PMC
Kamboj SK, Peniket M, Simeonov L (2023) A bioelectronic route to compassion: rationale and study protocol for combining transcutaneous vagus nerve stimulation (tVNS) with compassionate mental imagery. PLoS ONE. 10.1371/journal.pone.0282861 PubMed PMC
Hays WL (1978) Statistics for the social sciences. New York: Holt Rinehart and Winston
Schad DJ, Vasishth S, Hohenstein S, Kliegl R (2020) How to capitalize on a priori contrasts in linear (mixed) models: a tutorial. J Mem Lang. 10.1016/j.jml.2019.104038
Assenza G, Campana C, Colicchio G, Tombini M, Assenza F, Di Pino G, Di Lazzaro V (2017) Transcutaneous and invasive vagal nerve stimulations engage the same neural pathways: in-vivo human evidence. Brain Stimul 10(4):853–854. 10.1016/j.brs.2017.03.005 PubMed
Clark KB, Naritoku DK, Smith DC, Browning RA, Jensen RA (1999) Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat Neurosci 2(1):94–98. 10.1038/4600 PubMed
Ghacibeh GA, Shenker JI, Uthman BM, Heilman KM (2006) The influence of vagus nerve stimulation on memory. Cog Behav Neurol. 10.1097/01.wnn.0000213908.34278.7d PubMed
McGlone J, Valdivia I, Penner M, Williams J, Sadler RM, Clarke DB (2008) Quality of life and memory after vagus nerve stimulator implantation for epilepsy. Can J Neurol Sci 35(3):287–296. 10.1017/S0317167100008854 PubMed
Helmstaedter C, Hoppe C, Elger CE (2001) Memory alterations during acute high-intensity vagus nerve stimulation. Epilepsy Res 47(1–2):37–42. 10.1016/S0920-1211(01)00291-1 PubMed
Sellaro R, de Gelder B, Finisguerra A, Colzato LS (2018) Transcutaneous vagus nerve stimulation (tVNS) enhances recognition of emotions in faces but not bodies. Cortex 99:213–223. 10.1016/j.cortex.2017.11.007 PubMed
Giraudier M, Ventura-Bort C, Weymar M (2020) Transcutaneous vagus nerve stimulation (tVNS) improves high-confidence recognition memory but not emotional word processing. Front Psychol. 10.3389/fpsyg.2020.01276 PubMed PMC
Kaan E, De Aguiar I, Clarke C, Lamb DG, Williamson JB, Porges EC (2021) A transcutaneous vagus nerve stimulation study on verbal order memory. J Neurolinguistics 59:100990. 10.1016/j.jneuroling.2021.100990
Naparstek S, Yeh AK, Mills-Finnerty C (2023) Transcutaneous vagus nerve stimulation (tVNS) applications in cognitive aging: a review and commentary. Front Aging Neurosci. 10.3389/fnagi.2023.1145207 PubMed PMC
Aniwattanapong D, List JJ, Ramakrishnan N, Bhatti GS, Jorge R (2022) Effect of vagus nerve stimulation on attention and working memory in neuropsychiatric disorders: a systematic review. Neuromodulation 25(3):343–355. 10.1016/j.neurom.2021.11.009 PubMed
Roosevelt RW, Smith DC, Clough RW, Jensen RA, Browning RA (2006) Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res 1119(1):124–132. 10.1016/j.brainres.2006.08.048 PubMed PMC
Zuo Y, Smith DC, Jensen RA (2007) Vagus nerve stimulation potentiates hippocampal LTP in freely-moving rats. Physiol Behav 90(4):583–589. 10.1016/j.physbeh.2006.11.009 PubMed PMC
Colzato L, Beste C (2020) A literature review on the neurophysiological underpinnings and cognitive effects of transcutaneous vagus nerve stimulation: challenges and future directions. J Neurophysiol 123(5):1739–1755. 10.1152/jn.00057.2020 PubMed
Trifilio E, Shortell D, Olshan S, O’Neal A, Coyne J, Lamb D, Porges E, Williamson J (2023) Impact of transcutaneous vagus nerve stimulation on healthy cognitive and brain aging. Front Neurosci 17:1–12. 10.3389/fnins.2023.1184051 PubMed PMC
Clancy JA, Mary DA, Witte KK, Greenwood JP, Deuchars SA, Deuchars J (2014) Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul 7(6):871–877. 10.1016/j.brs.2014.07.031 PubMed
Osińska A, Rynkiewicz A, Binder M, Komendziński T, Borowicz A, Leszczyński A (2022) Non-invasive vagus nerve stimulation in treatment of disorders of consciousness—longitudinal case study. Front Neurosci. 10.3389/fnins.2022.834507 PubMed PMC
Uttl B (2005) Measurement of individual differences: lessons from memory assessment in research and clinical practice. Psychol Sci 16(6):460–467. 10.1111/j.0956-7976.2005.01557.x PubMed
Hilz MJ (2022) Transcutaneous vagus nerve stimulation—a brief introduction and overview. Auto Neurosci. 10.1016/j.autneu.2022.103038 PubMed
Deuchars SA, Lall VK, Clancy J, Mahadi M, Murray A, Peers L, Deuchars J (2018) Mechanisms underpinning sympathetic nervous activity and its modulation using transcutaneous vagus nerve stimulation. Exp Physiol 103(3):326–331. 10.1113/EP086433 PubMed PMC
Rangon CM (2018) Reconsidering sham in transcutaneous vagus nerve stimulation studies. Clin Neurophysiol 129(11):2501–2502. 10.1016/j.clinph.2018.08.027 PubMed
Gianlorenco ACL, de Melo PS, Marduy A, Kim AY, Kim CK, Choi H, Song JJ, Fregni F (2022) Electroencephalographic patterns in taVNS: a systematic review. Biomedicines. 10.3390/biomedicines10092208 PubMed PMC
Butt MF, Albusoda A, Farmer AD, Aziz Q (2020) The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat 236(4):588–611. 10.1111/joa.13122 PubMed PMC
Wolf V, Kühnel A, Teckentrup V, Koenig J, Kroemer NB (2021) Does transcutaneous auricular vagus nerve stimulation affect vagally mediated heart rate variability? A living and interactive Bayesian meta-analysis. Psychophysiology 58(11):1–16. 10.1111/psyp.13933 PubMed
Midlife heart rate variability and cognitive decline: A large longitudinal cohort study