Innovative use of data sources: a cross-sectional study of data linkage and artificial intelligence practices across European countries
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32537143
PubMed Central
PMC7288525
DOI
10.1186/s13690-020-00436-9
PII: 436
Knihovny.cz E-zdroje
- Klíčová slova
- Artificial intelligence, Health indicators, Health information, Health status monitoring, Innovation, Linked data, Machine learning technique, Public health surveillance,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The availability of data generated from different sources is increasing with the possibility to link these data sources with each other. However, linked administrative data can be complex to use and may require advanced expertise and skills in statistical analysis. The main objectives of this study were to describe the current use of data linkage at the individual level and artificial intelligence (AI) in routine public health activities, to identify the related estimated health indicators (i.e., outcome and intervention indicators) and health determinants of non-communicable diseases and the obstacles to linking different data sources. METHOD: We performed a survey across European countries to explore the current practices applied by national institutes of public health, health information and statistics for innovative use of data sources (i.e., the use of data linkage and/or AI). RESULTS: The use of data linkage and AI at national institutes of public health, health information and statistics in Europe varies. The majority of European countries use data linkage in routine by applying a deterministic method or a combination of two types of linkages (i.e., deterministic & probabilistic) for public health surveillance and research purposes. The use of AI to estimate health indicators is not frequent at national institutes of public health, health information and statistics. Using linked data, 46 health outcome indicators, 34 health determinants and 23 health intervention indicators were estimated in routine. The complex data regulation laws, lack of human resources, skills and problems with data governance, were reported by European countries as obstacles to routine data linkage for public health surveillance and research. CONCLUSIONS: Our results highlight that the majority of European countries have integrated data linkage in their routine public health activities but only a few use AI. A sustainable national health information system and a robust data governance framework allowing to link different data sources are essential to support evidence-informed health policy development. Building analytical capacity and raising awareness of the added value of data linkage in national institutes is necessary for improving the use of linked data in order to improve the quality of public health surveillance and monitoring activities.
Department of public health Ghent University Ghent Belgium
Epidemiology and public health Sciensano Brussels Belgium
Finnish Institute for Health and Welfare Helsinki Finland
Health information centre Institute of hygiene Vilnius Lithuania
Institute of Biostatistics and Analyses Faculty of Medicine Masaryk University Brno Czech Republic
Institute of Health Information and Statistics of the Czech Republic Prague Czech Republic
Institute of research and information for health economics Paris France
National Centre for Epidemiology and CIBERESP Carlos 3 Institute of Health Madrid Spain
National Institute for Public Health and the Environment Bilthoven The Netherlands
National Institute of Public Health Ljubljana Slovenia
The Austrian National Public Health Institute Vienna Austria
Zobrazit více v PubMed
Harron K, Dibben C, Boyd J, Hjern A, Azimaee M, Barreto ML, Goldstein H. Challenges in administrative data linkage for research. Big Data Soc. 2017;4(2):2053951717745678. doi: 10.1177/2053951717745678. PubMed DOI PMC
Ferrante A: The Use of Data-Linkage Methods in Criminal Justice Research: http://www5.austlii.edu.au/au/journals/CICrimJust/2009/3.html. Criminal Justice 2009.
GF R: Administrative and claims records as sources of health care cost data. Med Care 2009, 47(7 Suppl 1). PubMed
Charlton RA, Neville AJ, Jordan S, Pierini A, Damase-Michel C, Klungsøyr K, Andersen A-MN, Hansen AV, Gini R, Bos JHJ, et al. Healthcare databases in Europe for studying medicine use and safety during pregnancy. Pharmacoepidemiol Drug Saf. 2014;23(6):586–594. doi: 10.1002/pds.3613. PubMed DOI
Thygesen LC, Ersbøll AK. When the entire population is the sample: strengths and limitations in register-based epidemiology. Eur J Epidemiol. 2014;29(8):551–558. doi: 10.1007/s10654-013-9873-0. PubMed DOI
WHO: Public Health Surveillance: https://www.who.int/topics/public_health_surveillance/en/.
Lloyd K, McGregor J, John A, Craddock N, Walters JT, Linden D, Jones I, Bentall R, Lyons RA, Ford DV, et al. A national population-based e-cohort of people with psychosis (PsyCymru) linking prospectively ascertained phenotypically rich and genetic data to routinely collected records: overview, recruitment and linkage. Schizophr Res. 2015;166(1):131–136. doi: 10.1016/j.schres.2015.05.036. PubMed DOI
Delnord M, Szamotulska K, Hindori-Mohangoo AD, Blondel B, Macfarlane AJ, Dattani N, Barona C, Berrut S, Zile I, Wood R, et al. Linking databases on perinatal health: a review of the literature and current practices in Europe. Eur J Pub Health. 2016;26(3):422–430. doi: 10.1093/eurpub/ckv231. PubMed DOI PMC
Bradley CJ, Penberthy L, Devers KJ, Holden DJ: Health Services Research and Data Linkages: Issues, Methods, and Directions for the Future. Health Services Research 2010, 45(5p2):1468–1488. PubMed PMC
Techopedia: What is Artificial Intelligence: https://www.techopedia.com/definition/190/artificial-intelligence-ai. 2020.
Jha S, Topol EJ. Adapting to artificial intelligence: radiologists and pathologists as information specialists. JAMA. 2016;316(22):2353–2354. doi: 10.1001/jama.2016.17438. PubMed DOI
Joint Action on Health Information: https://www.inf-act.eu/. 2018.
EuroREACH: EuroREACH Framework: http://hdn.euhs-i.eu/performance/frameworks/euroreach-framework. 2013.
OECD: Health at Glance (OECD Indicators): https://www.health.gov.il/PublicationsFiles/HealthataGlance2017.pdf. 2007.
Navigator HD: EuroREACH Framework: http://hdn.euhs-i.eu/performance/frameworks/euroreach-framework. 2013.
HBM4EU: Linking HBM, health surveys and registers: https://www.hbm4eu.eu/deliverables/. 2018.
Eurociss: Cardiovascular Indicators Surveillance Set: https://ec.europa.eu/health/ph_projects/2000/monitoring/fp_monitoring_2000_frep_10_en.pdf. 2000.
Lyons RA, Jones KH, John G, Brooks CJ, Verplancke J-P, Ford DV, Brown G, Leake K. The SAIL databank: linking multiple health and social care datasets. BMC Medical Informatics and Decision Making. 2009;9(1):3. doi: 10.1186/1472-6947-9-3. PubMed DOI PMC
Tuppin P, Rudant J, Constantinou P, Gastaldi-Menager C, Rachas A, de Roquefeuil L, Maura G, Caillol H, Tajahmady A, Coste J et al: Value of a national administrative database to guide public decisions: From the systeme national d'information interregimes de l'Assurance Maladie (SNIIRAM) to the systeme national des donnees de sante (SNDS) in France. 2017(0398–7620 (Print)). PubMed
Chan Chee C, Chin F, Ha C, Beltzer N, Bonaldi C. Use of medical administrative data for the surveillance of psychotic disorders in France. BMC Psychiatry. 2017;17(1):386. doi: 10.1186/s12888-017-1555-0. PubMed DOI PMC
Rodgers Se Fau - Bailey R, Bailey R Fau - Johnson R, Johnson R Fau - Poortinga W, Poortinga W Fau - Smith R, Smith R Fau - Berridge D, Berridge D Fau - Anderson P, Anderson P Fau - Phillips C, Phillips C Fau - Lannon S, Lannon S Fau - Jones N, Jones N Fau - Dunstan FD et al: Health impact, and economic value, of meeting housing quality standards: a retrospective longitudinal data linkage study Public Health Research 2018. PubMed
Violán C, Foguet-Boreu Q, Hermosilla-Pérez E, Valderas JM, Bolíbar B, Fàbregas-Escurriola M, Brugulat-Guiteras P, Muñoz-Pérez MÁ. Comparison of the information provided by electronic health records data and a population health survey to estimate prevalence of selected health conditions and multimorbidity. BMC Public Health. 2013;13(1):251. doi: 10.1186/1471-2458-13-251. PubMed DOI PMC
Fuentes S, Cosson E, Mandereau-Bruno L, Fagot-Campagna A, Bernillon P, Goldberg M, Fosse-Edorh S, Group C-D Identifying diabetes cases in health administrative databases: a validation study based on a large French cohort. International Journal of Public Health. 2019;64(3):441–450. doi: 10.1007/s00038-018-1186-3. PubMed DOI
Orriols L, Delorme B, Gadegbeku B, Tricotel A, Contrand B, Laumon B, Salmi L-R. Lagarde E, on behalf of the Crg: prescription medicines and the risk of road traffic crashes: a French registry-based study. PLoS Med. 2010;7(11):e1000366. doi: 10.1371/journal.pmed.1000366. PubMed DOI PMC
Mason KE, Pearce N, Cummins S. Associations between fast food and physical activity environments and adiposity in mid-life: cross-sectional, observational evidence from UK biobank. Lancet Public Health. 2018;3(1):e24–e33. doi: 10.1016/S2468-2667(17)30212-8. PubMed DOI PMC
Cleland B, Wallace J, Bond R, Black M, Mulvenna M, Rankin D, Tanney A. Insights into antidepressant prescribing using open health data. Big Data Research. 2018;12:41–48. doi: 10.1016/j.bdr.2018.02.002. DOI
Gabet A, Danchin N, Puymirat E, Tuppin P, Olié V. Early and late case fatality after hospitalization for acute coronary syndrome in France, 2010–2015. Archives of Cardiovascular Diseases. 2019;112(12):754–764. doi: 10.1016/j.acvd.2019.09.004. PubMed DOI
Williamson EDS, Morris S, Clarke CS, Thomas M, Evans H, et al. Risk of mortality and cardiovascular events following macrolide prescription in. Rhinology. 2019;57(4):252–260. PubMed
Hopkins CWE, Morris S, Clarke CS, Thomas M, Evans H, Little P, et al. Antibiotic usage in chronic rhinosinusitis: analysis of national primary care. Rhinology. 2019;6(10):136. PubMed
Ponjoan AG-OJ, Blanch J, Fages E, Alves-Cabratosa L, et al. How well can electronic health records from primary care identify Alzheimer's. Clin Epidemiol. 2019;11:509–518. doi: 10.2147/CLEP.S206770. PubMed DOI PMC
Májek O, Anttila A, Arbyn M, van Veen E-B, Engesæter B, Lönnberg S. The legal framework for European cervical cancer screening programmes. Eur J Pub Health. 2018;29(2):345–350. doi: 10.1093/eurpub/cky200. PubMed DOI
Hassett MJ, Uno H, Cronin AM, Carroll NM, Hornbrook MC, Ritzwoller D. Detecting lung and colorectal Cancer recurrence using structured clinical/administrative data to enable outcomes research and population health management. Med Care. 2017;55(12):e88–e98. doi: 10.1097/MLR.0000000000000404. PubMed DOI PMC
Kiasuwa-Mbengi RL, Nyaga V, Otter R, de Brouwer C, Bouland C. The EMPCAN study: protocol of a population-based cohort study on the evolution of the socio-economic position of workers with cancer. Archives of Public Health. 2019;77(1):15. doi: 10.1186/s13690-019-0337-1. PubMed DOI PMC
Lyons RA, Turner S, Lyons J, Walters A, Snooks HA, Greenacre J, Humphreys C, Jones SJ. All Wales injury surveillance system revised: development of a population-based system to evaluate single-level and multilevel interventions. Injury Prevention. 2016;22(Suppl 1):i50–i55. doi: 10.1136/injuryprev-2015-041814. PubMed DOI PMC
Health FMo: Health Data Hub: https://www.health-data-hub.fr/?lang=en. 2019.
Government W: Welsh Government takes innovative approach to policy making in Wales: https://www.swansea.ac.uk/press-office/news-archive/2019/welshgovernmenttakesinnovativeapproachtopolicymakinginwales.php. 2019.
Patel VL, Shortliffe EH, Stefanelli M, Szolovits P, Berthold MR, Bellazzi R, Abu-Hanna A. The coming of age of artificial intelligence in medicine. Artif Intell Med. 2009;46(1):5–17. doi: 10.1016/j.artmed.2008.07.017. PubMed DOI PMC
Flaxman AD, Vos T. Machine learning in population health: opportunities and threats. PLoS Med. 2018;15(11):e1002702. doi: 10.1371/journal.pmed.1002702. PubMed DOI PMC
2020 C: Data Protection and Artificial Intelligence: https://edps.europa.eu/data-protection/our-work/subjects/artificial-intelligence_en.
EPRS: How the General Data Protection Regulation changes the rules for scientific research: https://www.europarl.europa.eu/RegData/etudes/STUD/2019/634447/EPRS_STU(2019)634447_EN.pdf. 2019.
Enhancing Human Biomonitoring Studies through Linkage to Administrative Registers-Status in Europe