Application of a Method for Measuring the Grindability of Fine-Grained Materials by High-Speed Milling
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-00676S
Czech Science Foundation
FAST-J-21-7309
Internal Grant Agency of Brno University of Technology
PubMed
36431568
PubMed Central
PMC9695657
DOI
10.3390/ma15228085
PII: ma15228085
Knihovny.cz E-zdroje
- Klíčová slova
- grindability, grindability index, high-speed milling,
- Publikační typ
- časopisecké články MeSH
This article deals with the development of an alternative method for determining the grindability index of fine-grained materials. This method is inspired by the commercially used VTI method (also known as RTI after the Russian Thermal Energy Institute), which was widely used in Central and Eastern Europe in coal grinding. The disadvantage of the VTI method is that it uses a specific grinding device that otherwise has no other use and nowadays is no longer commonly available. Through the new method, high-energy grinding was performed using a commercially available planetary mill on silicate materials such as limestone, feldspar, corundum, and quartz. The effectiveness of the method was verified on clinker as a representative of widely used materials. The deviation between the grindability index calculated by the origin VTI method and the new developed method was on average approximately 8%; in the case of clinker grinding, it was only 3%. The results showed that the VTI method could be replaced by a new method that uses a modern available planetary mill and laser granulometry to determine the grindability index. The result is a new classification of materials according to their grindability indexes, which is based on the original VTI method.
Zobrazit více v PubMed
Schönert K. Advances in comminution fundamentals and impacts on technology. Aufbereitungstechnik. 1991;32:487–494.
Park J., Kim K. Use of drilling performance to improve rock-breakage efficiencies: A part of mine-to mill optimization studies in a hard-rock mine. Int. J. Min. Sci. Technol. 2020;30:179–188. doi: 10.1016/j.ijmst.2019.12.021. DOI
Austin L.G., Kimple R., Luckie P.T. Process Engineering of Size Reduction, Ball Milling. American Institute of Mining, Metallurgical and Petroleum Engineers; Englewood, CO, USA: 1984. pp. 409–436.
Teke E., Yekeler M., Ulusoy U., Canbazoglu M. Kinetics of dry grinding of industrial minerals: Calcite and barite. Int. J. Miner. Process. 2002;67:29–42. doi: 10.1016/S0301-7516(02)00006-6. DOI
Chen B.C. Grinding Principle. Metallurgical Industry Press; Beijing, China: 1989.
Zhang X., Qin Y., Jin J., Li Y., Gao P. High-efficiency and energy-conservation grinding technology using a special ceramic-medium stirred mill: A pilot-scale study. Powder Technol. 2022;396:354–365. doi: 10.1016/j.powtec.2021.10.056. DOI
Deniz V. Relationships between Bond’s grindability (Gbg) and breakage parameters of grinding kinetic on limestone. Powder Technol. 2004;139:208–213. doi: 10.1016/j.powtec.2003.11.006. DOI
Macháčková A., Krátká L., Petrmichl R., Kunčická L., Kocich R. Affecting Structure Characteristics of Rotary Swaged Tungsten Heavy Alloy Via Variable. Materials. 2019;12:4200. doi: 10.3390/ma12244200. PubMed DOI PMC
Tousi S.S.R., Rad R.Y., Salahi E., Mobasherpour I., Razavi M. Production of Al–20 wt.% Al2O3 composite powder using high energy milling. Powder Technol. 2009;192:346–351. doi: 10.1016/j.powtec.2009.01.016. DOI
Rojac T., Kosec M., Malič B., Holc J. Mechanochemical synthesis of NaNbO3. Mater. Res. Bull. 2005;40:341–345. doi: 10.1016/j.materresbull.2004.10.018. DOI
Hint J.A. The basic problems of mechanical activation; Proceedings of the Reports 5th Symposium on Mechanochemistry and Mechanics of Hard Materials; Tallin, Estonia. 1977. pp. 14–32.
Takacs L. The historical development of mechanochemistry. Chem. Soc. Rev. 2013;42:7649–7659. doi: 10.1039/c2cs35442j. PubMed DOI
Baláž P., Achimovičová M., Baláž M., Billik P., Cherkezova Zheleva Z., Criado J.M., Delogu F., Dutková E., Gaffet E., Gotor F.M., et al. Hallmarks of mechanochemistry: From nanoparticles to technology. Chem. Soc. Rev. 2013;18:7571–7637. doi: 10.1039/c3cs35468g. PubMed DOI
Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9. DOI
Sepelák V., Duvel A., Wilkening M., Becker K.D., Heitjans P. Mechanochemical reactions and syntheses of oxides. Chem. Soc. Rev. 2013;42:7571–7637. doi: 10.1039/c2cs35462d. PubMed DOI
Deniz V. Comparisons of dry grinding kinetics of lignite, bituminous coal and petroleum coke. Energy Sources Part A. 2013;35:913–920. doi: 10.1080/15567036.2010.514591. DOI
Deniz V. The effects on the grinding parameters of chemical, morphological and mineralogical properties of three different calcites in a Hardgrove mill. Miner. Eng. 2022;176:107348. doi: 10.1016/j.mineng.2021.107348. DOI
Higishitany M., Masuda H., Yoshida H. Powder Technology Handbook. 3rd ed. CRC Press; Boca Raton, FL, USA: 2006. p. 920.
Mukherjee S. Applied Mineralogy: Applications in Industry and Environment. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2012. p. 562.
Inasaki I. Grinding of hard and brittle materials. CIRP Ann. Manuf. Technol. 1987;2:463–471. doi: 10.1016/S0007-8506(07)60748-3. DOI
Baláž P. Mechanochemistry in Nanoscience and Minerals Engineering. Springer; New York, NY, USA: 2008.
Musci G. Fast test method for the determination of the grindability of the fine materials. Chem. Eng. Res. Des. 2008;4:395–400. doi: 10.1016/j.cherd.2007.10.015. DOI
Gao Z., Hu Y., Sun W. Mineral cleavage nature and surface energi: Anisotropic surface broken bonds consideration. Trensaction Nonferrous Met. Soc. China. 2014;24:2930–2937. doi: 10.1016/S1003-6326(14)63428-2. DOI
Kick F. Contributions to the knowledge of the mechanics of brittle materials. Dinglers Polytech. J. 1883;247:1–5.
Kic F. Das Gesetz der Proportionalen Widerstände und Seine Anwendun. Verlag von Arthur Felix; Leipzig, Germany: 1885.
Kick F. The law of proportional resistances and its application to pressure in sand and explosions. Dinglers Polytech. J. 1883;250:141–145.
Rittinger P.R. Lehrbuch der Aufbereitungskunde in Ihrer Neuesten Entwicklung und Ausbildung. Ernst und Korn; Berlin, Germany: 1867.
Hukki R.T. Proposal for a solomonic settlement between the theories of von Rittinger, Kick and Bond. Trans. AIME. 1961;220:403–408.
Zawada J. Introduction to the Mechanics of Crushing Processes. Publishing and Printing House of the Institute for Sustainable Technologies; Radom, Poland: 1998.
Bond F.C. The third theory of comminution. AIME Trans. 1952;193:484–494.
Bond F.C. Confirmation of the third theory. AIME Trans. 1960;217:139–153.
Bond F.C. Crushing and Grinding Calculations. Allis-Chalmers Publications; Milwaukee, WI, USA: 1962.
Charles R.J. Energy-size reduction relationships in comminution. Min. Eng. 1957;9:80–88.
Charles R.J. High velocity impact in comminution. Min. Eng. 1956;8:1028–1032.
Charles R.J., Bruyn P.L. Energy transfer by impact. Trans. AIME. 1956;205:48–53.
Bond F.C. Crushing and grinding calculations Part I. Br. Chem. Eng. 1961;6:378–385.
Deniz V., Onur T. Investigation of the breakage kinetic of pumice samples as dependent on powder filling in a ball mill. Int. J. Miner. Proicess. 2002;67:71–78. doi: 10.1016/S0301-7516(02)00041-8. DOI
Urbaniak D., Wyleciał T. Mechanical Activation in Energy Processes. Chem. Process Eng. 2010;31:647–659.
Prasher C.L. Crushing and Grinding Process Handbook. Wiley & Sons; Hoboken, NJ, USA: 1987.
Osorio A.M. A Study of the Effect of Medium Viscosity on Breakage Parameters for Wet Grinding. Symmetry. 2019;11:1202. doi: 10.3390/sym11101202. DOI
Neikov O.D. Mechanical Crushing and Grinding. Elsevier; Amsterdam, The Netherlands: 2019. pp. 65–90. Chapter 2.
Cayirli S. Analysis of grinding aid performance effects on dry fine milling of calcite. Adv. Powder Technol. 2022;3:103446. doi: 10.1016/j.apt.2022.103446. DOI
Prziwara P., Hamilton L.D., Breitung-Faes S., Kwade A. Impact of grinding aids and process parameters on dry stirred media milling. Powder Technol. 2018;335:114–123. doi: 10.1016/j.powtec.2018.05.021. DOI
Cheary W., Robert A.C. A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Crystallogr. 1992;25:109–112. doi: 10.1107/S0021889891010804. DOI