The Behavior of Cement-Bonded Particleboard with Modified Composition under Static Load Stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-00291S
Czech Science Foundation
PubMed
34832189
PubMed Central
PMC8619079
DOI
10.3390/ma14226788
PII: ma14226788
Knihovny.cz E-zdroje
- Klíčová slova
- acoustic emission, adverse environment, cement-bonded particleboard, composition, defect analysis, frost, modification, static load, stress,
- Publikační typ
- časopisecké články MeSH
This article presents research on the behavior of cement-bonded particleboards under mechanical stress caused by the static load. The composition of the boards was modified using alternative raw materials-dust (DU) forming during the processing of cement-fibre boards and particle mixture (PM) generated in the production of cement-bonded particleboards. The particleboards (1-year-old) were subjected to an adverse environment (100 to 250 frost cycles). Mechanical parameters were tested, and the development of defects during static load of the boards by bending was analyzed using acoustic emission. Particleboards with modified compositions are slightly more resistant to adverse environments. The results of the acoustic emission showed the different types of defects occurring under stress by bending. Standard-composition particleboards showed defects located mainly under the cylindrical stress-test head. The modified boards showed larger location distribution of the occurring defects that were also concentrated further away from the cylindrical stress head. The energy during the occurrence of defects was higher in the modified boards in the location of weight application than in the reference boards.
Zobrazit více v PubMed
Melichar T., Bydžovský J., Černý V. Effect of modification of cement-bonded particle boards composition on their frost resistance. Adv. Mater. Res. 2014;897:184–187. doi: 10.4028/www.scientific.net/AMR.897.184. DOI
Odeyemi S.O., Abdulwahab R., Adeniyi A.G., Atoyebi O.D. Physical and mechanical properties of cement-bonded particleboard produced from African balsam tree (Populous Balsamifera) and periwinkle shell residues. Results Eng. 2020;6:100–126. doi: 10.1016/j.rineng.2020.100126. DOI
Ohijeagbon I.O., Adeleke A.A., Mustapha V.T., Olorunmaiye J.A., Okokpujie I.P., Ikubanni P.P. Development and characterization of wood-polypropylene plastic-cement composite board. Case Stud. Constr. Mater. 2020;13:e00365. doi: 10.1016/j.cscm.2020.e00365. DOI
Borysiuk P., Jenczyk-Tolloczko I., Auriga R., Kordzikowski M. Sugar beet pulp as raw material for particleboard production. Ind. Crop. Prod. 2019;141:111829. doi: 10.1016/j.indcrop.2019.111829. DOI
Taha I., Elkafafy M.S., Mously H.E. Potential of utilizing tomato stalk as raw material for particleboards. Ain Shams Eng. J. 2018;9:1457–1464. doi: 10.1016/j.asej.2016.10.003. DOI
Hossain M.U., Wang L., Yu I.K.M., Tsang D.C.W., Poon C.-S. Environmental and technical feasibility study of upcycling wood waste into cement-bonded particleboard. Constr. Build. Mater. 2018;173:474–480. doi: 10.1016/j.conbuildmat.2018.04.066. DOI
Cabral M.R., Nakanishi E.Y., Mármol G., Palacios J., Godbout S., Lagacé R., Savastano H., Fiorelli J. Potential of Jerusalem Artichoke (Helianthus tuberosus L.) stalks to produce cement-bonded particleboards. Ind. Crop. Prod. 2018;122:214–222. doi: 10.1016/j.indcrop.2018.05.054. DOI
Wang L., Chen S.S., Tsang D.C.W., Poon C.-S., Shih K. Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. Constr. Build. Mater. 2016;125:316–325. doi: 10.1016/j.conbuildmat.2016.08.053. DOI
Wang L., Chen S.S., Tsang D.C.W., Poon C.-S., Shih K. Recycling contaminated wood into eco-friendly particleboard using green cement and carbon dioxide curing. J. Clean. Prod. 2016;137:861–870. doi: 10.1016/j.jclepro.2016.07.180. DOI
Taghiyari H.R., Bari E., Schmidt O., Ghanbary M.A.T., Karimi A., Tahir P.M.D. Effects of nanowollastonite on biological resistance of particleboard made from wood chips and chicken feather against Antrodia vaillantii. Int. Biodeterior. Biodegrad. 2014;90:93–98. doi: 10.1016/j.ibiod.2014.02.012. DOI
Karade S.R. Cement-bonded composites from lignocellulosic wastes. Constr. Build. Mater. 2010;24:1323–1330. doi: 10.1016/j.conbuildmat.2010.02.003. DOI
Sassoni E., Manzi S., Motori A., Montecchi M., Canti M. Experimental study on the physical–mechanical durability of innovative hemp-based composites for the building industry. Energy Build. 2015;104:316–322. doi: 10.1016/j.enbuild.2015.07.022. DOI
Soroushian P., Won J.-P., Hassan M. Durability and microstructure analysis of CO2-cured cement-bonded wood particleboard. Cem. Concr. Compos. 2013;41:34–44. doi: 10.1016/j.cemconcomp.2013.04.014. DOI
Fuwape J.A., Fabiyi J.S., Osuntuyi E.O. Technical assessment of three layered cement-bonded boards produced from wastepaper and sawdust. Waste Manag. 2007;27:1611–1616. doi: 10.1016/j.wasman.2006.09.005. PubMed DOI
Han T.U., Kim Y., Watanabe C., Teramae N., Park Y., Kim S., Lee Y. Analytical pyrolysis properties of waste medium-density fiberboard and particle board. J. Ind. Eng. Chem. 2015;32:345–352. doi: 10.1016/j.jiec.2015.09.008. DOI
Sotannde O.A., Oluwadare A.O., Ogedoh O., Adeogun P.F. Evaluation of cement-bonded particle board produced from Afzelia Africana wood residues. J. Eng. Sci. Technol. 2012;7:732–743.
Schwarzova I., Stevulova N., Melichar T. Hemp fibre reinforced composites; Proceedings of the 10th International Conference on Environmental Engineering, ICEE 2017; Vilnius, Lithuania. 27–28 April 2017.
Schwarzova I., Stevulova N., Melichar T. Lightweight composites based on technical hemp hurds in construction industry. Chem. Eng. Trans. 2017;57:1369–1374.
Savastano H., Warden P.G., Coutts R.S.P. Brazilian waste fibres as reinforcement for cement-based composites. Cem. Concr. Compos. 2000;22:379–384. doi: 10.1016/S0958-9465(00)00034-2. DOI
Okino E.Y.A., de Souza M.R., Santana M.A.E., Alves M.V.S., de Sousa M.E., Teixeira D.E. Cement-bonded wood particleboard with a mixture of eucalypt and rubberwood. Cem. Concr. Compos. 2004;26:729–734. doi: 10.1016/S0958-9465(03)00061-1. DOI
Zhou Y., Kamdem D.P. Effect of cement/wood ratio on the properties of cement-bonded particleboard using CCA-treated wood removed from service. For. Prod. J. 2002;52:77–81.
Caprai V., Gauvin F., Schollbach K., Brouwers H.J.H. MSWI bottom ash as binder replacement in wood cement composites. Constr. Build. Mater. 2019;196:672–680. doi: 10.1016/j.conbuildmat.2018.11.153. DOI
Ezerskiy V., Kuznetsova N.V., Seleznev A.D. Evaluation of the use of the CBPB production waste products for cement composites. Constr. Build. Mater. 2018;190:1117–1123. doi: 10.1016/j.conbuildmat.2018.09.148. DOI
Melichar T., Venhodová E., Bydžovský J. Analyzing of alternative raw materials for production of cement-bonded particle boards. Adv. Mater. Res. 2014;923:108–111. doi: 10.4028/www.scientific.net/AMR.923.108. DOI
Melichar T., Bydžovský J., Dufka A. Detailed analysis of modified by-product from cement-bonded particle board fabrication. WSEAS Trans. Environ. Dev. 2018;14:408–417.
Melichar T., Bydzovsky J. Influence of dust waste containing a silicate matrix and organic filler on properties of cement composites [Vliv prachového odpadu s obsahem silikátové matrice a organického plniva na vlastnosti cementových kompozitů] Waste Forum. 2019;4:378–390.
Melichar T., Bydzovsky J., Dufka A. Seldom used by-product from trimming cement-bonded particleboard shows potential for modifying building materials composition. Waste Forum. 2019;4:368–377.
Nakamura H. Practical Acoustic Emission Testing. The Japanese Society for Non-Destructive. Springer; Tokyo, Japan: 2016. Roles and safety/health of technicians involved in non-destructive testing; pp. 1–4. DOI
Ohtsu M., Enoki M., Mizutani Y., Shigeishi M. Practical Acoustic Emission Testing. Springer; Tokyo, Japan: 2016. Principles of the acoustic emission (AE) method and signal processing; pp. 5–34. DOI
Shamsudin M.F.b. Ph.D. Thesis. Brunel University London; Uxbridge, UK: 2019. Structural Health Monitoring of Fatigue Cracks Using Acoustic Emission Technique.
Grosse C.U., Ohtsu M., editors. Acoustic Emission Testing. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2008.
Debecker B., Vervoort A. Localization by acoustic emission in transversely isotropic slate. Adv. Acoust. Vib. 2011;2011:735913. doi: 10.1155/2011/735913. DOI
Huang W., Zhang W., Li F. Acoustic emission source location using a distributed feedback fiber laser rosette. Sensors. 2013;13:14041–14054. doi: 10.3390/s131014041. PubMed DOI PMC
Zhou Z., Rui Y., Zhou J., Dong L., Chen L., Cai X., Cheng R. A New Closed-Form Solution for Acoustic Emission Source Location in the Presence of Outliers. Appl. Sci. 2018;8:949. doi: 10.3390/app8060949. DOI
Beattie A.G. Acoustic emission non-destructive testing of structures using source location techniques. Albuq. Livermore. 2013 doi: 10.2172/1096442. DOI
AE Measurement System DAKEL-ZEDO©. [(accessed on 1 November 2021)]. Available online: http://dakel.cz/index.php?pg=prod/dev/zedo_en.
ČSN EN 13554 (015081) Non-Destructive Testing—Acoustic Emission Testing—General Principles. European Committee for Standardization; Bruxelles, Belgium: 2011.
Quy T.B., Kim J.-M. Crack detection and localization in a fluid pipeline based on acoustic emission signals. Mech. Syst. Signal Process. 2021;150:107254. doi: 10.1016/j.ymssp.2020.107254. DOI
Peng S., Sbartaï Z.M., Parent T. Mechanical damage evaluation of masonry under tensile loading by acoustic emission technique. Constr. Build. Mater. 2020;258:120336. doi: 10.1016/j.conbuildmat.2020.120336. DOI
Friedrich L., Colpo A., Maggi A., Becker T. Giuseppe Lacidogna, Ignacio Iturrioz, Damage Process in Glass Fiber Reinforced Polymer Specimens Using Acoustic Emission Technique with Low Frequency Acquisition. Compos. Struct. 2020;256:113105. doi: 10.1016/j.compstruct.2020.113105. DOI
Verstrynge E., Lacidogna G., Accornero F., Tomor A. A review on acoustic emission monitoring for damage detection in masonry structures. Constr. Build. Mater. 2020;268:121089. doi: 10.1016/j.conbuildmat.2020.121089. DOI
Deák F., Kovács L., Mucsi P., Máthé Z. Microscopic Identification of Progressive Fracturing in Granite Under Triaxial and Uniaxial Stress Conditions from Bátaapáti Radwaste Repository. Period. Polytech. Civ. Eng. 2020;64:231–240. doi: 10.3311/PPci.15287. DOI
De Rosa I.M., Santulli C., Sarasini F. Acoustic emission for monitoring the mechanical behaviour of naturel fibre composites: A literature review. Compos. Part A. 2009;40:1456–1469. doi: 10.1016/j.compositesa.2009.04.030. DOI
CETRIS®. [(accessed on 1 November 2021)]. Available online: www.cetris.cz.
ČSN EN 1328 Cement Bonded Particleboards—Determination of Frost Resistance. ÚNMZ; Prague, Czech Republic: 1998.
ČSN EN 633 Cement-Bonded Particleboards. Definition and Classification. ÚNMZ; Prague, Czech Republic: 1996.
ČSN EN 634-1 Cement-Bonded Particleboards—Specification—Part 1: General Requirements. ÚNMZ; Prague, Czech Republic: 1997.
ČSN EN 634-2 Cement-Bonded Particleboards—Specifications—Part 2: Requirements for OPC Bonded Particleboards for Use in Dry, Humid and External Conditions. ÚNMZ; Prague, Czech Republic: 2007.
ASTM D 1037 Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials. ASTM; West Conshohocken, PA, USA: 2012.
ČSN EN 323 Wood-Based Panels. Determination of Density. ÚNMZ; Prague, Czech Republic: 1994.
ČSN EN 310 Wood Based Panels. Determination of Modulus of Elasticity in Bending and of Bending Strength. ÚNMZ; Prague, Czech Republic: 1995.
ČSN EN 319 Particleboards and Fibreboards. Determination of Transverse Tensile Strength Perpendicular to the Plane of the Board. ÚNMZ; Prague, Czech Republic: 1994.
Suzuki T., Shimamoto Y. Acoustic Emission and Related Non-Destructive Evaluation Techniques in the Fracture Mechanics of Concrete. Woodhead Publishing; Duxford, UK: 2015. Damage evaluation in concrete materials by acoustic emission; pp. 1–17.
Nor N.M., Ibrahim A., Bunnori N.M., Saman H.M. Acoustic emission signal for fatigue crack classification on reinforced concrete beam. Constr. Build. Mater. 2013;49:583–590. doi: 10.1016/j.conbuildmat.2013.08.057. DOI
Ohno K., Ohtsu M. Crack classification in concrete based on acoustic emission. Constr. Build. Mater. 2010;24:2339–2346. doi: 10.1016/j.conbuildmat.2010.05.004. DOI
JCMS-III B5706, Monitoring Method for Active Cracks in Concrete by Acoustic Emission. Federation of Construction Materials Industries; Tokyo, Japan: 2003.
Ohno K., Uji K., Ueno A., Ohtsu M. Fracture process zone in notched concrete beam under three-point bending by acoustic emission. Constr. Build. Mater. 2014;67:139–145. doi: 10.1016/j.conbuildmat.2014.05.012. DOI
Vidya Sagar R., Raghu Prasad B.K., Singh R.K. Acoustic Emission and Related Non-Destructive Evaluation Techniques in the Fracture Mechanics of Concrete. Woodhead Publishing; Duxford, UK: 2015. Laboratory investigations on concrete fracture using acoustic emission techniques; pp. 139–162.
Jiang Z., Li Q., Hu Q., Liang Y., Xu Y., Liu L., Wu X., Li X., Wang X., Hu L., et al. Acoustic emission characteristics in hydraulic fracturing of stratified rocks: A laboratory study. Powder Technol. 2020;371:267–276. doi: 10.1016/j.powtec.2020.05.050. DOI