Durability of Wood-Cement Composites with Modified Composition by Limestone and Stabilised Spruce Chips
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-06991S
Czech Science Foundation
FAST/FCH-J-23-8178
Brno University of Technology
PubMed
39769898
PubMed Central
PMC11677831
DOI
10.3390/ma17246300
PII: ma17246300
Knihovny.cz E-zdroje
- Klíčová slova
- by-product, cuttings, limestone, long-term durability, mechanical properties, microstructure, particleboard, secondary spruce chips, stabilisation, wood–cement composite,
- Publikační typ
- časopisecké články MeSH
Limestone (LS) and stabilised secondary spruce chips (SCs) utilisation in wood-cement composites is still an unexplored area. Therefore, the main objective of the research presented here is the assessment of the long-term behaviour of cement-bonded particleboards (CBPs) modified by LS and SCs. Cement (CE) was replaced by 10% of LS, and spruce chips by 7% of SCs. The test specimens were stored in a laboratory and exterior environment (Middle Europe) for up to 2 years. The density, strength, and modulus of elasticity were evaluated after 28 days, and then in 6-month periods. The hygroscopicity was analysed separately. The mineralogical composition and microstructure were analysed due to possible LS participation during hydration. SC synergic behaviour in CBPs was also studied. After 2 years, the microstructure of the CBP was more compact, and denser. Strong carbonatation contributes to the improvement of CBP properties. The products of carbonatation were present in both the matrix and wood chips. The hydration of the matrix was almost finished. LS has a positive effect on the matrix microstructure development. LS acts both as an active component participating in the formation of the cement matrix structure and as an inert microfiller, synergic with hydration products. SCs have a positive effect on the hygroscopic behaviour of CBPs and slightly negative effect on the tensile strength.
Zobrazit více v PubMed
Melichar T., Bydzovsky J., Dvorak R., Topolar L., Keprdova S. The Behavior of Cement-Bonded Particleboard with Modified Composition under Static Load Stress. Materials. 2021;14:6788. doi: 10.3390/ma14226788. PubMed DOI PMC
Melichar T., Bydzovsky J., Dufka A. Long-term durability of cement-bonded particleboards with modified composition by waste dust. Waste Forum. 2021;2021:250–261.
Sharma R.L., Pandey S.P. Influence of mineral additives on the hydration characteristics of ordinary Portland cement. Cem. Concr. Res. 1999;29:1525–1529. doi: 10.1016/S0008-8846(99)00104-0. DOI
Rahhal V., Talero R. Early hydration of portland cement with crystalline mineral additions. Cem. Concr. Res. 2005;35:1285–1291. doi: 10.1016/j.cemconres.2004.12.001. DOI
Lothenbach B., Le Saout G., Gallucci E., Scrivener K. Influence of limestone on the hydration of Portland cements. Cem. Concr. Res. 2008;38:848–860. doi: 10.1016/j.cemconres.2008.01.002. DOI
Rahhal V., Bonavetti V., Trusilewicz L., Pedrajas C., Talero R. Role of the filler on Portland cement hydration at early ages. Constr. Build. Mater. 2012;27:82–90. doi: 10.1016/j.conbuildmat.2011.07.021. DOI
Briki Y., Zajac M., Ben Haha M., Scrivener K. Impact of limestone fineness on cement hydration at early age. Cem. Concr. Res. 2021;147:106515. doi: 10.1016/j.cemconres.2021.106515. DOI
Wang X.Y. Evaluation of the properties of cement-calcined Hwangtoh clay-limestone ternary blends using a kinetic hydration model. Constr. Build. Mater. 2021;303:124596. doi: 10.1016/j.conbuildmat.2021.124596. DOI
Yu Y.G., Gunasekara C., Elakneswaran Y., Robert D., Law D.W., Setunge S. On the hydration of limestone calcined kaolinitic clay cement and energy-efficient production. Cem. Concr. Comp. 2024;153:105698. doi: 10.1016/j.cemconcomp.2024.105698. DOI
Shao Z.Y., Cao M.L. Hydration mechanism of limestone calcined clay cement containing calcined coal gangue. Constr. Build. Mater. 2024;438:136906. doi: 10.1016/j.conbuildmat.2024.136906. DOI
Bahulayan A., Santhanam M. Hydration, phase assemblage and microstructure of cementitious blends with low-grade limestone. Constr. Build. Mater. 2024;438:137044. doi: 10.1016/j.conbuildmat.2024.137044. DOI
Oey T., Kumar A., Bullard J.W., Neithalath N., Sant G. The Filler Effect: The Influence of Filler Content and Surface Area on Cementitious Reaction Rates. J. Am. Ceram. Soc. 2013;96:1978–1990. doi: 10.1111/jace.12264. DOI
Wang Y.L., Zhang W.Y., Lou G.H., Yao T.S. Effect of limestone powder on mechanical properties of concrete based on Griffith’s microcracking theory. Constr. Build. Mater. 2024;449:138413. doi: 10.1016/j.conbuildmat.2024.138413. DOI
Wang J.L., Jiang F.F., Zhou J., Mao Z.Y. The Synergistic Effect of Limestone Powder and Rice Husk Ash on the Mechanical Properties of Cement-Based Materials. Materials. 2024;17:5058. doi: 10.3390/ma17205058. PubMed DOI PMC
Kang I., Shin S., Kim J. Optimal Limestone Content on Hydration Properties of Ordinary Portland Cement with 5% Ground Granulated Blast-Furnace Slag. Materials. 2024;17:3255. doi: 10.3390/ma17133255. PubMed DOI PMC
Kakali G., Tsivilis S., Aggeli E., Bati M. Hydration products of C3A, C3S and Portland cement in the presence of CaCO3. Cem. Concr. Res. 2000;30:1073–1077. doi: 10.1016/S0008-8846(00)00292-1. DOI
Berodier E., Scrivener K. Understanding the Filler Effect on the Nucleation and Growth of C-S-H. J. Am. Ceram. Soc. 2014;97:3764–3773. doi: 10.1111/jace.13177. DOI
Zaitri R., Bederina M., Bouziani T., Makhloufi Z., Hadjoudja M. Development of high performances concrete based on the addition of grinded dune sand and limestone rock using the.mixture design modelling approach. Constr. Build. Mater. 2014;60:8–16. doi: 10.1016/j.conbuildmat.2014.02.062. DOI
Liu X.H., Ma B.G., Tan H.B., Gu B.Q., Zhang T., Chen P., Li H.N., Mei J.P. Effect of aluminum sulfate on the hydration of Portland cement, tricalcium silicate and tricalcium aluminate. Constr. Build. Mater. 2020;232:117179. doi: 10.1016/j.conbuildmat.2019.117179. DOI
Zhang L.H., Lu Z.C., Zhang Y.R., Liu Z.W., Pan Y., Zhang G.Q., He Y., Sun Z.P. New insight into the combined effect of aluminum sulfate and triethanolamine on cement hydration. Cem. Concr. Res. 2024;181:107547. doi: 10.1016/j.cemconres.2024.107547. DOI
Briendl L.G., Mittermayr F., Baldermann A., Steindl F.R., Sakoparnig M., Letofsky-Papst I., Galan I. Early hydration of cementitious systems accelerated by aluminium sulphate: Effect of fine limestone. Cem. Concr. Res. 2020;134:106069. doi: 10.1016/j.cemconres.2020.106069. DOI
Melichar T., Bydzovsky J., Meszarosova L., Dufka A., Schwarzova I. Spruce Chips Stabilization in Wood-Cement Materials: Effect of Matrix Composition. Maderas-Cienc. Tecnol. 2024;26:1–18. doi: 10.22320/s0718221x/2024.27. DOI
Melichar T., Ledl M., Bydzovsky J., Dufka A. Effect of use of non-traditional raw materials on properties and microstructure of cement-bonded particleboards. Waste Forum. 2020;2020:254–264.
Melichar T., Bydzovsky J., Dufka A. Seldom used by-product from trimming cement-bonded particleboard shows potential for modifying building materials composition. Waste Forum. 2019;2019:368–377.
Melichar T., Bydzovsky J., Dufka Á. Detailed Analysis of Modified By-Product from Cement-Bonded Particle Board Fabrication. WSEAS Trans. Environ. Dev. 2018;14:408–417.
Melichar T., Bydzovsky J., Brozovsky J., Vacula M. Structural, physical and mechanical changes of cement-bonded particleboards during sudden fluctuations in temperature and moisture. J. Wood Sci. 2022;68:3. doi: 10.1186/s10086-021-02004-3. DOI
Melichar T., Meszarosova L., Bydzovsky J., Ledl M., Vasas S. The effect of moisture on the properties of cement-bonded particleboards made with non-traditional raw materials. J. Wood Sci. 2021;67:75. doi: 10.1186/s10086-021-02008-z. DOI
Ezerskiy V., Kuznetsova N.V., Seleznev A.D. Evaluation of the use of the CBPB production waste products for cement composites. Constr. Build. Mater. 2018;190:1117–1123. doi: 10.1016/j.conbuildmat.2018.09.148. DOI
Adelusi E., Ajala O., Afolabi R., Olaoye K. Strength and dimensional stability of cement-bonded wood waste-sand bricks. J. For. Sci. 2021;67:545–552. doi: 10.17221/98/2021-JFS. DOI
Výrobní Program (Production Schedule), Výroba Cementotřískových Desek CETRIS (Production of Cement-Bonded Particleboards CETRIS) [(accessed on 5 November 2024)]. Available online: https://www.cetris.cz/pagedata_cz/download/642_kap-2.pdf.
Makhloufi Z., Chettih M., Bederina M., Kadri E.L.H., Bouhicha M. Effect of quaternary cementitious systems containing limestone, blast furnace slag and natural pozzolan on mechanical behavior of limestone mortars. Constr. Build. Mater. 2015;95:647–657. doi: 10.1016/j.conbuildmat.2015.07.050. DOI
Wang W.Y., Xu Y.C., Lv Q.F., Zhang Y. Influence of magnesite/limestone addition on the hydration characteristics of ternary slag cement systems. Constr. Build. Mater. 2024;449:138249. doi: 10.1016/j.conbuildmat.2024.138249. DOI
Her S.W., Yang K.H., Bae S.C., Kwon S.J., Wang X.Y. Effect of particle size distribution and content of limestone powder on compressive response of high-early-strength cement mortars. J. Build. Eng. 2024;97:110964. doi: 10.1016/j.jobe.2024.110964. DOI
Ji G.X., Chi H.H., Sun K.K., Peng X.Q., Cai Y.M. Effect of limestone waste on the hydration and microstructural properties of cement-based materials. Constr. Build. Mater. 2024;443:137784. doi: 10.1016/j.conbuildmat.2024.137784. DOI
Reiterman P., Jaskulski R., Kubissa W., Holcapek O., Keppert M. Assessment of Rational Design of Self-Compacting Concrete Incorporating Fly Ash and Limestone Powder in Terms of Long-Term Durability. Materials. 2020;13:2863. doi: 10.3390/ma13122863. PubMed DOI PMC
de Oliveira F.C., Silva N., Hentges T.I., Tavares L.M., Angulo S.C. Mechanical properties of reduced-sized limestone filler-cement pastes and their variability using an instrumented point load test. J. Build. Eng. 2024;94:109802. doi: 10.1016/j.jobe.2024.109802. DOI
Amiandamhen S.O., Izekor D.N. Effect of wood particle geometry and pre-treatments on the strength and sorption properties of cement-bonded particle boards. J. Appl. Nat. Sci. 2013;5:318–322. doi: 10.31018/jans.v5i2.324. DOI
Badejo S.O.O., Omole A.O., Fuwape J.A., Oyeleye B.O. Static bending and moisture response of cement- bonded particle Board Produced at different levels of percent chemical additive content in Board. Niger. J. Agric. Food Environ. 2011;7:111–120.
Olorunnisola A.O. Effects of Particle Geometry and Chemical Accelerator on Strength Properties of Rattan-Cement Composites. Afr. J. Sci. Technol. Sci. Eng. Ser. 2007;8:22–27.
Li W., Shupe T.F., Hse C.Y. Physical and mechanical properties of flakeboard produced from recycled CCA-treated wood. For. Prod. J. 2004;54:89–94.
Adefisan O.O. Pre-treatments effects on the strength and sorption properties of cement composites made from mixed particles of Eremospatha macrocarpa canes. In: Popoola L., Idumah F.O., Ogunsanwo O.Y., Azeez I.O., editors. Forest Industry in a Dynamic Global Environment. Proceedings of the 35th Annual Conference of the Forestry Association of Nigeria, Sokoto, Sokoto State, Nigeria, 11–16 February 2013. Forestry Association of Nigeria; Ibadan, Nigeria: 2023. pp. 438–444.
Karade S.R., Irle M., Maher K. Assessment of wood-cement compatibility: A new approach. Holzforschung. 2003;57:672–680. doi: 10.1515/HF.2003.101. DOI
Cerny V., Yakovlev G., Drochytka R., Baranek S., Meszarosova L., Melichar J., Hermann R. Impact of Carbon Particle Character on the Cement-Based Composite Electrical Resistivity. Materials. 2021;14:7505. doi: 10.3390/ma14247505. PubMed DOI PMC
Ladjel M., Chemrouk M., Bouziadi F., Boulekbache B. Experimental and numerical investigation of the shrinkage of dune sand concrete containing limestone fillers subjected to different curing temperatures. Mater. Struct. 2022;55:200. doi: 10.1617/s11527-022-02033-4. DOI
Talero R., Pedrajas C., González M., Aramburo C., Blázquez A., Rahhal V. Role of the filler on Portland cement hydration at very early ages: Rheological behaviour of their fresh cement pastes. Constr. Build. Mater. 2017;151:939–949. doi: 10.1016/j.conbuildmat.2017.06.006. DOI
Jamshidi A. A laboratory study on the durability of limestone wastes in harsh environments for their suitability as aggregate in concrete. Case Stud. Constr. Mater. 2024;20:e03274. doi: 10.1016/j.cscm.2024.e03274. DOI
Rogojsz G., Rudnicki T. Influence of Mineral Additives on Strength Properties of Standard Mortar. Materials. 2024;17:4158. doi: 10.3390/ma17164158. PubMed DOI PMC
Wood Based Panels. Determination of Modulus of Elasticity in Bending and of Bending Strength. The European Committee for Standardization, CEN; Brussels, Belgium: 1993.
In Particleboards and Fibreboards. Determination of Transverse Tensile Strength Perpendicular to the Plane of the Board. The European Committee for Standardization, CEN; Brussels, Belgium: 1993.
Wood-Based Panels. Determination of Density. The European Committee for Standardization, CEN; Brussels, Belgium: 1993.
Cement-Bonded Particleboards-Specifications—Part 2: Requirements for OPC Bonded Particleboards for Use in Dry, Humid and External Conditions. The European Committee for Standardization, CEN; Brussels, Belgium: 2007.
Wood-Based Panels—Determination of Dimensional Changes Associated with Changes in Relative Humidity. The European Committee for Standardization, CEN; Brussels, Belgium: 2002.
Nunes L., Cintura E., Parracha J.L., Fernandes B., Silva V., Faria P. Cement-Bonded Particleboards with Banana Pseudostem Waste: Physical Performance and Bio-Susceptibility. Infrastructures. 2021;6:86. doi: 10.3390/infrastructures6060086. DOI
Ali I.M., Nasr M.S., Naje A.S. Enhancement of cured cement using environmental waste: Particleboards incorporating nano slag. Open Eng. 2020;10:273–281. doi: 10.1515/eng-2020-0031. DOI
Ferrandez-García M.T., Ferrandez-Garcia C.E., Garcia-Ortuño T., Ferrandez-Garcia A., Ferrandez-Villena M. Study of Waste Jute Fibre Panels (Corchorus capsularis L.) Agglomerated with Portland Cement and Starch. Polymers. 2020;12:599. doi: 10.3390/polym12030599. PubMed DOI PMC
Yel H., Urun E. Performance of cement-bonded wood particleboards produced using fly ash and spruce planer shavings. Maderas Cienc. Tecnol. 2022;24:1–10. doi: 10.4067/S0718-221X2022000100444. DOI
Li M., Khelifa M., Khennane A., El Ganaoui M. Structural response of cement-bonded wood composite panels as permanent formwork. Compos. Struct. 2019;209:13–22. doi: 10.1016/j.compstruct.2018.10.079. DOI
Zhou Y., Kamdem D.P. Effect of cement/wood ratio on the properties of cement-bonded particleboard using CCA-treated wood removed from service. For. Prod. J. 2002;52:77–81.
Maail R.S., Fransz J.J., Titarsole J. Physical and mechanical properties of cement-bonded particleboard made from squander of paper. IOP Conf. Ser. Earth Environ. Sci. 2021;883:012019. doi: 10.1088/1755-1315/883/1/012019. DOI
Ferrandez-Garcia A.A., Ortuño T.G., Ferrandez-Villena M., Ferrandez-Garcia A., Ferrandez-García M.T. Evaluation of Particleboards Made from Giant Reed (Arundo donax L.) Bonded with Cement and Potato Starch. Polymers. 2022;14:111. doi: 10.3390/polym14010111. PubMed DOI PMC
Amiandamhen S.O., Agwu C.U., Ezenwaegbu P.N. Evaluation of cement-bonded particleboards produced from mixed sawmill residues. J. Indian Acad. Wood Sci. 2021;18:14–19. doi: 10.1007/s13196-021-00273-5. DOI
Malakopoulos A., Chatzigeorgiou M., Boukos N., Salifoglou A. Durability performance of Portland limestone cement mortar containing butyl and zinc stearate admixtures. Mater. Struct. 2021;54:60. doi: 10.1617/s11527-021-01638-5. DOI
Sun J.W., Chen Z.H. Influences of limestone powder on the resistance of concretes to the chloride ion penetration and sulfate attack. Powder Technol. 2018;338:725–733. doi: 10.1016/j.powtec.2018.07.041. DOI
Bensted J., Barnes P. Structure and Performance of Cements. 2nd ed. Spon Press; Abingdon, UK: Taylor & Francis Group; London, UK: 2008.
Melichar J., Cerny V., Meszarosova L., Figala P., Dufka A., Baranek S., Drochytka R. Study of synergistic effect of fly ash and superabsorbent polymers on properties of cement pastes. J. Build. Eng. 2023;79:107897. doi: 10.1016/j.jobe.2023.107897. DOI
Irassar E.F. Sulfate attack on cementitious materials containing limestone filler—A review. Cem. Concr. Res. 2009;39:241–254. doi: 10.1016/j.cemconres.2008.11.007. DOI
Bensted J. Thaumasite—Background and nature in deterioration of cements, mortars and concretes. Cem. Concr. Comp. 1999;21:117–121. doi: 10.1016/S0958-9465(97)00076-0. DOI
Köhler S., Heinz D., Urbonas L. Effect of ettringite on thaumasite formation. Cem. Concr. Res. 2006;36:697–706. doi: 10.1016/j.cemconres.2005.11.006. DOI
Yang Y., Gao P., Zhan B., Yu Q., Wang J., Zhang Y. Influence of limestone powder particle size on the sulfate resistance of cement-based materials under the coupling effect of time-varying temperature and sulfate attack. J. Build. Eng. 2024;98:111271. doi: 10.1016/j.jobe.2024.111271. DOI
Kuzel H.J., Pollmann H. Hydration of C3A in the Presence of Ca(OH)2, CaSO4.2H2O and CaCO3. Cem. Concr. Res. 1991;21:885–895. doi: 10.1016/0008-8846(91)90183-I. DOI
Kuzel H.J. Initial hydration reactions and mechanisms of delayed ettringite formation in Portland cements. Cem. Concr. Comp. 1996;18:195–203. doi: 10.1016/0958-9465(96)00016-9. DOI
Kuzel H.J., Baier H. Hydration of calcium aluminate cements in the presence of calcium carbonate. Eur. J. Miner. 1996;8:129–141. doi: 10.1127/ejm/8/1/0129. DOI
Bonavetti V.L., Rahhal V.F., Irasser E.F. Studies on the carboaluminate formation in limestone filler-blended cements. Cem. Concr. Res. 2001;31:853–859. doi: 10.1016/S0008-8846(01)00491-4. DOI
Liu B., Zhou H., Pan G.H., Meng H.N., Li D.X. Novel in-situ controllably grown CSH: Synthesis, characterization and the effect on cement hydration. Cem. Concr. Comp. 2023;139:105044. doi: 10.1016/j.cemconcomp.2023.105044. DOI
Chiker T., Aggoun S. Limestone powder and silica fume performance on slag-blended PLC plain and self-consolidating mortars properties. Arch. Civ. Mech. Eng. 2023;24:26. doi: 10.1007/s43452-023-00805-5. DOI
Péra J., Husson S., Guilhot B. Influence of finely ground limestone on cement hydration. Cem. Concr. Comp. 1999;21:99–105. doi: 10.1016/S0958-9465(98)00020-1. DOI
Ravaszová S., Dvorák K. Effect of mechanical activation on the properties of Portland cement. IOP Conf. Ser.-Mater. Sci. 2021;1205:012003. doi: 10.1088/1757-899X/1205/1/012003. DOI
Ravaszová S., Dvorák K., Vaiciukyniene D., Sisol M. Application of a Method for Measuring the Grindability of Fine-Grained Materials by High-Speed Milling. Materials. 2022;15:8085. doi: 10.3390/ma15228085. PubMed DOI PMC