Estimation of Hydration Degree of Blended Cements with the Help of k-Values
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-13525S
Grantová Agentura České Republiky
LTC 18063
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31362454
PubMed Central
PMC6696305
DOI
10.3390/ma12152420
PII: ma12152420
Knihovny.cz E-zdroje
- Klíčová slova
- blast furnace slag, ceramic powder, degree of hydration, fly ash, supplementary cementitious materials, thermogravimetry,
- Publikační typ
- časopisecké články MeSH
The growing utilization of various mineral additives in the building industry has caused concern worldwide to reduce the emissions of carbon dioxide from Portland cement (OPC) production. The present paper is focused on the determination of the degree of hydration of blended binding systems based on Portland cement. Blast furnace slag, fly ash, and ceramic powder are used in the study; they are applied by 12.5 wt.% up to 50% of OPC replacement. The evolution of the hydration process is monitored using thermogravimetry in selected time intervals to determine the degree of hydration; its ultimate value is obtained from numerical estimation using the Michaelis-Menten equation. However, due to the application of active mineral additives, the correction in terms of equivalent binder is conducted. Corrected values of the degree of hydration exhibit good fit with compressive strength.
Zobrazit více v PubMed
Maddalena R., Roberts J.J., Hamilton A. Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissins of innovative cements. J. Clean. Prod. 2018;186:933–943. doi: 10.1016/j.jclepro.2018.02.138. DOI
Razi P.Z., Razak H.A., Khalid N.H.A. Sustainability, eco-point and engineering performance of different workability OPC fly-ash mortar mixes. Materials. 2016;9:341. doi: 10.3390/ma9050341. PubMed DOI PMC
Crossin E. The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute. J. Clean. Prod. 2015;95:101–108. doi: 10.1016/j.jclepro.2015.02.082. DOI
Pronina N., Krüger S., Bornhöft H., Deubener J., Ehrenberg A. Cooling history of a wet-granulated blast furnace slag (GBS) J. Non Cryst. Solids. 2018;499:344–349. doi: 10.1016/j.jnoncrysol.2018.07.054. DOI
British Standard . 197-1 ED. 2: Cement-Part 1: Composition, Specifications and Conformity Criteria for Common Cements. British Standards Institution; London, UK: 2012.
Lee K.M., Lee H.K., Lee S.H., Kim G.Y. Autogenous shrinkage of concrete containing granulated blast-furnace slag. Cem. Concr. Res. 2006;36:1279–1285. doi: 10.1016/j.cemconres.2006.01.005. DOI
Darquennes A., Olivier K., Benboudjema F., Gagné R. Self-healing at early-age, a way to improve the chloride resistance of blast-furnace slag cementitious materials. Constr. Build. Mater. 2016;113:1017–1028. doi: 10.1016/j.conbuildmat.2016.03.087. DOI
Li Y., Liu Y., Gong X., Nie Z., Cui S., Wang Z., Chen W. Environmental impact analysis of blast furnace slag applied to ordinary Portland cement production. J. Clean. Prod. 2016;120:221–230. doi: 10.1016/j.jclepro.2015.12.071. DOI
Ward C., French D. Determination of glass content and estimation of glass composition in fly ash using quantitative X-ray diffractometry. Fuel. 2006;85:2268–2277. doi: 10.1016/j.fuel.2005.12.026. DOI
Poon C.S., Qiao X.C., Lin Z.S. Pozzolanic properties of reject fly ash in blended cement pastes. Cem. Concr. Res. 2003;33:1857–1865. doi: 10.1016/S0008-8846(03)00213-8. DOI
Cristelo N., Tavares P., Lucas E., Miranda T., Oliveira D. Quantitative and qualitative assessment of the amorphous phase of a Class F fly ash dissolved during alkali activation reactions–Effect of mechanical activation, solution concentration and temperature. Compos. Part B. 2016;103:1–14. doi: 10.1016/j.compositesb.2016.08.001. DOI
Da Silva P.R., de Brito J. Experimental study of the porosity and microstructure of self-compacting concrete (SCC) with binary and ternary mixes of fly ash and limestone filler. Constr. Build. Mater. 2015;86:101–112. doi: 10.1016/j.conbuildmat.2015.03.110. DOI
Kurda R., de Brito J., Silvestre J.D. Influence of recycled aggregates and high contents of fly ash on concrete fresh properties. Cem. Concr. Compos. 2017;84:198–213. doi: 10.1016/j.cemconcomp.2017.09.009. DOI
Puthipad N., Ouchi M., Rath S., Attachaiyawuth A. Enhancement in self-compactability and stability in volume of entrained air in self-compacting concrete with high volume fly ash. Constr. Build. Mater. 2016;128:349–360. doi: 10.1016/j.conbuildmat.2016.10.087. DOI
Rivera F., Martínez P., Castro J., López M. Massive volume fly-ash concrete: A more sustainable material with fly ash replacing cement and aggregates. Cem. Concr. Compos. 2015;63:104–112. doi: 10.1016/j.cemconcomp.2015.08.001. DOI
Zobal O., Padevet P., Smilauer V., Kopecký L., Bittnar Z. Experimental analysis of mechanical and material properties of concrete Orlik dam after 50 years; Proceedings of the 30th DANUBlA-ADRIA Symposium on Advances in Experimental Mechanics; Primosten, Croatia. 25–28 September 2013; pp. 189–190.
Singh N., Singh S.P. Carbonation resistance and microstructural analysis of Low and High Volume Fly Ash Self Compacting Concrete containing Recycled Concrete Aggregates. Constr. Build. Mater. 2016;127:828–842. doi: 10.1016/j.conbuildmat.2016.10.067. DOI
British Standard . 206: Concrete—Specification, Performance, Production and Conformity. British Standards Institution; London, UK: 2014.
Celik K., Meral C., Petek Gursel A., Mehta P.K., Horvath A., Monteiro P.J.M. Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder. Cem. Concr. Compos. 2015;56:59–72. doi: 10.1016/j.cemconcomp.2014.11.003. DOI
Keppert M., Doušová B., Reiterman P., Koloušek D., Záleská M., Černý R. Application of heavy metals sorbent as reactive component in cementitious composites. J. Clean. Prod. 2018;199:565–573. doi: 10.1016/j.jclepro.2018.07.198. DOI
Huseien G.F., Sam A.R.M., Mirza J., Tahir M.M., Asaad M.A., Ismail M., Shah K.W. Waste ceramic powder incorporated alkali activated mortars exposed to elevated Temperatures: Performance evaluation. Constr. Build. Mater. 2018;187:307–317. doi: 10.1016/j.conbuildmat.2018.07.226. DOI
Holčapek O., Reiterman P., Konvalinka P. Cyclic temperature loading residual flexural strength of refraktory slabs. Acta Polytech. 2017;57:97–104. doi: 10.14311/AP.2017.57.0097. DOI
Pavlík Z., Trník A., Kulovaná T., Scheinherrová L., Rahhal V., Irassar E., Černý R. DSC and TG Analysis of a Blended Binder Based on Waste Ceramic Powder and Portland Cement. Int. J. Thermophys. 2016;37:1–14. doi: 10.1007/s10765-016-2043-3. DOI
Navrátilová E., Rovnaníková P. Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars. Constr. Build. Mater. 2016;120:530–539. doi: 10.1016/j.conbuildmat.2016.05.062. DOI
Kannan D.M., Aboubakr S.H., EL-Dieb A.S., Reda Taha M.M. High performance concrete incorporating ceramic waste powder as large partial replacement of Portland cement. Constr. Build. Mater. 2017;144:35–41. doi: 10.1016/j.conbuildmat.2017.03.115. DOI
Tironi A., Trezza M.A., Scian A.N., Irassar E.F. Assessment of pozzolanic activity of different calcined clays. Cem. Concr. Compos. 2013;37:319–327. doi: 10.1016/j.cemconcomp.2013.01.002. DOI
El-Dieb A.S., Kanaan D.M. Ceramic waste powder an alternative cement replacement—Characterization and evaluation. Sustain. Mater. Technol. 2018;17:e00063. doi: 10.1016/j.susmat.2018.e00063. DOI
Turanli L., Bektas F., Monteiro P.J. Use of ground clay brick as a pozzolanic material to reduce the alkali–Silica reaction. Cem. Concr. Res. 2003;33:1539–1542. doi: 10.1016/S0008-8846(03)00101-7. DOI
Xie T., Visintin P. A unified approach for mix design of concrete containing supplementary cementitious materials based on reactivity moduli. J. Clean. Prod. 2018;203:68–82. doi: 10.1016/j.jclepro.2018.08.254. DOI
Fan C., Miller S.A. Reducing greenhouse gas emissions for prescribed concrete compressive strength. Constr. Build. Mater. 2018;167:918–928. doi: 10.1016/j.conbuildmat.2018.02.092. DOI
Bediako M., Purohir S.S., Kevern J.T. An Investigation into Ghanaian Calcined Clay as a Supplementary Cementitious Material. ACI Mater. J. 2017;114 doi: 10.14359/51700896. DOI
Younsi A., Turcry P., Rozière E., Aït-Mokhtar A., Loukili A. Performance-based design and carbonation of concrete with high fly ash content. Cem. Concr. Compos. 2011;33:993–1000. doi: 10.1016/j.cemconcomp.2011.07.005. DOI
Kayali O., Sharfuddin Ahmed M. Assessment of high volume replacement fly ash concrete—Concept of performance index. Constr. Build. Mater. 2013;39:71–76. doi: 10.1016/j.conbuildmat.2012.05.009. DOI
Gruyaert E., Maes M., De Belie N. Performance of BFS concrete: K-Value concept versus equivalent performance concept. Constr. Build. Mater. 2013;47:441–455. doi: 10.1016/j.conbuildmat.2013.05.006. DOI
Ribeiro A.B., Santos T., Gonçalves A. Performance of concrete exposed to natural carbonation: Use of the k -value concept. Constr. Build. Mater. 2018;175:360–370. doi: 10.1016/j.conbuildmat.2018.04.206. DOI
Deboucha W., Leklou N., Khelidj A., Oudjit M.N. Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): Methodology of calculating the degree of hydration. Constr. Build. Mater. 2017;146:687–701. doi: 10.1016/j.conbuildmat.2017.04.132. DOI
Bhatty J.I., Reid K.J. Use of thermal analysis in the hydration studies of a type 1 portland cement produced from mineral tailings. Thermochim. Acta. 1985;91:95–105. doi: 10.1016/0040-6031(85)85205-9. DOI
Reiterman P., Holčapek O., Zobal O., Keppert M. Freeze-Thaw Resistance of Cement Screed with Various Supplementary Cementitious Materials. Rev. Adv. Mater. Sci. 2019;58:66–74. doi: 10.1515/rams-2019-0006. DOI
Reiterman P. IOP Conference Series: Materials Science and Engineering. Volume 385. IOP Publishing; Bristol, UK: 2018. Estimation of pozzolanic activity of artificial mineral additive using thermal analysis; p. 12046. DOI
De Weerdt K., Haha M.B., Le Saout G., Kjellsen K.O., Justnes H., Lothenbach B. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Concr. Res. 2011;41:279–291. doi: 10.1016/j.cemconres.2010.11.014. DOI
Bílek V., Mec P., Zidek L., Moravec T. Concretes with ternary binders—Thinking about frost resistence. Cem. Wapno Beton. 2015;2015:72.
Monteagudo S.M., Moragues A., Gálvez J.C., Casati M.J., Reyes E. The degree of hydration assessment of blended cement pastes by differential thermal and thermogravimetric analysis. Morphological evolution of the solid phases. Thermochim. Acta. 2014;592:37–51. doi: 10.1016/j.tca.2014.08.008. DOI
British Standard . 196-1 Methods of Testing Cement—Part 1: Determination of Strength. British Standards Institution; London, UK: 2016.
Poon C.S., Lam L., Wong Y.L. A study on high strength concrete prepared with large volumes of low calcium fly ash. Cem. Concr. Res. 2000;30:447–455. doi: 10.1016/S0008-8846(99)00271-9. DOI
Siddique R. Performance characteristics of high-volume Class F fly ash concrete. Cem. Concr. Res. 2004;34:487–493. doi: 10.1016/j.cemconres.2003.09.002. DOI
Han S.-H., Kim J.-K., Park Y.-D. Prediction of compressive strength of fly ash concrete by new apparent activation energy function. Cem. Concr. Res. 2003;33:965–971. doi: 10.1016/S0008-8846(03)00007-3. DOI
De la Varga I., Castro J., Bentz D., Weiss J. Application of internal curing for mixtures containing high volumes of fly ash. Cem. Concr. Compos. 2012;34:1001–1008. doi: 10.1016/j.cemconcomp.2012.06.008. DOI
Atiş C.D. High-Volume Fly Ash Concrete with High Strength and Low Drying Shrinkage. J. Mater. Civ. Eng. 2003;15:153–156. doi: 10.1061/(ASCE)0899-1561(2003)15:2(153). DOI
Oner A., Akyuz S. An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cem. Concr. Compos. 2007;29:505–514. doi: 10.1016/j.cemconcomp.2007.01.001. DOI
Gholampour A., Ozbakkaloglu T. Performance of sustainable concretes containing very high volume Class-F fly ash and ground granulated blast furnace slag. J. Clean. Prod. 2017;162:1407–1417. doi: 10.1016/j.jclepro.2017.06.087. DOI
Kuder K., Lehman D., Berman J., Hannesson G., Shogren R. Mechanical properties of self consolidating concrete blended with high volumes of fly ash and slag. Constr. Build. Mater. 2012;34:285–295. doi: 10.1016/j.conbuildmat.2012.02.034. DOI
Zhao H., Sun W., Wu X., Gao B. The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures. J. Clean. Prod. 2015;95:66–74. doi: 10.1016/j.jclepro.2015.02.050. DOI
Reiterman P., Keppert M. Effect of Ceramic Powder Particle Size Distribution on its Reactivity in Lime-Based Binders. Mater. Sci. Forum. 2017;908:40–44. doi: 10.4028/www.scientific.net/MSF.908.40. DOI
Pacheco-Torgal F., Jalali S. Reusing ceramic wastes in concrete. Constr. Build. Mater. 2010;24:832–838. doi: 10.1016/j.conbuildmat.2009.10.023. DOI
Higashiyama H., Yagishita F., Sano M., Takahashi O. Compressive strength and resistance to chloride penetration of mortars using ceramic waste as fine aggregate. Constr. Build. Mater. 2012;26:96–101. doi: 10.1016/j.conbuildmat.2011.05.008. DOI
Naceri A., Hamina M.C. Use of waste brick as a partial replacement of cement in mortar. Waste Manag. 2009;29:2378–2384. doi: 10.1016/j.wasman.2009.03.026. PubMed DOI
Heikal M., Zohdy K.M., Abdelkreem M. Mechanical, microstructure and rheological characteristics of high performance self-compacting cement pastes and concrete containing ground clay bricks. Constr. Build. Mater. 2013;38:101–109. doi: 10.1016/j.conbuildmat.2012.07.114. DOI
Meddah M.S., Ismail M.A., El-Gamal S., Fitriani H. Performances evaluation of binary concrete designed with silica fume and metakaolin. Constr. Build. Mater. 2018;166:400–412. doi: 10.1016/j.conbuildmat.2018.01.138. DOI