Electrically conductive composite materials with incorporated waste and secondary raw materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FAST-J- 23-8185
Ministry of Education, Youth and Sports of the Czech Republic
21-29680S
Czech Science Foundation
PubMed
37270613
PubMed Central
PMC10239513
DOI
10.1038/s41598-023-36287-x
PII: 10.1038/s41598-023-36287-x
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Silicate composites have very low conductivity in general. It is possible to achieve an electrical resistivity decrease by adding an electro-conductive filler. The conductive mixture consists of cementitious binder, various types of silica sand, and graphite-based conductive fillers. One of the research focusses is partial substitution of ordinary raw materials by alternative components (waste materials by-products and secondary raw materials) and its influence on composite properties. The alternative components studied were fly ash as a partial binder replacement, waste graphite from two different sources and steel shavings as a substitute for conductive filler. Resistivity of cured conductive silicate-based specimens was analysed in relation to changes in physico-mechanical properties in context of microstructural changes in the hardened cementitious matrix (by optical and scanning electron microscopy with energy disperse analysis). Partial substitution of cement by fly ash was found to reduce the electrical resistivity of the composite. Some of the waste graphite fillers significantly reduce the resistivity of the cement composite and increase the compressive strength. It was proven, that is possible to replace primary conductive fillers by secondary raw materials.
Zobrazit více v PubMed
Kim GM, Park SM, Ryu GU, Lee HK. Electrical characteristics of hierarchical conductive pathways in cementitious composites incorporating CNT and carbon fiber. Cem. Concr. Compos. 2017;82:165–175. doi: 10.1016/J.CEMCONCOMP.2017.06.004. DOI
Collinson M, Stief P, Dantan J, Etienne A, Siadat A. The effect of type of mechanical processing electrical conductivity and piezoresistive response of CNT and graphite composites. Proced. CIRP. 2019;85:314–320. doi: 10.1016/j.procir.2019.10.001. DOI
Zhu H, Zhou H, Gou H. Evaluation of carbon fiber dispersion in cement-based materials using mechanical properties, conductivity, mass variation coefficient, and microstructure. Constr. Build. Mater. 2021;266:120891. doi: 10.1016/J.CONBUILDMAT.2020.120891. DOI
Lin F, Bhatia GS, Ford JD. Thermal conductivities of powder-filled epoxy resins. J. Appl. Polym. Sci. 1993;49(11):1901–1908. doi: 10.1002/app.1993.070491105. DOI
Deng L, Ma Y, Hu J, Yin S, Ouyang X, Fu J, Zhang Z. Preparation and piezoresistive properties of carbon fiber-reinforced alkali-activated fly ash/slag mortar. Constr. Build. Mater. 2019;222:738–749. doi: 10.1016/J.CONBUILDMAT.2019.06.134. DOI
Rovnaník P, Kusák I, Bayer P, Schmid P, Fiala L. Comparison of electrical and self-sensing properties of Portland cement and alkali-activated slag mortars. Cem. Concr. Res. 2019;118:84–91. doi: 10.1016/J.CEMCONRES.2019.02.009. DOI
Wu J, Liu J, Yang F. Three-phase composite conductive concrete for pavement deicing. Constr. Build. Mater. 2015;75:129–135. doi: 10.1016/j.conbuildmat.2014.11.004. DOI
Saslow WM. Ohm’s law: Electric current is driven by Emf, and limited by electrical resistance. Electr. Magn. Light. 2002 doi: 10.1016/B978-012619455-5.50007-3. DOI
Mo X, Zhou H, Li W, Xu Z, Duan J, Huang L, Zhou J. Piezoelectrets for wearable energy harvesters and sensors. Nano Energy. 2019 doi: 10.1016/J.NANOEN.2019.104033. DOI
Belli A, Mobili A, Bellezze T, Tittarelli F. Commercial and recycled carbon/steel fibers for fiber-reinforced cement mortars with high electrical conductivity. Cem. Concr. Compos. 2020;109:103569. doi: 10.1016/j.cemconcomp.2020.103569. DOI
García Á, Schlangen E, van de Ven M, Liu Q. Electrical conductivity of asphalt mortar containing conductive fibers and fillers. Constr. Build. Mater. 2009;23(10):3175–3181. doi: 10.1016/j.conbuildmat.2009.06.014. DOI
Terashita K, Tanaka T, Nishimura K, Miyanami K. Continuous kneading for electrically conductive composite materials and evaluation of filler dispersion state. Bull. Univ. Osaka Prefect. Ser. A Eng. Natl. Sci. 1993;42(1):51–67.
Yehia SA, Tuan CY. Conductive concrete overlay for bridge deck deicing. ACI Mater. J. 1999;96(3):382–390.
Qin Z, Wang Y, Mao X. Development of graphite electrically conductive concrete and application in grounding engineering. New Build. Mater. 2009;11:46–48.
Liu Y, Song C, Lv G, Fan C, Zhang X, Qiao Y. Relationships between the electrical properties and nanostructure of soot particles in a laminar inverse diffusion flame. Proc. Combust. Inst. 2019;37(1):1185–1192. doi: 10.1016/J.PROCI.2018.06.090. DOI
Wei J, Zhang Q, Zhao L, Hao L, Nie Z. Effect of moisture on the thermoelectric properties in expanded graphite/carbon fiber cement composites. Ceram. Int. 2017;43(14):10763–10769. doi: 10.1016/j.ceramint.2017.05.088. DOI
Princigallo A, Van Breugel K, Levita G. Influence of the aggregate on the electrical conductivity of Portland cement concretes. Cem. Concr. Res. 2003;33(11):1755–1763. doi: 10.1016/S0008-8846(03)00166-2. DOI
Donnini J, Bellezze T, Corinaldesi V. Mechanical, electrical and self-sensing properties of cementitious mortars containing short carbon fibers. J. Build. Eng. 2018;20:8–14. doi: 10.1016/J.JOBE.2018.06.011. DOI
Chung DDL, Chung DDL. Carbon Composites. Elsevier; 2017. Carbon fibers, nanofibers, and nanotubes; pp. 1–87.
López-Pernía C, Muñoz-Ferreiro C, González-Orellana C, Morales-Rodríguez A, Gallardo-López RP. Optimizing the homogenization technique for graphene nanoplatelet/yttria tetragonal zirconia composites: Influence on the microstructure and the electrical conductivity. J. Alloys Compd. 2018;767:994–1002. doi: 10.1016/j.jallcom.2018.07.199. DOI
El-Dieb AS, El-Ghareeb MA, Abdel-Rahman MAH, Nasr ESA. Multiconductive electrically conductive concrete using different fillers. J. Build. Eng. 2018;15:61–69. doi: 10.1016/J.JOBE.2017.10.012. DOI
Melichar T, Bydžovský J, Dufka Á. Composites based on alternative raw materials at high temperature conditions. Period. Polytech. Civil Eng. 2017;61(4):911–919. doi: 10.3311/PPci.9820. DOI
Doušová B, Bedrnová E, Reiterman P, Keppert M, Koloušek D, Lhotka M, Mastný L. Adsorption properties of waste building sludge for environmental protection. Minerals. 2021;11(3):1–10. doi: 10.3390/min11030309. DOI
Raja RS, Manisekar K, Manikandan V. Effect of fly ash filler size on mechanical properties of polymer matrix composites. Int. J. Min. Metall. Mech. Eng. 2013;1(1):34–38.
McCarter W, Starrs G, Chrisp T. Electrical conductivity, diffusion, and permeability of Portland cement-based mortars. Cem. Concr. Res. 2000;30(9):1395–1400. doi: 10.1016/S0008-8846(00)00281-7. DOI
Fulham-Lebrasseur R, Sorelli L, Conciatori D. Development of electrically conductive concrete and mortars with hybrid conductive inclusions. Constr. Build. Mater. 2020;237:117470. doi: 10.1016/J.conbuildmat.2019.117470. DOI
Černý, V., Yakovlev, G., Drochytka, R., Baránek, Š., Mészárosová, L., Melichar, J., Hermann, R. Impact of Carbon Particle Character on the Cement-Based Composite Electrical Resistivity. Materials 2021, 14. ISSN 1996–1944. doi:10.3390/ma14247505 PubMed PMC
EN 197–1, Cement - Part 1: Composition, specifications, and conformity criteria for common cements. European Committee for Standardization (CEN), Brussels, Belgium (2011).
EN 12620:2002+A1:2008: Aggregates for concrete. European Committee for Standardization (CEN), Brussels, Belgium (2008).
EN 934–1: Admixtures for concrete, mortar and grout - Part 1: Common requirements. European Committee for Standardization (CEN), Brussels, Belgium (2008).
EN 450–1: Fly ash for concrete - Part 1: Definition, specifications and conformity criteria. European Committee for Standardization (CEN), Brussels, Belgium (2012).
Drochytka R, Černý V, Kulísek K. The use of anthracite fly ash for the production of autoclaved aerated concrete. Adv. Mater. Res. 2012;2012(512–515):3003–3006. doi: 10.4028/www.scientific.net/AMR.512-515.3003. DOI
EN 933–1, Tests for geometrical properties of aggregates - Part 1: Determination of particle size distribution - Sieving method. European Committee for Standardization (CEN), Brussels, Belgium (2012).
EN 1015–3, Methods of test for mortar for masonry - Part 3: Determination of consistence of fresh mortar (by flow table). European Committee for Standardization (CEN), Brussels, Belgium (1999).
EN ISO 13320, Particle size analysis — Laser diffraction methods. European Committee for Standardization (CEN), Brussels, Belgium (2009).
EN ISO 9277, Determination of the specific surface area of solids by gas adsorption using the BET method. European Committee for Standardization (CEN), Brussels, Belgium (2010).
EN 13055, Lightweight Aggregates. European Committee for Standardization (CEN), Brussels, Belgium (2016).
EN 196–1, Methods of testing cement - Part 1: Determination of strength. European Committee for Standardization (CEN), Brussels, Belgium (2016).
EN 12390–5, Testing hardened concrete - Part 5: Flexural strength of test specimens. European Committee for Standardization (CEN), Brussels, Belgium (2019).
EN 12390–4, Testing hardened concrete - Part 4: Compressive strength - Specification for testing machines. European Committee for Standardization (CEN), Brussels, Belgium (2019).
Pilathottathil S, Kannan Kottummal T, Thayyil MS, Mahadevan Perumal P, Ambichi Purakakath J. Inorganic salt grafted ionic liquid gel electrolytes for efficient solid state supercapacitors: Electrochemical and dielectric studies. J. Mol. Liq. 2018;264:72–79. doi: 10.1016/J.MOLLIQ.2018.05.014. DOI
Saloni, Singh, A., Jatin, Kumar, J., Parveen. (2020). Influence of fly ash, cement and ground river sand on compressive strength and chloride penetration of mortar. Materials Today: Proceedings, 33, 1690–1694. 10.1016/J.MATPR.2020.07.269
Powers TC. Structure and physical properties of hardened portland cement paste. J. Am. Ceram. Soc. 1958;41:1–6. doi: 10.1111/j.1151-2916.1958.tb13494.x. DOI
Berry EE, Hemmings RT, Zhang MH, Cornelious BJ, Golden DM. Hydration in high-volume fly ash binders. ACI Mater. J. 1994;91:382–389.
Lam L, Wong YL, Poon CS. Degree of hydration and gel/space ratio of high-volume fly ash/cement systems. Cem. Concr. Res. 2000;30(5):747–756. doi: 10.1016/S0008-8846(00)00213-1. DOI
Feldman RF, Carette GG, Malhotra VM. Studies on of develop- ment of physical and mechanical properties of high-volume fly ash± cement pastes. Cem. Concr. Compos. 1990;12:245–251. doi: 10.1016/0958-9465(90)90003-G. DOI
Fita IC, Cruz JM, Bouzón N, Borrachero MV, Payá J. Monitoring the pozzolanic effect of fly ash in blended OPC mortars by electrical impedance spectroscopy. Constr. Build. Mater. 2022 doi: 10.1016/j.conbuildmat.2021.125632. DOI
Chajec A, Chowaniec A, Królicka A, Sadowski Ł, Żak A, Piechowka-Mielnik M, Šavija B. Engineering of green cementitious composites modified with siliceous fly ash: Understanding the importance of curing conditions. Constr. Build. Mater. 2021 doi: 10.1016/j.conbuildmat.2021.125209. DOI
Wang D, Wang Q, Huang Z. Investigation on the poor fluidity of electrically conductive cement-graphite paste: Experiment and simulation. Mater Design. 2019;169:107679. doi: 10.1016/J.MATDES.2019.107679. DOI
Plugin AA, Pluhin OA, Kasyanov VV, Dyomina OI, Bondarenko DO. Portland cement-based penetrating electrically conductive composition for protection against electrocorrosion. Conduct. Mater. 2021;28(1):121–130. doi: 10.15407/fm28.01.121. DOI
Zhang G, Zhu Y, Lin X, Tian Y, Ye H, Jin X, Chen J. Numerical simulation of electrochemical mechanism of steel rebar corrosion in concrete under natural climate with time-varying temperature and humidity. Constr. Build. Mater. 2021;306:124873. doi: 10.1016/J.CONBUILDMAT.2021.124873. DOI