Estimation of Hydration Degree of Blended Cements with the Help of k-Values

. 2019 Jul 29 ; 12 (15) : . [epub] 20190729

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31362454

Grantová podpora
18-13525S Grantová Agentura České Republiky
LTC 18063 Ministerstvo Školství, Mládeže a Tělovýchovy

The growing utilization of various mineral additives in the building industry has caused concern worldwide to reduce the emissions of carbon dioxide from Portland cement (OPC) production. The present paper is focused on the determination of the degree of hydration of blended binding systems based on Portland cement. Blast furnace slag, fly ash, and ceramic powder are used in the study; they are applied by 12.5 wt.% up to 50% of OPC replacement. The evolution of the hydration process is monitored using thermogravimetry in selected time intervals to determine the degree of hydration; its ultimate value is obtained from numerical estimation using the Michaelis-Menten equation. However, due to the application of active mineral additives, the correction in terms of equivalent binder is conducted. Corrected values of the degree of hydration exhibit good fit with compressive strength.

Zobrazit více v PubMed

Maddalena R., Roberts J.J., Hamilton A. Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissins of innovative cements. J. Clean. Prod. 2018;186:933–943. doi: 10.1016/j.jclepro.2018.02.138. DOI

Razi P.Z., Razak H.A., Khalid N.H.A. Sustainability, eco-point and engineering performance of different workability OPC fly-ash mortar mixes. Materials. 2016;9:341. doi: 10.3390/ma9050341. PubMed DOI PMC

Crossin E. The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute. J. Clean. Prod. 2015;95:101–108. doi: 10.1016/j.jclepro.2015.02.082. DOI

Pronina N., Krüger S., Bornhöft H., Deubener J., Ehrenberg A. Cooling history of a wet-granulated blast furnace slag (GBS) J. Non Cryst. Solids. 2018;499:344–349. doi: 10.1016/j.jnoncrysol.2018.07.054. DOI

British Standard . 197-1 ED. 2: Cement-Part 1: Composition, Specifications and Conformity Criteria for Common Cements. British Standards Institution; London, UK: 2012.

Lee K.M., Lee H.K., Lee S.H., Kim G.Y. Autogenous shrinkage of concrete containing granulated blast-furnace slag. Cem. Concr. Res. 2006;36:1279–1285. doi: 10.1016/j.cemconres.2006.01.005. DOI

Darquennes A., Olivier K., Benboudjema F., Gagné R. Self-healing at early-age, a way to improve the chloride resistance of blast-furnace slag cementitious materials. Constr. Build. Mater. 2016;113:1017–1028. doi: 10.1016/j.conbuildmat.2016.03.087. DOI

Li Y., Liu Y., Gong X., Nie Z., Cui S., Wang Z., Chen W. Environmental impact analysis of blast furnace slag applied to ordinary Portland cement production. J. Clean. Prod. 2016;120:221–230. doi: 10.1016/j.jclepro.2015.12.071. DOI

Ward C., French D. Determination of glass content and estimation of glass composition in fly ash using quantitative X-ray diffractometry. Fuel. 2006;85:2268–2277. doi: 10.1016/j.fuel.2005.12.026. DOI

Poon C.S., Qiao X.C., Lin Z.S. Pozzolanic properties of reject fly ash in blended cement pastes. Cem. Concr. Res. 2003;33:1857–1865. doi: 10.1016/S0008-8846(03)00213-8. DOI

Cristelo N., Tavares P., Lucas E., Miranda T., Oliveira D. Quantitative and qualitative assessment of the amorphous phase of a Class F fly ash dissolved during alkali activation reactions–Effect of mechanical activation, solution concentration and temperature. Compos. Part B. 2016;103:1–14. doi: 10.1016/j.compositesb.2016.08.001. DOI

Da Silva P.R., de Brito J. Experimental study of the porosity and microstructure of self-compacting concrete (SCC) with binary and ternary mixes of fly ash and limestone filler. Constr. Build. Mater. 2015;86:101–112. doi: 10.1016/j.conbuildmat.2015.03.110. DOI

Kurda R., de Brito J., Silvestre J.D. Influence of recycled aggregates and high contents of fly ash on concrete fresh properties. Cem. Concr. Compos. 2017;84:198–213. doi: 10.1016/j.cemconcomp.2017.09.009. DOI

Puthipad N., Ouchi M., Rath S., Attachaiyawuth A. Enhancement in self-compactability and stability in volume of entrained air in self-compacting concrete with high volume fly ash. Constr. Build. Mater. 2016;128:349–360. doi: 10.1016/j.conbuildmat.2016.10.087. DOI

Rivera F., Martínez P., Castro J., López M. Massive volume fly-ash concrete: A more sustainable material with fly ash replacing cement and aggregates. Cem. Concr. Compos. 2015;63:104–112. doi: 10.1016/j.cemconcomp.2015.08.001. DOI

Zobal O., Padevet P., Smilauer V., Kopecký L., Bittnar Z. Experimental analysis of mechanical and material properties of concrete Orlik dam after 50 years; Proceedings of the 30th DANUBlA-ADRIA Symposium on Advances in Experimental Mechanics; Primosten, Croatia. 25–28 September 2013; pp. 189–190.

Singh N., Singh S.P. Carbonation resistance and microstructural analysis of Low and High Volume Fly Ash Self Compacting Concrete containing Recycled Concrete Aggregates. Constr. Build. Mater. 2016;127:828–842. doi: 10.1016/j.conbuildmat.2016.10.067. DOI

British Standard . 206: Concrete—Specification, Performance, Production and Conformity. British Standards Institution; London, UK: 2014.

Celik K., Meral C., Petek Gursel A., Mehta P.K., Horvath A., Monteiro P.J.M. Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder. Cem. Concr. Compos. 2015;56:59–72. doi: 10.1016/j.cemconcomp.2014.11.003. DOI

Keppert M., Doušová B., Reiterman P., Koloušek D., Záleská M., Černý R. Application of heavy metals sorbent as reactive component in cementitious composites. J. Clean. Prod. 2018;199:565–573. doi: 10.1016/j.jclepro.2018.07.198. DOI

Huseien G.F., Sam A.R.M., Mirza J., Tahir M.M., Asaad M.A., Ismail M., Shah K.W. Waste ceramic powder incorporated alkali activated mortars exposed to elevated Temperatures: Performance evaluation. Constr. Build. Mater. 2018;187:307–317. doi: 10.1016/j.conbuildmat.2018.07.226. DOI

Holčapek O., Reiterman P., Konvalinka P. Cyclic temperature loading residual flexural strength of refraktory slabs. Acta Polytech. 2017;57:97–104. doi: 10.14311/AP.2017.57.0097. DOI

Pavlík Z., Trník A., Kulovaná T., Scheinherrová L., Rahhal V., Irassar E., Černý R. DSC and TG Analysis of a Blended Binder Based on Waste Ceramic Powder and Portland Cement. Int. J. Thermophys. 2016;37:1–14. doi: 10.1007/s10765-016-2043-3. DOI

Navrátilová E., Rovnaníková P. Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars. Constr. Build. Mater. 2016;120:530–539. doi: 10.1016/j.conbuildmat.2016.05.062. DOI

Kannan D.M., Aboubakr S.H., EL-Dieb A.S., Reda Taha M.M. High performance concrete incorporating ceramic waste powder as large partial replacement of Portland cement. Constr. Build. Mater. 2017;144:35–41. doi: 10.1016/j.conbuildmat.2017.03.115. DOI

Tironi A., Trezza M.A., Scian A.N., Irassar E.F. Assessment of pozzolanic activity of different calcined clays. Cem. Concr. Compos. 2013;37:319–327. doi: 10.1016/j.cemconcomp.2013.01.002. DOI

El-Dieb A.S., Kanaan D.M. Ceramic waste powder an alternative cement replacement—Characterization and evaluation. Sustain. Mater. Technol. 2018;17:e00063. doi: 10.1016/j.susmat.2018.e00063. DOI

Turanli L., Bektas F., Monteiro P.J. Use of ground clay brick as a pozzolanic material to reduce the alkali–Silica reaction. Cem. Concr. Res. 2003;33:1539–1542. doi: 10.1016/S0008-8846(03)00101-7. DOI

Xie T., Visintin P. A unified approach for mix design of concrete containing supplementary cementitious materials based on reactivity moduli. J. Clean. Prod. 2018;203:68–82. doi: 10.1016/j.jclepro.2018.08.254. DOI

Fan C., Miller S.A. Reducing greenhouse gas emissions for prescribed concrete compressive strength. Constr. Build. Mater. 2018;167:918–928. doi: 10.1016/j.conbuildmat.2018.02.092. DOI

Bediako M., Purohir S.S., Kevern J.T. An Investigation into Ghanaian Calcined Clay as a Supplementary Cementitious Material. ACI Mater. J. 2017;114 doi: 10.14359/51700896. DOI

Younsi A., Turcry P., Rozière E., Aït-Mokhtar A., Loukili A. Performance-based design and carbonation of concrete with high fly ash content. Cem. Concr. Compos. 2011;33:993–1000. doi: 10.1016/j.cemconcomp.2011.07.005. DOI

Kayali O., Sharfuddin Ahmed M. Assessment of high volume replacement fly ash concrete—Concept of performance index. Constr. Build. Mater. 2013;39:71–76. doi: 10.1016/j.conbuildmat.2012.05.009. DOI

Gruyaert E., Maes M., De Belie N. Performance of BFS concrete: K-Value concept versus equivalent performance concept. Constr. Build. Mater. 2013;47:441–455. doi: 10.1016/j.conbuildmat.2013.05.006. DOI

Ribeiro A.B., Santos T., Gonçalves A. Performance of concrete exposed to natural carbonation: Use of the k -value concept. Constr. Build. Mater. 2018;175:360–370. doi: 10.1016/j.conbuildmat.2018.04.206. DOI

Deboucha W., Leklou N., Khelidj A., Oudjit M.N. Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): Methodology of calculating the degree of hydration. Constr. Build. Mater. 2017;146:687–701. doi: 10.1016/j.conbuildmat.2017.04.132. DOI

Bhatty J.I., Reid K.J. Use of thermal analysis in the hydration studies of a type 1 portland cement produced from mineral tailings. Thermochim. Acta. 1985;91:95–105. doi: 10.1016/0040-6031(85)85205-9. DOI

Reiterman P., Holčapek O., Zobal O., Keppert M. Freeze-Thaw Resistance of Cement Screed with Various Supplementary Cementitious Materials. Rev. Adv. Mater. Sci. 2019;58:66–74. doi: 10.1515/rams-2019-0006. DOI

Reiterman P. IOP Conference Series: Materials Science and Engineering. Volume 385. IOP Publishing; Bristol, UK: 2018. Estimation of pozzolanic activity of artificial mineral additive using thermal analysis; p. 12046. DOI

De Weerdt K., Haha M.B., Le Saout G., Kjellsen K.O., Justnes H., Lothenbach B. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Concr. Res. 2011;41:279–291. doi: 10.1016/j.cemconres.2010.11.014. DOI

Bílek V., Mec P., Zidek L., Moravec T. Concretes with ternary binders—Thinking about frost resistence. Cem. Wapno Beton. 2015;2015:72.

Monteagudo S.M., Moragues A., Gálvez J.C., Casati M.J., Reyes E. The degree of hydration assessment of blended cement pastes by differential thermal and thermogravimetric analysis. Morphological evolution of the solid phases. Thermochim. Acta. 2014;592:37–51. doi: 10.1016/j.tca.2014.08.008. DOI

British Standard . 196-1 Methods of Testing Cement—Part 1: Determination of Strength. British Standards Institution; London, UK: 2016.

Poon C.S., Lam L., Wong Y.L. A study on high strength concrete prepared with large volumes of low calcium fly ash. Cem. Concr. Res. 2000;30:447–455. doi: 10.1016/S0008-8846(99)00271-9. DOI

Siddique R. Performance characteristics of high-volume Class F fly ash concrete. Cem. Concr. Res. 2004;34:487–493. doi: 10.1016/j.cemconres.2003.09.002. DOI

Han S.-H., Kim J.-K., Park Y.-D. Prediction of compressive strength of fly ash concrete by new apparent activation energy function. Cem. Concr. Res. 2003;33:965–971. doi: 10.1016/S0008-8846(03)00007-3. DOI

De la Varga I., Castro J., Bentz D., Weiss J. Application of internal curing for mixtures containing high volumes of fly ash. Cem. Concr. Compos. 2012;34:1001–1008. doi: 10.1016/j.cemconcomp.2012.06.008. DOI

Atiş C.D. High-Volume Fly Ash Concrete with High Strength and Low Drying Shrinkage. J. Mater. Civ. Eng. 2003;15:153–156. doi: 10.1061/(ASCE)0899-1561(2003)15:2(153). DOI

Oner A., Akyuz S. An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cem. Concr. Compos. 2007;29:505–514. doi: 10.1016/j.cemconcomp.2007.01.001. DOI

Gholampour A., Ozbakkaloglu T. Performance of sustainable concretes containing very high volume Class-F fly ash and ground granulated blast furnace slag. J. Clean. Prod. 2017;162:1407–1417. doi: 10.1016/j.jclepro.2017.06.087. DOI

Kuder K., Lehman D., Berman J., Hannesson G., Shogren R. Mechanical properties of self consolidating concrete blended with high volumes of fly ash and slag. Constr. Build. Mater. 2012;34:285–295. doi: 10.1016/j.conbuildmat.2012.02.034. DOI

Zhao H., Sun W., Wu X., Gao B. The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures. J. Clean. Prod. 2015;95:66–74. doi: 10.1016/j.jclepro.2015.02.050. DOI

Reiterman P., Keppert M. Effect of Ceramic Powder Particle Size Distribution on its Reactivity in Lime-Based Binders. Mater. Sci. Forum. 2017;908:40–44. doi: 10.4028/www.scientific.net/MSF.908.40. DOI

Pacheco-Torgal F., Jalali S. Reusing ceramic wastes in concrete. Constr. Build. Mater. 2010;24:832–838. doi: 10.1016/j.conbuildmat.2009.10.023. DOI

Higashiyama H., Yagishita F., Sano M., Takahashi O. Compressive strength and resistance to chloride penetration of mortars using ceramic waste as fine aggregate. Constr. Build. Mater. 2012;26:96–101. doi: 10.1016/j.conbuildmat.2011.05.008. DOI

Naceri A., Hamina M.C. Use of waste brick as a partial replacement of cement in mortar. Waste Manag. 2009;29:2378–2384. doi: 10.1016/j.wasman.2009.03.026. PubMed DOI

Heikal M., Zohdy K.M., Abdelkreem M. Mechanical, microstructure and rheological characteristics of high performance self-compacting cement pastes and concrete containing ground clay bricks. Constr. Build. Mater. 2013;38:101–109. doi: 10.1016/j.conbuildmat.2012.07.114. DOI

Meddah M.S., Ismail M.A., El-Gamal S., Fitriani H. Performances evaluation of binary concrete designed with silica fume and metakaolin. Constr. Build. Mater. 2018;166:400–412. doi: 10.1016/j.conbuildmat.2018.01.138. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...