Assessment of Rational Design of Self-Compacting Concrete Incorporating Fly Ash and Limestone Powder in Terms of Long-Term Durability
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
LTC 18063
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32604731
PubMed Central
PMC7344429
DOI
10.3390/ma13122863
PII: ma13122863
Knihovny.cz E-resources
- Keywords
- carbonation, durability, fly ash addition, limestone powder, self-compacting concrete,
- Publication type
- Journal Article MeSH
Self-compaction concrete (SCC) is ranked among the main technological innovations of the last decades. Hence, it introduces a suitable possibility for further utilization of supplementary cementitious materials (SCM) in terms of sustainable development. The aim of the work is the assessment of a new approach to binder design, which takes into consideration the activity of the used mineral additive. The proposed approach, which allows a systematic design of a binding system with varied properties of the used mineral additive, was studied on ternary blends consisting of Portland cement (PC), limestone powder and fly ash (FA). The verification was conducted on SCC mixtures in terms of their workability, mechanical properties and the most attention was paid to long-term durability. The long-term durability was assessed on the basis of shrinkage measurement, freeze-thaw resistance and permeability tests including initial surface absorption, chloride migration, water penetration and an accelerated carbonation test, which was compared with the evolution of carbonation front in normal conditions. The durability of studied mixtures was evaluated by using durability loss index, which allow general assessment on the basis of multiple parameters. The carbonation resistance had a dominant importance on the final durability performance of studied mixtures. The experimental program revealed that the proposed design method is reliable only in terms of properties in fresh state and mechanical performance, which were similar with control mixture. Despite suitable results of freeze-thaw resistance and shrinkage, an increasing amount of fly ash in terms of the new design concept led to a fundamental increase of permeability and thus to decay of long-term durability. Acceptable properties were achieved for the lowest dosage of fly ash.
See more in PubMed
Assi L., Carter K., Deaver E., Anay R., Ziehl P. Sustainable concrete: Building a greener future. J. Clean. Prod. 2018;198:1641–1651. doi: 10.1016/j.jclepro.2018.07.123. DOI
Andrew R. Global CO2 emissions from cement production. Earth Syst. Sci. Data. 2017 doi: 10.5194/essd-10-195-2018. DOI
Habert G. Eco-efficient Construction and Building Materials. Elsevier; Amsterdam, The Netherlands: 2014. Assessing the Environmental Impact of Conventional and ‘green’ Cement Production; pp. 199–238. DOI
Schneider M., Romer M., Tschudin M., Bolio H. Sustainable Cement Production—Present and Future. Cem. Concr. Res. 2011;41:642–650. doi: 10.1016/j.cemconres.2011.03.019. DOI
Hasanbeigi A., Proce L., Lin E. Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review. Renew. Sust. Energ. Rev. 2012;16:6220–6238. doi: 10.1016/j.rser.2012.07.019. DOI
Reiterman P., Holčapek O., Davidová V., Jaskulski R., Keppert M. Estimation of Hydration Degree of Blended Cements with the Help of K-Values. Materials. 2019;12:2420. doi: 10.3390/ma12152420. PubMed DOI PMC
Al-Mansour A., Chow C.L., Feo L., Penna R., Lau D. Green Concrete: By-Products Utilization and Advanced Approaches. Sustainability. 2019;11:5145. doi: 10.3390/su11195145. DOI
Wilińska I., Pacewska B. Influence of Selected Activating Methods on Hydration Processes of Mixtures Containing High and Very High Amount of Fly Ash. J. Therm. Anal. Calorim. 2018;133:823–843. doi: 10.1007/s10973-017-6915-y. DOI
Pavlíková M., Zemanová L., Pokorný J., Záleská M., Jankovský O., Lojka M., Sedmidubský D., Pavlík Z. Valorization of Wood Chips Ash as an Eco-Friendly Mineral Admixture in Mortar Mix Design. Waste Manag. 2018;80:89–100. doi: 10.1016/j.wasman.2018.09.004. PubMed DOI
Ishak S.A., Hashim H. Low Carbon Measures for Cement Plant—A Review. J. Clean. Prod. 2015;103:260–274. doi: 10.1016/j.jclepro.2014.11.003. DOI
Dvorak K., Dolak D., Vsiansky D., Dobrovolny P. Evaluation of the Grindability of Recycled Glass in the Production of Blended Cements. Mater. Tehnol. 2016;50:729–734. doi: 10.17222/mit.2015.184. DOI
Lothenbach B., Scrivener K., Hooton R.D. Supplementary Cementitious Materials. Cem. Concr. Res. 2011;41:1244–1256. doi: 10.1016/j.cemconres.2010.12.001. DOI
Haider U., Bittnar Z., Kopecky L., Šmilauer V., Pokorny J., Zaleska M., Prošek Z., Hrbek V. Determining the role of individual fly ash particles in the overall physical, morphological, and chemical properties of fly ash. Acta Polytech. 2016;56:265–282. doi: 10.14311/AP.2016.56.0265. DOI
Kubissa W., Jaskulski R., Reiterman P. Ecological Concrete Based on Blast-Furnace Cement with Incorporated Coarse Recycled Concrete Aggregate and Fly Ash Addition. J. Renew. Mater. 2017;5:53–61. doi: 10.7569/JRM.2017.634103. DOI
Yang J., Huang J., Su Y., He X., Tan H., Yang W., Strnadel B. Eco-Friendly Treatment of Low-Calcium Coal Fly Ash for High Pozzolanic Reactivity: A Step towards Waste Utilization in Sustainable Building Material. J. Clean. Prod. 2019;238:117962. doi: 10.1016/j.jclepro.2019.117962. DOI
BS EN 450 1: Fly Ash for Concrete. Definition, Specifications and Conformity Criteria. British Standards Institution; London, UK: 2012.
Pacewska B., Blonkowski G., Wilińska I. Investigations of the Influence of Different Fly Ashes on Cement Hydration. J. Therm. Anal. Calorim. 2006;86:179–186. doi: 10.1007/s10673-005-7136-7. DOI
Pacewska B., Blonkowski G., Wilińska I. Studies on the Pozzolanic and Hydraulic Properties of Fly Ashes in Model Systems. J. Therm. Anal. Calorim. 2008;94:469–476. doi: 10.1007/s10973-008-9179-8. DOI
Turgut P., Demir F. The Influence of Disposed Fly Ash on Ca2+ Leaching and Physico-Mechanical Properties of Mortars. J. Clean. Prod. 2019;226:270–281. doi: 10.1016/j.jclepro.2019.04.105. DOI
Ebrahimi A., Saffari M., Milani D., Montoya A., Valix M., Abbas A. Sustainable Transformation of Fly Ash Industrial Waste into a Construction Cement Blend via CO2 Carbonation. J. Clean. Prod. 2017;156:660–669. doi: 10.1016/j.jclepro.2017.04.037. DOI
Drochytka R., Černý V. Influence of Fluidized Bed Combustion Fly Ash Admixture on Hydrothermal Synthesis of Tobermorite in the Mixture with Quartz Sand, High Temperature Fly Ash and Lime. Constr. Build. Mater. 2020;230:117033. doi: 10.1016/j.conbuildmat.2019.117033. DOI
Hlaváček P., Šulc R., Šmilauer V., Rößler C., Snop R. Ternary Binder Made of CFBC Fly Ash, Conventional Fly Ash, and Calcium Hydroxide: Phase and Strength Evolution. Cem. Concr. Compos. 2018;90:100–107. doi: 10.1016/j.cemconcomp.2017.09.020. DOI
Pacewska B., Wilińska I. Comparative Investigations of Influence of Chemical Admixtures on Pozzolanic and Hydraulic Activities of Fly Ash with the Use of Thermal Analysis and Infrared Spectroscopy. J. Therm. Anal. Calorim. 2014;120:119–127. doi: 10.1007/s10973-014-4334-x. DOI
Siddique R. Properties of Self-Compacting Concrete Containing Class F Fly Ash. Mater. Des. 2011;32:1501–1507. doi: 10.1016/j.matdes.2010.08.043. DOI
Altoubat S., Talha Junaid M., Leblouba M., Badran D. Effectiveness of Fly Ash on the Restrained Shrinkage Cracking Resistance of Self-Compacting Concrete. Cem. Concr. Compos. 2017;79:9–20. doi: 10.1016/j.cemconcomp.2017.01.010. DOI
Davidova V., Reiterman P. Shrinkage of various types of Portland clinker-based cements with respect to their hydration degree. Acta Polytech. 2020;60:88–97. doi: 10.14311/AP.2020.60.0088. DOI
Yazıcı H. The Effect of Silica Fume and High-Volume Class C Fly Ash on Mechanical Properties, Chloride Penetration and Freeze-thaw Resistance of Self-Compacting Concrete. Constr. Build. Mater. 2008;22:456–462. doi: 10.1016/j.conbuildmat.2007.01.002. DOI
Kledyński Z., Machowska A., Pacewska B., Wilińska I. Investigation of Hydration Products of Fly Ash–slag Pastes. J. Therm. Anal. Calorim. 2017;130:351–363. doi: 10.1007/s10973-017-6233-4. DOI
De Weerdt K., Kjellsen K.O., Sellevold E., Justnes H. Synergy between Fly Ash and Limestone Powder in Ternary Cements. Cem. Concr. Compos. 2011;33:30–38. doi: 10.1016/j.cemconcomp.2010.09.006. DOI
Celik K., Jackson M.D., Mancio M., Meral C., Emwas A.-H., Mehta P.K., Monteiro P.J.M. High-Volume Natural Volcanic Pozzolan and Limestone Powder as Partial Replacements for Portland Cement in Self-Compacting and Sustainable Concrete. Cem. Concr. Compos. 2014;45:136–147. doi: 10.1016/j.cemconcomp.2013.09.003. DOI
CSN EN 206-1 Concrete—Specification, Performance, Production and Conformity. Czech Standard Institute; Prague, Czech Republic: 2014.
Matschei T., Lothenbach B., Glasser F.P. The Role of Calcium Carbonate in Cement Hydration. Cem. Concr. Res. 2007;37:551–558. doi: 10.1016/j.cemconres.2006.10.013. DOI
Poppe A.M., De Schutter G. Cement Hydration in the Presence of High Filler Contents. Cem. Concr. Res. 2005;35:2290–2299. doi: 10.1016/j.cemconres.2005.03.008. DOI
Bonavetti V., Donza H., Rahhal V., Irassar E. Influence of Initial Curing on the Properties of Concrete Containing Limestone Blended Cement. Cem. Concr. Res. 2000;30:703–708. doi: 10.1016/S0008-8846(00)00217-9. DOI
Lothenbach B., Le Saout G., Gallucci E., Scrivener K. Influence of Limestone on the Hydration of Portland Cements. Cem. Concr. Res. 2008;38:848–860. doi: 10.1016/j.cemconres.2008.01.002. DOI
Ipavec A., Gabrovšek R., Vuk T., Kaučič V., Maček J., Meden A. Carboaluminate Phases Formation during the Hydration of Calcite-Containing Portland Cement. J. Am. Ceram. Soc. 2010;94:1238–1242. doi: 10.1111/j.1551-2916.2010.04201.x. DOI
Felekoğlu B., Tosun K., Baradan B., Altun A., Uyulgan B. The Effect of Fly Ash and Limestone Fillers on the Viscosity and Compressive Strength of Self-Compacting Repair Mortars. Cem. Concr. Res. 2006;36:1719–1726. doi: 10.1016/j.cemconres.2006.04.002. DOI
Gesoğlu M., Güneyisi E., Kocabağ M.E., Bayram V., Mermerdaş K. Fresh and Hardened Characteristics of Self Compacting Concretes Made with Combined Use of Marble Powder, Limestone Filler, and Fly Ash. Constr. Build. Mater. 2012;37:160–170. doi: 10.1016/j.conbuildmat.2012.07.092. DOI
Bentz D.P., Peltz M.A., Winpigler J. Early-Age Properties of Cement-Based Materials. II: Influence of Water-to-Cement Ratio. J. Mater. Civil Eng. 2009;21:512–517. doi: 10.1061/(ASCE)0899-1561(2009)21:9(512). DOI
Singh N., Kumar P., Goyal P. Reviewing the Behaviour of High Volume Fly Ash Based Self Compacting Concrete. J. Build. Eng. 2019;26:100882. doi: 10.1016/j.jobe.2019.100882. DOI
Aslani F., Maia L. Creep and Shrinkage of High-Strength Self-Compacting Concrete: Experimental and Analytical Analysis. Mag. Concr. Res. 2013;65:1044–1058. doi: 10.1680/macr.13.00048. DOI
Jiang L., Lin B., Cai Y. A Model for Predicting Carbonation of High-Volume Fly Ash Concrete. Cem. Concr. Res. 2000;30:699–702. doi: 10.1016/S0008-8846(00)00227-1. DOI
Bentz D.P., Sato T., de la Varga I., Weiss W.J. Fine Limestone Additions to Regulate Setting in High Volume Fly Ash Mixtures. Cem. Concr. Compos. 2012;34:11–17. doi: 10.1016/j.cemconcomp.2011.09.004. DOI
Bederina M., Makhloufi Z., Bouziani T. Effect of Limestone Fillers the Physic-Mechanical Properties of Limestone Concrete. Phys. Procedia. 2011;21:28–34. doi: 10.1016/j.phpro.2011.10.005. DOI
Duran-Herrera A., De-León-Esquivel J., Bentz D.P., Valdez-Tamez P. Self-Compacting Concretes Using Fly Ash and Fine Limestone Powder: Shrinkage and Surface Electrical Resistivity of Equivalent Mortars. Constr. Build. Mater. 2019;199:50–62. doi: 10.1016/j.conbuildmat.2018.11.191. DOI
Boel V., Audenaert K., De Schutter G., Heirman G., Vandewalle L., Desmet B., Vantomme J. Transport Properties of Self Compacting Concrete with Limestone Filler or Fly Ash. Mater. Struct. 2006;40:507–516. doi: 10.1617/s11527-006-9159-z. DOI
Gesoğlu M., Güneyisi E., Özbay E. Properties of Self-Compacting Concretes Made with Binary, Ternary, and Quaternary Cementitious Blends of Fly Ash, Blast Furnace Slag, and Silica Fume. Constr. Build. Mater. 2009;23:1847–1854. doi: 10.1016/j.conbuildmat.2008.09.015. DOI
Doebelin N., Kleeberg R. Profex: A Graphical User Interface for the Rietveld Refinement program BGMN. J. Appl. Crystallogr. 2015;48:1573–1580. doi: 10.1107/S1600576715014685. PubMed DOI PMC
Keppert M., Urbanová M., Brus J., Čáchová M., Fořt J., Trník A., Scheinherrová L., Záleská M., Černý R. Rational Design of Cement Composites Containing Pozzolanic Additions. Constr. Build. Mater. 2017;148:411–418. doi: 10.1016/j.conbuildmat.2017.05.032. DOI
CSN EN 12350-8: Testing Fresh Concrete—Part 8: Self-Compacting Concrete. Slump-Flow Test. Czech Standard Institute; Prague, Czech Republic: 2010.
CSN EN 12350-12: Testing Fresh Concrete—Part 12: Self-Compacting Concrete. J-Ring Test. Czech Standard Institute; Prague, Czech Republic: 2010.
CSN EN 12350-10: Testing Fresh Concrete—Part 10: Self-Compacting Concrete. L-Box Test. Czech Standard Institute; Prague, Czech Republic: 2010.
CSN EN 12350-7: Testing Fresh Concrete—Part 7: Air Content Pressure Methods. Czech Standard Institute; Prague, Czech Republic: 2009.
CSN EN 12390-3: Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. Czech Standard Institute; Prague, Czech Republic: 2009.
CSN EN 12390-5: Testing Hardened Concrete—Part 5: Flexural Strength of Test Specimens. Czech Standard Institute; Prague, Czech Republic: 2009.
Chan S.Y., Ji X. Comparative Study of the Initial Surface Absorption and Chloride Diffusion of High Performance Zeolite, Silica Fume and PFA Concretes. Cem. Concr. Compos. 1999;21:293–300. doi: 10.1016/S0958-9465(99)00010-4. DOI
Claisse P.A. Transport Properties of Concrete. Elsevier; Cambridge, UK: 2014. Surface Tests to Determine Transport Properties of Concrete I: The Tests; pp. 26–42. DOI
CSN EN 12390-8: Testing Hardened Concrete—Part 8: Depth of Penetration of Water under Pressure. Czech Standard Institute; Prague, Czech Republic: 2009.
Nordtest Method NT Build 492. Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from non-Steady-State Migration Experiments. NORDTEST; Espoo, Finland: 1999.
CSN 731322–Determination of frost resistance of concrete. Czech Standard Institute; Prague, Czech Republic: 2003.
CSN EN 13295: Products and Systems for the Protection and Repair of Concrete Structures—Test Methods—Determination of Resistance to Carbonation. Czech Standard Institute; Prague, Czech Republic: 2004.
Reiterman P., Holčapek O., Jaskulski R., Kubissa W. Long-Term Behaviour of Ceramic Powder Containing Concrete for Pavement Blocks. Int. J. Pavement Eng. 2020:1–8. doi: 10.1080/10298436.2020.1725006. DOI
EHE-08 Instrucción Hormigón Estructural. Ministerio de Fomento; Madrid, Spain: 2008.
Sáez del Bosque I.F., Van den Heede P., De Belie N., Sánchez de Rojas M.I., Medina C. Carbonation of Concrete with Construction and Demolition Waste Based Recycled Aggregates and Cement with Recycled Content. Constr. Build. Mater. 2020;234:117336. doi: 10.1016/j.conbuildmat.2019.117336. DOI
Mostofinejad D., Nosouhian F., Nazari-Monfared H. Influence of Magnesium Sulphate Concentration on Durability of Concrete Containing Micro-Silica, Slag and Limestone Powder Using Durability Index. Constr. Build. Mater. 2016;117:107–120. doi: 10.1016/j.conbuildmat.2016.04.091. DOI
Sun Z., Scherer G.W. Effect of Air Voids on Salt Scaling and Internal Freezing. Cem. Concr. Res. 2010;40:260–270. doi: 10.1016/j.cemconres.2009.09.027. DOI
Puthipad N., Ouchi M., Rath S., Attachaiyawuth A. Enhancement in Self-Compactability and Stability in Volume of Entrained Air in Self-Compacting Concrete with High Volume Fly Ash. Constr. Build. Mater. 2016;128:349–360. doi: 10.1016/j.conbuildmat.2016.10.087. DOI
Rath S., Ouchi M., Puthipad N., Attachaiyawuth A. Improving the Stability of Entrained Air in Self-Compacting Concrete by Optimizing the Mix Viscosity and Air Entraining Agent Dosage. Constr. Build. Mater. 2017;148:531–537. doi: 10.1016/j.conbuildmat.2017.05.105. DOI
Güneyisi E., Gesoğlu M., Algin Z. Eco-Efficient Concrete. Elsevier; Amsterdam, The Netherlands: 2013. Performance of Self-Compacting Concrete (SCC) with High-Volume Supplementary Cementitious Materials (SCMs) pp. 198–217. DOI
Kurda R., de Brito J., Silvestre J.D. Influence of Recycled Aggregates and High Contents of Fly Ash on Concrete Fresh Properties. Cem. Concr. Compos. 2017;84:198–213. doi: 10.1016/j.cemconcomp.2017.09.009. DOI
Puthipad N., Ouchi M., Attachaiyawuth A. Effects of Fly Ash, Mixing Procedure and Type of Air-Entraining Agent on Coalescence of Entrained Air Bubbles in Mortar of Self-Compacting Concrete at Fresh State. Constr. Build. Mater. 2018;180:437–444. doi: 10.1016/j.conbuildmat.2018.04.138. DOI
Jones M.R., Ozlutas K., Zheng L. Stability and Instability of Foamed Concrete. Mag. Concr. Res. 2016;68:542–549. doi: 10.1680/macr.15.00097. DOI
Mendes J.C., Moro T.K., Figueiredo A.S., Silva K.D., Silva G.C., Silva G.J.B., Peixoto R.A.F. Mechanical, Rheological and Morphological Analysis of Cement-Based Composites with a New LAS-Based Air Entraining Agent. Constr. Build. Mater. 2017;145:648–661. doi: 10.1016/j.conbuildmat.2017.04.024. DOI
Ghorbani S., Ghorbani S., Tao Z., de Brito J., Tavakkolizadeh M. Effect of Magnetized Water on Foam Stability and Compressive Strength of Foam Concrete. Constr. Build. Mater. 2019;197:280–290. doi: 10.1016/j.conbuildmat.2018.11.160. DOI
Zhang D.S. Air Entrainment in Fresh Concrete with PFA. Cem. Concr. Compos. 1996;18:409–416. doi: 10.1016/S0958-9465(96)00033-9. DOI
Jiang L., Malhotra V. Reduction in Water Demand of Non-Air-Entrained Concrete Incorporating Large Volumes of Fly Ash. Cem. Concr. Res. 2000;30:1785–1789. doi: 10.1016/S0008-8846(00)00397-5. DOI
De Matos P.R., Foiato M., Prudêncio L.R., Jr. Ecological, Fresh State and Long-Term Mechanical Properties of High-Volume Fly Ash High-Performance Self-Compacting Concrete. Constr. Build. Mater. 2019;203:282–293. doi: 10.1016/j.conbuildmat.2019.01.074. DOI
Moghaddam F., Sirivivatnanon V., Vessalas K. The Effect of Fly Ash Fineness on Heat of Hydration, Microstructure, Flow and Compressive Strength of Blended Cement Pastes. Case Stud. Constr. Mater. 2019;10:e00218. doi: 10.1016/j.cscm.2019.e00218. DOI
Esquinas A.R., Ledesma E.F., Otero R., Jiménez J.R., Fernández J.M. Mechanical Behaviour of Self-Compacting Concrete Made with Non-Conforming Fly Ash from Coal-Fired Power Plants. Constr. Build. Mater. 2018;182:385–398. doi: 10.1016/j.conbuildmat.2018.06.094. DOI
Liu M. Self-Compacting Concrete with Different Levels of Pulverized Fuel Ash. Constr. Build. Mater. 2010;24:1245–1252. doi: 10.1016/j.conbuildmat.2009.12.012. DOI
Yu J., Lu C., Leung C.K.Y., Li G. Mechanical Properties of Green Structural Concrete with Ultrahigh-Volume Fly Ash. Constr. Build. Mater. 2017;147:510–518. doi: 10.1016/j.conbuildmat.2017.04.188. DOI
De Weerdt K., Haha M.B., Le Saout G., Kjellsen K.O., Justnes H., Lothenbach B. Hydration Mechanisms of Ternary Portland Cements Containing Limestone Powder and Fly Ash. Cem. Concr. Res. 2011;41:279–291. doi: 10.1016/j.cemconres.2010.11.014. DOI
Shaikh F.U.A., Supit S.W.M. Mechanical and Durability Properties of High Volume Fly Ash (HVFA) Concrete Containing Calcium Carbonate (CaCO3) Nanoparticles. Constr. Build. Mater. 2014;70:309–321. doi: 10.1016/j.conbuildmat.2014.07.099. DOI
Shaikh F.U.A., Supit S.W.M. Compressive Strength and Durability Properties of High Volume Fly Ash (HVFA) Concretes Containing Ultrafine Fly Ash (UFFA) Constr. Build. Mater. 2015;82:192–205. doi: 10.1016/j.conbuildmat.2015.02.068. DOI
Sahmaran M., Yildirim G., Erdem T.K. Self-Healing Capability of Cementitious Composites Incorporating Different Supplementary Cementitious Materials. Cem. Concr. Compos. 2013;35:89–101. doi: 10.1016/j.cemconcomp.2012.08.013. DOI
Soriano L., Monzó J., Bonilla M., Tashima M.M., Payá J., Borrachero M.V. Effect of Pozzolans on the Hydration Process of Portland Cement Cured at Low Temperatures. Cem. Concr. Compos. 2013;42:41–48. doi: 10.1016/j.cemconcomp.2013.05.007. DOI
Reiterman P., Holčapek O., Zobal O., Keppert M. Freeze-Thaw Resistance of Cement Screed with Various Supplementary Cementitious Materials. Rev. Adv. Mater. Sci. 2019;58:66–74. doi: 10.1515/rams-2019-0006. DOI
De Belie N., Gruyaert E., Al-Tabbaa A., Antonaci P., Baera C., Bajare D., Darquennes A., Davies R., Ferrara L., Jefferson T., et al. A Review of Self-Healing Concrete for Damage Management of Structures. Adv. Mater. Interfaces. 2018;5:1800074. doi: 10.1002/admi.201800074. DOI
Da Silva P.R., de Brito J. Experimental Study of the Porosity and Microstructure of Self-Compacting Concrete (SCC) with Binary and Ternary Mixes of Fly Ash and Limestone Filler. Constr. Build. Mater. 2015;86:101–112. doi: 10.1016/j.conbuildmat.2015.03.110. DOI
Li K., Zhang D., Li Q., Fan Z. Durability for Concrete Structures in Marine Environments of HZM Project: Design, Assessment and beyond. Cem. Concr. Res. 2019;115:545–558. doi: 10.1016/j.cemconres.2018.08.006. DOI
Thomas M. The durability of concrete for marine construction: Materials and properties. In: Alexander M.G., editor. Marine Concrete Structures. Woodhead Publishing; Cambridge, UK: 2016. pp. 151–170.
Moffat E.G., Thomas M.D.A., Fahim A. Performance of high-volume fly ash concrete in marine environment. Cem. Concr. Res. 2017;102:127–135. doi: 10.1016/j.cemconres.2017.09.008. DOI
Celik K., Meral C., Gursel A.P., Mehta P.K., Horvath A., Monteiro P.J.M. Mechanical properties, durability and life-cycle assessment of self-consolidating concrete mixtures made with blended Portland cements containing fly ash and limestone powder. Cem. Concr. Compos. 2015;56:59–72. doi: 10.1016/j.cemconcomp.2014.11.003. DOI
Singh N., Singh S.P. Carbonation Resistance and Microstructural Analysis of Low and High Volume Fly Ash Self Compacting Concrete Containing Recycled Concrete Aggregates. Constr. Build. Mater. 2016;127:828–842. doi: 10.1016/j.conbuildmat.2016.10.067. DOI
Esquinas A.R., Álvarez J.I., Jiménez J.R., Fernández J.M. Durability of Self-Compacting Concrete Made from Non-Conforming Fly Ash from Coal-Fired Power Plants. Constr. Build. Mater. 2018;189:993–1006. doi: 10.1016/j.conbuildmat.2018.09.056. DOI
Silva P., de Brito J. Experimental Study of the Mechanical Properties and Shrinkage of Self-Compacting Concrete with Binary and Ternary Mixes of Fly Ash and Limestone Filler. Eur. J. Environ. Civ. Eng. 2016;21:430–453. doi: 10.1080/19648189.2015.1131200. DOI
Rahimi-Aghdam S., Masoero E., Rasoolinejad M., Bažant Z.P. Century-Long Expansion of Hydrating Cement Counteracting Concrete Shrinkage due to Humidity Drop from Selfdesiccation or External Drying. Mater. Struct. 2019;52 doi: 10.1617/s11527-018-1307-8. DOI
Wang X.H., Val D.V., Zheng L., Jones M.R. Carbonation of Loaded RC Elements Made of Different Concrete Types: Accelerated Testing and Future Predictions. Constr. Build. Mater. 2020;243:118259. doi: 10.1016/j.conbuildmat.2020.118259. DOI
Singh N., Singh S.P. Carbonation and Electrical Resistance of Self Compacting Concrete Made with Recycled Concrete Aggregates and Metakaolin. Constr. Build. Mater. 2016;121:400–409. doi: 10.1016/j.conbuildmat.2016.06.009. DOI
Pacheco Torgal F., Miraldo S., Labrincha J.A., De Brito J. An Overview on Concrete Carbonation in the Context of Eco-Efficient Construction: Evaluation, Use of SCMs And/Or RAC. Constr. Build. Mater. 2012;36:141–150. doi: 10.1016/j.conbuildmat.2012.04.066. DOI
Marques P.F., Chastre C., Nunes Â. Carbonation Service Life Modelling of RC Structures for Concrete with Portland and Blended Cements. Cem. Concr. Compos. 2013;37:171–184. doi: 10.1016/j.cemconcomp.2012.10.007. DOI
Reiterman P., Keppert M. Effect of Various de-Icers Containing Chloride Ions on Scaling Resistance and Chloride Penetration Depth of Highway Concrete. Roads Bridges Drog. Mosty. 2020;19:51–64. doi: 10.7409/rabdim.020.003. DOI