Impact of Carbon Particle Character on the Cement-Based Composite Electrical Resistivity

. 2021 Dec 07 ; 14 (24) : . [epub] 20211207

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34947100

Grantová podpora
20-09072 Czech Science Foundation
19-53-26011 Russian Foundation for Basic Research

Electroconductive cement-based composites are modern materials that are commonly used in many industries such as the construction industry, among others. For example, these materials can be used as sensors for monitoring changes in construction, grounding suspension, and resistance heating materials, etc. The aim of the research presented in this article is to monitor the impact of carbon particle character on cement-based electroconductive composites. Four types of graphite were analyzed. Natural and synthetic types of graphite, with different particle sizes and one with improved electrically conductive properties, were tested. For the analysis of the electrical conductivity of powder raw materials, a new methodology was developed based on the experience of working with these materials. Various types of graphite were tested in pure cement paste (80% cement, 20% graphite) as well as in a composite matrix, which consisted of cement (16.8%), a mixture of silica sand 0-4 mm (56.4%), graphite filler (20.0%) ground limestone (6.7%) and super plasticizers (0.1%). The resistivity and physical-mechanical properties of the composite material were determined. Furthermore, the resistivity of the test samples was measured with a gradual decrease in saturation. It may be concluded that graphite fillers featuring very fine particles and high specific surface are most suitable and most effective for creating electrically conductive silicate composites. The amount, shape and, in particular, the fineness of the graphite filler particles thus creates suitable conditions for the creation of an integrated internal electricity-conductive network. In the case of the use of a coarse type of graphite or purely non-conductive fillers, the presence of an electrolyte, for example, in the form of water, is necessary to achieve a low resistivity. Samples with fine types of graphite fillers achieved stable resistivity values when the sample humidity changed. The addition of graphite fillers caused a large decrease in the strength of the samples.

Zobrazit více v PubMed

Zhang L., Li L., Wang Y., Yu X., Han B. Multifunctional cement-based materials modified with electrostatic self-assembled CNT/TiO2 composite filler. Constr. Build. Mater. 2020;238:117787. doi: 10.1016/j.conbuildmat.2019.117787. DOI

Melichar T., Bydžovský J., Dufka Á. Composites based on alternative raw materials at high temperature conditions. Period. Polytech. Civ. Eng. 2017;61:911–919. doi: 10.3311/PPci.9820. DOI

Singh V.P., Kumar M., Srivastava R.S., Vaish R. Thermoelectric energy harvesting using cement-based composites: A review. Mater. Today Energy. 2021;21:100714. doi: 10.1016/j.mtener.2021.100714. DOI

El-Dieb A.S., El-Ghareeb M.A., Abdel-Rahman MA H., Nasr E.S.A. Multifunctional electrically conductive concrete using different fillers. J. Build. Eng. 2018;15:61–69. doi: 10.1016/j.jobe.2017.10.012. DOI

El-Enein S.A.A., Hanna M. Electrical conductivity of concrete containing silica fume. Cem. Concr. Res. 1995;25:1615–1620. doi: 10.1016/0008-8846(95)00156-5. DOI

McCarter W.J., Starrs G., Chrisp T.M. Electrical conductivity, diffusion, and permeability of Portland cement-based mortars. Cem. Concr. Res. 2000;30:1395–1400. doi: 10.1016/S0008-8846(00)00281-7. DOI

Cosarinsky G., Fava J., Ruch M., Bonomi A. Material characterization by electrical conductivity assessment using impedance analysis. Procedia Mater. Sci. 2015;9:156–162. doi: 10.1016/j.mspro.2015.04.020. DOI

Terashita K., Tanaka T., Nishimura K., Miyanami K. Continuous kneading for electrically conductive composite materials and evaluation of filler dispersion state. Bull. Univ. Osaka Prefect. Ser. A Eng. Nat. Sci. 1993;42:51–67.

Wu J., Liu J., Yang F. Three-phase composite conductive concrete for pavement deicing. Constr. Build. Mater. 2015;2015:129–135. doi: 10.1016/j.conbuildmat.2014.11.004. DOI

Yehia S., Tuan C.Y. Conductive concrete overlay for bridge deck deicing. ACI Mater. J. 1999;96:382–390.

Danoglidis P.A., Konsta-Gdoutos M.S., Shah S.P. Relationship between the carbon nanotube dispersion state, electrochemical impedance and capacitance and mechanical properties of percolative nanoreinforced OPC mortars. Carbon. 2019;145:218–228. doi: 10.1016/j.carbon.2018.12.088. DOI

Mori T., Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973;21:571–574. doi: 10.1016/0001-6160(73)90064-3. DOI

Dehghanpour H., Yilmaz K., Ipek M. Evaluation of recycled nano carbon black and waste erosion wires in electrically conductive concretes. Constr. Build. Mater. 2019;221:109–121. doi: 10.1016/j.conbuildmat.2019.06.025. DOI

Arabzadeh A., Ceylan H., Kim S., Gopalakrishnan K., Sassani A. Fabrication of polytetrafluoroethylene-coated asphalt concrete biomimetic surfaces: A nanomaterials-based pavement winter maintenance approach. Int. Conf. Transp. Dev. 2016;2016:54–64.

Arabzadeh A., Ceylan H., Kim S., Gopalakrishnan K., Sassani A., Sundararajan S., Taylor P.C. Superhydrophobic coatings on Portland cement concrete surfaces. Constr. Build. Mater. 2017;141:393–401. doi: 10.1016/j.conbuildmat.2017.03.012. DOI

Ceylan H., Arabzadeh A., Sassani A., Kim S., Gopalakrishnan K. Innovative Nano-engineered asphalt concrete for ice and snow controls in pavement systems; Proceedings of the 6th Eurasphalt & Eurobitume Congress; Prague, Czech Republic. 1–3 June 2016.

Arabzadeh A., Ceylan H., Kim S., Gopalakrishnan K., Sassani A., Sundararajan S., Taylor P.C., Abdullah A. Influence of deicing salts on the water-repellency of Portland cement concrete coated with polytetrafluoroethylene and polyetheretherketone; Proceedings of the International Conference on Highway Pavements and Airfield Technology 2017; Philadelphia, PA, USA. 27–30 August 2017; Reston, VA, USA: ASCE; 2017.

Whittington H., McCarter J., Forde M. The conduction of electricity through concrete. Mag. Concr. Res. 1981;33:48–60. doi: 10.1680/macr.1981.33.114.48. DOI

Tang Z., Li Z., Qian J., Wang K. Experimental study on deicing performance of carbon fiber reinforced conductive concrete. J. Mater. Sci. Technol. 2005;21:113–117.

Donnini J., Bellezze T., Corinaldesi V. Mechanical, electrical and self-sensing properties of cementitious mortars containing short carbon fibers. J. Build. Eng. 2018;20:8–14. doi: 10.1016/j.jobe.2018.06.011. DOI

Arabzadeh A., Notani M.A., Kazemiyan Zadeh A., Nahvi A., Sassani A., Ceylan H. Electrically conductive asphalt concrete: An alternative for automating the winter maintenance operations of transportation infrastructure. Compos. Part B Eng. 2019;173:106985. doi: 10.1016/j.compositesb.2019.106985. DOI

Pantoja J.J., Roman F., Amortegui F., Rivera C. Lightning grounding system of a tall-mast for human safety. Electr. Power Syst. Res. 2017;153:119–127. doi: 10.1016/j.epsr.2017.02.013. DOI

Gomes C., Diego A.G. Lightning protection scenarios of communication tower sites; human hazards and equipment damage. Saf. Sci. 2011;49:1355–1364. doi: 10.1016/j.ssci.2011.05.006. DOI

Zhang J., Xu L., Zhao Q. Investigation of carbon fillers modified electrically conductive concrete as grounding electrodes for transmission towers: Computational model and case study. Constr. Build. Mater. 2017;145:347–353. doi: 10.1016/j.conbuildmat.2017.03.223. DOI

Abdul Hamead A.A., Ahmed S.S., Ahmed Azzat S.R., Abed M.S., Zubaidi A.B., Hammod G.K. Employing recycling materials for the fabrication of smart mortar. Mater. Today Proc. 2020;20:397–402. doi: 10.1016/j.matpr.2019.09.154. DOI

Plugin A.A., Pluhin O.A., Kasyanov V.V., Dyomina O.I., Bondarenko D.O. Portland cement-based penetrating electrically conductive composition for protection against electrocorrosion. Funct. Mater. 2021;28:121–130. doi: 10.15407/fm28.01.121. DOI

Pluhin O., Plugin A., Plugin D., Borziak O., Dudin O. The effect of structural characteristics on electrical and physical properties of electrically conductive compositions based on mineral binders. Matec Web Conf. 2017;116:01013. doi: 10.1051/matecconf/201711601013. DOI

Lopanov A.N., Fanina E.A., Guzeeva O.N. Cement-quartz electrically conductive composites based on graphite dispersions. ARPN J. Eng. Appl. Sci. 2014;9:2250–2253.

Afroughsabet V., Ozbakkaloglu T. Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Constr. Build. Mater. 2015;94:73–82. doi: 10.1016/j.conbuildmat.2015.06.051. DOI

Alvarez G.L., Nazari A., Bagheri A., Sanjayan J.G., De Lange C. Microstructure, electrical and mechanical properties of steel fibres reinforced cement mortars with partial metakaolin and limestone addition. Constr. Build. Mater. 2017;135:8–20. doi: 10.1016/j.conbuildmat.2016.12.170. DOI

Androvitsaneas V.P., Gonos I.F., Stathopulos I.A. Experimental study on transient impedance of grounding rods encased in ground enhancing compounds. Electr. Power Syst. Res. 2016;139:109–115. doi: 10.1016/j.epsr.2015.11.032. DOI

Shi C. Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test (ASTM C1202 or ASSHTO T277) results. Cem. Concr. Res. 2004;34:537–545. doi: 10.1016/j.cemconres.2003.09.007. DOI

Gui Q., Qin M., Li K. Gas permeability and electrical conductivity of structural concretes: Impact of pore structure and pore saturation. Cem. Concr. Res. 2016;89:109–119. doi: 10.1016/j.cemconres.2016.08.009. DOI

Otten K.A., Brischke C., Meyer C. Material moisture content of wood and cement mortars—Electrical resistance-based measurements in the high ohmic range. Constr. Build. Mater. 2017;153:640–646. doi: 10.1016/j.conbuildmat.2017.07.090. DOI

Gawel K., Khadrbeik MA T., Bjørge R., Wenner S., Gawel B., Ghaderi A., Cerasi P. Effects of water content and temperature on bulk resistivity of hybrid cement/carbon nanofiber composites. Materials. 2020;13:2884. doi: 10.3390/ma13132884. PubMed DOI PMC

Alderete N., Villagrán Zaccardi Y., Snoeck D., Van Belleghem B., Van den Heede P., Van Tittelboom K., De Belie N. Capillary imbibition in mortars with natural pozzolan, limestone powder and slag evaluated through neutron radiography, electrical conductivity, and gravimetric analysis. Cem. Concr. Res. 2019;118:57–68. doi: 10.1016/j.cemconres.2019.02.011. DOI

Kim J., Suryanto B., McCarter W.J. Conduction, relaxation and complex impedance studies on Portland cement mortars during freezing and thawing. Cold Reg. Sci. Technol. 2019;166:102819. doi: 10.1016/j.coldregions.2019.102819. DOI

Liu K., Cheng X., Li J., Gao X., Cao Y., Guo X., Zhang C. Effects of microstructure and pore water on electrical conductivity of cement slurry during early hydration. Compos. Part B Eng. 2019;177:107435. doi: 10.1016/j.compositesb.2019.107435. DOI

Khajehnouri Y., Chouteau M., Rivard P., Bérubé C. Measuring electrical properties of mortar and concrete samples using the spectral induced polarization method: Laboratory set-up. Constr. Build. Mater. 2019;210:1–12. doi: 10.1016/j.conbuildmat.2019.03.160. DOI

Kim T., Ley M.T., Kang S., Davis J.M., Kim S., Amrollahi P. Using particle composition of fly ash to predict concrete strength and electrical resistivity. Cem. Concr. Compos. 2020;107:103493. doi: 10.1016/j.cemconcomp.2019.103493. DOI

Layssi H., Ghods P., Alizadeh A.R., Salehi M. Electrical resistivity of concrete. Concr. Int. 2015;37:41–46.

Baeza F.J., Galao O., Vegas I.J., Cano M., Garcés P. Influence of recycled slag aggregates on the conductivity and strain sensing capacity of carbon fiber reinforced cement mortars. Constr. Build. Mater. 2018;184:311–319. doi: 10.1016/j.conbuildmat.2018.06.218. DOI

Yehia S.A., Tuan C.Y. Thin conductive concrete overlay for bridge deck deicing and anti-icing. Transp. Res. Rec. 2007;1698:45–53. doi: 10.3141/1698-07. DOI

Banthia N., Djeridane S., Pigeon M. Electrical resistivity of carbon and steel micro-fiber reinforced cements. Cem. Concr. Res. 1992;22:804–814. doi: 10.1016/0008-8846(92)90104-4. DOI

Tuan C.Y. Electrical resistance heating of conductive concrete containing steel fibers and shavings. Mater. J. 2004;101:65–71.

Zhang D., Le H., Yan X., Yuan T., Li J. Preparation of steel fiber/graphite con- ductive concrete for grounding in substation; Proceedings of International Conference of High Voltage Engineering and Application; Poznan, Poland. 8–11 September 2014.

Liu Q., Liu Y., Tang S., Cheng J., Chen Y., Wang F., Lv Z. Effects of morphological characteristics of graphite fi llers on the thermal conductivity of the graphite / copper composites fabricated by vacuum hot pressing sintering. Vacuum. 2019;167:199–206. doi: 10.1016/j.vacuum.2019.06.011. DOI

Anwar M.S., Suitha B., Vedalakshmi R. Light-weight cementitious anode for impressed current cathodic protection of steel reinforced concrete application. Constr. Build. Mater. 2014;71:167–180. doi: 10.1016/j.conbuildmat.2014.08.032. DOI

Sassani A., Ceylan H., Kim S., Gopalakrishnan K., Arabzadeh A., Taylor P.C. Influence of mix design variables on engineering properties of carbon fiber-modified electrically conductive concrete. Constr. Build. Mater. 2017;152:168–181. doi: 10.1016/j.conbuildmat.2017.06.172. DOI

Holčapek O., Reiterman P., Konvalinka P. Applicability of carbon fibres in refractory cement composites. Acta Polytech. 2018;58:346–354. doi: 10.14311/AP.2018.58.0346. DOI

Sassani A., Arabzadeh A., Ceylan H., Kim S., Sadati S.M.S., Gopalakrishnan K., Abdualla H. Carbon fiber-based electrically conductive concrete for salt-free deicing of pavements. J. Clean. Prod. 2018;203:799–809. doi: 10.1016/j.jclepro.2018.08.315. DOI

Kim G.M., Yoon H.N., Lee H.K. Autogenous shrinkage and electrical characteristics of cement pastes and mortars with carbon nanotube and carbon fiber. Constr. Build. Mater. 2018;177:428–435. doi: 10.1016/j.conbuildmat.2018.05.127. DOI

Galao O., Baeza F.J., Zornoza E., Garcés P. Strain and damage sensing properties on multifunctional cement composites with CNF admixture. Cem. Concr. Compos. 2014;46:90–98. doi: 10.1016/j.cemconcomp.2013.11.009. DOI

Wen S., Chung D.D.L. A comparative study of steel- and carbon-fiber cement as piezoresistive strain sensors. Adv. Cem. Res. 2003;15:119–128. doi: 10.1680/adcr.2003.15.3.119. DOI

Wen S., Chung D.D.L. Strain-sensing characteristics of carbon fiber-reinforced cement. Mater. J. 2005;102:244–248.

Zhu S., Chung D.D.L. Numerical assessment of the methods of measurement of the electrical resistance in carbon fiber reinforced cement. Smart Mater. Struct. 2007;16:1164–1170. doi: 10.1088/0964-1726/16/4/026. DOI

Xu J., Yao W. Current distribution in reinforced concrete cathodic protection system with conductive mortar overlay anode. Constr. Build. Mater. 2009;23:2220–2226. doi: 10.1016/j.conbuildmat.2008.12.002. DOI

He Y., Lu L., Jin S., Hu S. Conductive aggregate prepared using graphite and clay and its use in conductive mortar. Constr. Build. Mater. 2014;53:131–137. doi: 10.1016/j.conbuildmat.2013.11.085. DOI

Camacho-Ballesta C., Zornoza E., Garcés P. Performance of cement-based sensors with CNT for strain sensing. Adv. Cem. Res. 2016;28:274–284. doi: 10.1680/adcr.14.00120. DOI

García-Macías E., D’Alessandro A., Castro-Triguero R., Pérez-Mira D., Ubertini F. Micromechanics modeling of the electrical conductivity of carbon nanotube cement-matrix composites. Compos. Part B Eng. 2017;108:451–469. doi: 10.1016/j.compositesb.2016.10.025. DOI

Konsta-Gdoutos M.S., Batis G., Danoglidis P.A., Zacharopoulou A.K., Zacharopoulou E.K., Falara M.G., Shah S.P. Effect of CNT and CNF loading and count on the corrosion resistance, conductivity and mechanical properties of nanomodified OPC mortars. Constr. Build. Mater. 2017;147:48–57. doi: 10.1016/j.conbuildmat.2017.04.112. DOI

Azhari F., Banthia N. Cement-based sensors with carbon fibers and carbon nanotubes for piezoresistive sensing. Cem. Concr. Compos. 2012;34:866–873. doi: 10.1016/j.cemconcomp.2012.04.007. DOI

Kim G.M., Park S.M., Ryu G.U., Lee H.K. Electrical characteristics of hierarchical conductive pathways in cementitious composites incorporating CNT and carbon fiber. Cem. Concr. Compos. 2017;82:165–175. doi: 10.1016/j.cemconcomp.2017.06.004. DOI

Park H.M., Kim G.M., Lee S.Y., Jeon H., Kim S.Y., Kim M., Kim J.W., Jung Y.C., Yang B.J. Electrical resistivity reduction with pitch-based carbon fiber into multi-walled carbon nanotube (MWCNT)-embedded cement composites. Constr. Build. Mater. 2018;165:484–493. doi: 10.1016/j.conbuildmat.2017.12.205. DOI

Zuo J., Yao W., Liu X., Qin J. Sensing properties of carbon nanotube–carbon fiber/cement nanocomposites. J. Test. Eval. 2012;40:838–843. doi: 10.1520/JTE20120092. DOI

Baeza F.J., Galao O., Zornoza E., Garcés P. Effect of aspect ratio on strain sensing capacity of carbon fiber reinforced cement composites. Mater. Des. 2013;51:1085–1094. doi: 10.1016/j.matdes.2013.05.010. DOI

López-Pernía C., Muñoz-Ferreiro C., González-Orellana C., Morales-Rodríguez A., Gallardo-López Poyato R. Optimizing the homogenization technique for graphene nanoplatelet/yttria tetragonal zirconia composites: Influence on the microstructure and the electrical conductivity. J. Alloy. Compd. 2018;767:994–1002. doi: 10.1016/j.jallcom.2018.07.199. DOI

Rhee I., Lee J.S., Kim Y.A., Kim J.H., Kim J.H. Electrically conductive cement mortar: Incorporating rice husk-derived high-surface-area graphene. Constr. Build. Mater. 2016;125:632–642. doi: 10.1016/j.conbuildmat.2016.08.089. DOI

Payot F., Begin D., Celzard A., Mareche J.F., Furdin G. Electrical conductivity of anthracites as a function of heat treatment temperature. Carbon. 2000;38:1207–1215. doi: 10.1016/S0008-6223(99)00246-8. DOI

Li H., Xiao H., Ou J. Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites. Cem. Concr. Compos. 2006;28:824–828. doi: 10.1016/j.cemconcomp.2006.05.004. DOI

Monteiro A.O., Cachim P.B., Costa P.M.F.J. Electrical properties of cement-based composites containing carbon black particles. Mater. Today. 2015;2:193–199. doi: 10.1016/j.matpr.2015.04.021. DOI

Liu Y., Song C., Lv G., Fan C., Zhang X. Relationships between the electrical properties and nanostructure of soot particles in a laminar inverse diffusion flame. Proc. Combust. Inst. 2019;37:1185–1192. doi: 10.1016/j.proci.2018.06.090. DOI

Velay-Lizancos M., Azenha M., Martínez-Lage I., Vázquez-Burgo P. Addition of biomass ash in concrete: Effects on E-Modulus, electrical conductivity at early ages and their correlation. Constr. Build. Mater. 2017;157:1126–1132. doi: 10.1016/j.conbuildmat.2017.09.179. DOI

García Á., Schlangen E., van de Ven M., Liu Q. Electrical conductivity of asphalt mortar containing conductive fibers and fillers. Constr. Build. Mater. 2009;23:3175–3181. doi: 10.1016/j.conbuildmat.2009.06.014. DOI

Rew Y., Baranikumar A., Tamashausky A.V., El-Tawil S., Park P. Electrical and mechanical properties of asphaltic composites containing carbon based fillers. Constr. Build. Mater. 2017;135:394–404. doi: 10.1016/j.conbuildmat.2016.12.221. DOI

Wang H., Yang J., Liao H., Chen X. Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers. Constr. Build. Mater. 2016;122:184–190. doi: 10.1016/j.conbuildmat.2016.06.063. DOI

Zeng X., Xie Y., Deng D. Conductivity behavior of the fresh CA mortar and its relationship with the fluidity properties. Constr. Build. Mater. 2012;36:890–894. doi: 10.1016/j.conbuildmat.2011.10.037. DOI

Rovnaník P., Kusák I., Bayer P., Schmid P., Fiala L. Comparison of electrical and self-sensing properties of Portland cement and alkali-activated slag mortars. Cem. Concr. Res. 2019;118:84–91. doi: 10.1016/j.cemconres.2019.02.009. DOI

Lunak M., Kusak I., Chobola Z. Carbon admixtures influence on the electrical properties of slag mortars focusing on alternating conductivity and permittivity. Procedia Eng. 2016;151:236–240. doi: 10.1016/j.proeng.2016.07.359. DOI

Nayak S., Das S. Spatial damage sensing ability of metallic particulate-reinforced cementitious composites: Insights from electrical resistance tomography. Mater. Des. 2019;175:107817. doi: 10.1016/j.matdes.2019.107817. DOI

Norambuena-Contreras J., Quilodran J., Gonzalez-Torre I., Chavez M., Borinaga-Treviño R. Electrical and thermharacterizationion of cement-based mortars containing recycled metallic waste. J. Clean. Prod. 2018;190:737–751. doi: 10.1016/j.jclepro.2018.04.176. DOI

Guo W., Hu J., Wang Y., Zhang Z., Yin S., Wei J., Yu Q. Preparation and performance of conductive mortar based on lightweight conductive aggregates. Constr. Build. Mater. 2017;156:340–350. doi: 10.1016/j.conbuildmat.2017.08.186. DOI

Bragança M.O.G.P., Portella K.F., Bonato M.M., Marino C.E.B. Electrochemical impedance behavior of mortar subjected to a sulfate environment—A comparison with chloride exposure models. Constr. Build. Mater. 2014;68:650–658. doi: 10.1016/j.conbuildmat.2014.06.040. DOI

Flores Medina N., del Mar Barbero-Barrera M., Jové-Sandoval F. Improvement of the mechanical and physical properties of cement pastes and mortars through the addition isostatic graphite. Constr. Build. Mater. 2018;189:898–905. doi: 10.1016/j.conbuildmat.2018.09.055. DOI

Chen P.H., Chung D.D.L. Comparative evaluation of cement-matrix composites with distributed versus networked exfoliated graphite. Carbon. 2013;63:446–453. doi: 10.1016/j.carbon.2013.06.097. DOI

Fulham-Lebrasseur R., Sorelli L., Conciatori D. Development of electrically conductive concrete and mortars with hybrid conductive inclusions. Constr. Build. Mater. 2020;237:117470. doi: 10.1016/j.conbuildmat.2019.117470. DOI

Duran-Herrera A., De-León-Esquivel J., Bentz D.P., Valdez-Tamez P. Self-compacting concretes using fly ash and fine limestone powder: Shrinkage and surface electrical resistivity of equivalent mortars. Constr. Build. Mater. 2019;199:50–62. doi: 10.1016/j.conbuildmat.2018.11.191. DOI

Belli A., Mobili A., Bellezze T., Tittarelli F. Commercial and recycled carbon/steel fibers for fiber-reinforced cement mortars with high electrical conductivity. Cem. Concr. Compos. 2020;109:103569. doi: 10.1016/j.cemconcomp.2020.103569. DOI

EN 197-1—Composition, Specifications and Conformity Criteria for Common Cements. European Committee for Standardization (CEN); Brussels, Belgium: 2011.

EN 12620:2002+A1:2013—Aggregates for Concrete. European Committee for Standardization (CEN); Brussels, Belgium: 2013.

EN 934-1—Admixtures for Concrete, Mortar and Grout—Part 1: Common Requirements. European Committee for Standardization (CEN); Brussels, Belgium: 2008.

EN 1015-3 Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table) European Committee for Standardization (CEN); Brussels, Belgium: 1999.

EN 1097-3—Tests for Mechanical and Physical Properties of Aggregates—Part 3: Determination of Loose Bulk Density and Voids. European Committee for Standardization (CEN); Brussels, Belgium: 1998.

EN 1097-6—Tests for Mechanical and Physical Properties of Aggregates—Part 6: Determination of Particle Density and Water Absorption. European Committee for Standardization (CEN); Brussels, Belgium: 2013.

EN 933-1—Tests for Geometrical Properties of Aggregates—Part 1: Determination of Particle Size Distribution—Sieving Method. European Committee for Standardization (CEN); Brussels, Belgium: 2012.

EN 13055—Lightweight Aggregates. European Committee for Standardization (CEN); Brussels, Belgium: 2016.

EN 196-1—Methods of Testing Cement—Part 1: Determination of Strength. European Committee for Standardization (CEN); Brussels, Belgium: 2016.

EN 12390-5—Testing Hardened Concrete—Part 5: Flexural Strength of Test Specimens. European Committee for Standardization (CEN); Brussels, Belgium: 2019.

EN 12390-4—Testing Hardened Concrete—Part 4: Compressive Strength—Specification for Testing Machines. European Committee for Standardization (CEN); Brussels, Belgium: 2019.

EN 12390-3—Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. European Committee for Standardization (CEN); Brussels, Belgium: 2019.

Xu D., Cheng X., Banerjee S., Huang S. Dielectric and electromechanical properties of modified cement/polymer based 1-3 connectivity piezoelectric composites containing inorganic fillers. Compos. Sci. Technol. 2015;114:72–78. doi: 10.1016/j.compscitech.2015.04.006. DOI

Xie N., Shi X., Feng D., Kuang B., Li H. Percolation backbone structure analysis in electrically conductive carbon fiber reinforced cement composites. Compos. Part B Eng. 2012;43:3270–3275. doi: 10.1016/j.compositesb.2012.02.032. DOI

Tumidajski P.J. Electrical conductivity of Portland cement mortars. Cem. Concr. Res. 1996;26:529–534. doi: 10.1016/0008-8846(96)00027-0. DOI

Zhang L., Ding S., Han B., Yu X., Ni Y.-Q. Effect of water content on the piezoresistive property of smart cement-based materials with carbon nanotube/nanocarbon black composite filler. Compos. Part A Appl. Sci. Manuf. 2019;119:8–20. doi: 10.1016/j.compositesa.2019.01.010. DOI

Tzounis L., Liebscher M., Fuge R., Leonhardt A., Mechtcherine V. P- and n-type thermoelectric cement composites with CVD grown p- and n-doped carbon nanotubes: Demonstration of a structural thermoelectric generator. Energy Build. 2019;191:151–163. doi: 10.1016/j.enbuild.2019.03.027. DOI

Princigallo A., Van Breugel K., Levita G. Influence of the aggregate on the electrical conductivity of Portland cement concretes. Cem. Concr. Res. 2003;33:1755. doi: 10.1016/S0008-8846(03)00166-2. DOI

Wen S., Chung D.D.L. The role of electronic and ionic conduction in the electrical conductivity of carbon fiber reinforced cement. Carbon. 2006;44:2130–2138. doi: 10.1016/j.carbon.2006.03.013. DOI

Sun M., Li Z., Mao Q., Shen D. Study of the hole conduction phenomenon in carbon fiber-reinforced concrete. Cem. Concr. Res. 1998;28:549–554. doi: 10.1016/S0008-8846(98)00011-8. DOI

Chen P.-W., Chung D.D.L. Improving the electrical conductivity of composites comprised of short conducting fibers in a non-conducting matrix: The addition of a non-conducting particulate filler. J. Electron. Mater. 1995;24:47–51. doi: 10.1007/BF02659726. DOI

Guerrero V.H., Wang S., Wen S., Chung D.D.L. Thermoelectric property tailoring by composite engineering. J. Mater. Sci. 2002;37:4127–4136. doi: 10.1023/A:1020083718789. DOI

Wang D., Wang Q., Huang Z. Investigation on the poor fluidity of electrically conductive cement-graphite paste: Experiment and simulation. Mater. Des. 2019;169:107679. doi: 10.1016/j.matdes.2019.107679. DOI

Chougan M., Marotta E., Lamastra F.R., Vivio F., Montesperelli G., Ianniruberto U., Bianco A. A systematic study on EN-998-2 premixed mortars modified with graphene-based materials. Constr. Build. Mater. 2019;227:116701. doi: 10.1016/j.conbuildmat.2019.116701. DOI

Alatawna A., Birenboim M., Nadiv R., Buzaglo M., Peretz-Damari S., Peled A., Regev O., Sripada R. The effect of compatibility and dimensionality of carbon nanofillers on cement composites. Constr. Build. Mater. 2020;232:117141. doi: 10.1016/j.conbuildmat.2019.117141. DOI

Lamastra F.R., Chougan M., Marotta E., Ciattini S., Ghaffar S.H., Caporali S., Bianco A. Toward a better understanding of multifunctional cement-based materials: The impact of graphite nanoplatelets (GNPs) Ceram. Int. 2021;47:20019–20031. doi: 10.1016/j.ceramint.2021.04.012. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...