Techniky strojového učení jsou metody, které umožní vytvořit z trénovací množiny případů model pro kategorie dat tak, že mohou být nové (neznámé) případy zařazeny do jedné nebo více kategorií schématem odpovídajícím modelu. Pro tento typ analýzy jsou velmi vhodná data ze studií sledujících určitou skupinu osob s opakovaným sběrem dat stejného typu. K vyhledávání znalostí z medicínských dat bylo užito různých algoritmů strojového učení. Bylo testováno několik algoritmů tak, aby bylo možno pokrýt většinu způsobů učení s učitelem. Byly provedeny dva typy pokusů. Jeden hledal vztahy mezi atributy, druhý testoval predikci budoucích příhod. Pro pokusy v tomto sdělení byla užita data z dvacet let trvající longitudinální primárně preventivní studie rizikových faktorů (RF) aterosklerózy u mužů středního věku. Studie se nazývá STULONG (LONGitudinal STUdy). Výsledky ukazují, že některé metody předpovídají některé poruchy lépe než jiné a že je tedy vhodné použít všechny algoritmy najednou a posuzovat spolehlivost výsledku na základě známého trendu každé metody. Algoritmy strojového učení byly také použity k předpovědi příčiny úmrtí. V tomto případě byly výsledky nevalné, pravděpodobně pro malé množství informace ve vstupních položkách v datového souboru.
Machine learning techniques are methods that given a training set of examples infer a model for the categories of the data, so that new (unknown) examples could be assigned to one or more categories by pattern matching within the model. The data from follow-up studies with repeated collection of the same type of data are very suitable for this analysis. Machine learning algorithms belonging to a variety of paradigms have been applied to knowledge discovery on medical data. All the used algorithms belong to the supervised learning paradigm. Several algorithms have been tested, trying to cover most of the kinds of supervised learning. Two kinds of experiments have been carried out. The first is intended to discover associations between attributes. The second kind is intended to test prediction of future disorders. For the experiments in this paper the data used was from the twenty years lasting primary preventive longitudinal study of the risk factors (RF) of atherosclerosis in middle aged men. Study is named STULONG (LONGitudinal STUdy). The results show that some methods predict some disorders better than others, so it is interesting to use all the algorithms at a time and consider the result confidence based upon the known tendency of each method. The machine learning algorithms have been also used in the prediction of death cause, obtaining poor results in this case, maybe due to the small amount of information (entries) of this type in the dataset.
- Keywords
- dobývání znalostí, strojové učení s učitelem, vytěžování z biomedicínských dat, rizikové faktory aterosklerózy,
- MeSH
- Algorithms MeSH
- Atherosclerosis diagnosis MeSH
- Databases, Factual MeSH
- Financing, Organized MeSH
- Middle Aged MeSH
- Humans MeSH
- Decision Support Techniques MeSH
- Prognosis MeSH
- Risk Factors MeSH
- Decision Support Systems, Clinical MeSH
- Information Storage and Retrieval MeSH
- Knowledge Bases MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
The goal of this research was to design a solution to detect non-reported incidents, especially severe incidents. To achieve this goal, we proposed a method to process electronic medical records and automatically extract clinical notes describing severe incidents. To evaluate the proposed method, we implemented a system and used the system. The system successfully detected a non-reported incident to the safety management department.
In response to our study, the commentary by Infanti et al. (2024) raised critical points regarding (i) the conceptualization and utility of the user-avatar bond in addressing gaming disorder (GD) risk, and (ii) the optimization of supervised machine learning techniques applied to assess GD risk. To advance the scientific dialogue and progress in these areas, the present paper aims to: (i) enhance the clarity and understanding of the concepts of the avatar, the user-avatar bond, and the digital phenotype concerning gaming disorder (GD) within the broader field of behavioral addictions, and (ii) comparatively assess how the user-avatar bond (UAB) may predict GD risk, by both removing data augmentation before the data split and by implementing alternative data imbalance treatment approaches in programming.
- MeSH
- Avatar MeSH
- Humans MeSH
- Internet Addiction Disorder * MeSH
- Supervised Machine Learning MeSH
- Machine Learning * MeSH
- User-Computer Interface MeSH
- Video Games MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Breast cancer survival prediction can have an extreme effect on selection of best treatment protocols. Many approaches such as statistical or machine learning models have been employed to predict the survival prospects of patients, but newer algorithms such as deep learning can be tested with the aim of improving the models and prediction accuracy. In this study, we used machine learning and deep learning approaches to predict breast cancer survival in 4,902 patient records from the University of Malaya Medical Centre Breast Cancer Registry. The results indicated that the multilayer perceptron (MLP), random forest (RF) and decision tree (DT) classifiers could predict survivorship, respectively, with 88.2 %, 83.3 % and 82.5 % accuracy in the tested samples. Support vector machine (SVM) came out to be lower with 80.5 %. In this study, tumour size turned out to be the most important feature for breast cancer survivability prediction. Both deep learning and machine learning methods produce desirable prediction accuracy, but other factors such as parameter configurations and data transformations affect the accuracy of the predictive model.
- MeSH
- Survival Analysis MeSH
- Deep Learning * MeSH
- Demography MeSH
- Adult MeSH
- Calibration MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Breast Neoplasms mortality MeSH
- Neural Networks, Computer MeSH
- Decision Trees MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Support Vector Machine MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Práce s big daty vyžaduje použití prostředků umělé inteligence. Přináší to možnost transformace laboratorních výsledků do formy strojového učení-machine learning (ML). Od něho se očekává aktivace dat, přinášející zlepšení diagnostických možností laboratorních vyšetření. Jde o posuv od použití počítačů, sloužících z části jako skladiště mrtvých dat, k aktivnějšímu využití jejich potenciálu pro diagnostiku, management, edukaci, výzkum a další. Zejména pak k predikci stavu chorob a k precizní medicíně v onkologii i jinde. Důsledkem by měl být integrovaný mezioborový přístup k diagnostice a reálné dosažení efektivní personalizace při diagnostice a terapii pacientů. Sdělení je pokusem o pomoc při zavádění práce s big daty a umělou inteligencí v klinických laboratořích. Vychází z faktu obrovské akcelerace tohoto přístupu, zdaleka nejen pouze v laboratorní medicíně.
Working the big data needs using of artificial intelligence tools. This approach introduced currently into practice by large velocity leads to machine learning. Machine learning should be a strong way namely for the prediction of patient's state, for precision medicine in oncology and many more cases. For example for aiming the real personalisation of patients in dese of their diagnosis and therapy. This work can be a helpful tool for the introduction of artificial intelligence in routine clinical laboratories.
Long QT syndrome (LQTS) presents a group of inheritable channelopathies with prolonged ventricular repolarization, leading to syncope, ventricular tachycardia, and sudden death. Differentiating LQTS genotypes is crucial for targeted management and treatment, yet conventional genetic testing remains costly and time-consuming. This study aims to improve the distinction between LQTS genotypes, particularly LQT3, through a novel electrocardiogram (ECG)-based approach. Patients with LQT3 are at elevated risk due to arrhythmia triggers associated with rest and sleep. Employing a database of genotyped long QT syndrome E-HOL-03-0480-013 ECG signals, we introduced two innovative parameterization techniques-area under the ECG curve and wave transformation into the unit circle-to classify LQT3 against LQT1 and LQT2 genotypes. Our methodology utilized single-lead ECG data with a 200 Hz sampling frequency. The support vector machine (SVM) model demonstrated the ability to discriminate LQT3 with a recall of 90% and a precision of 81%, achieving an F1-score of 0.85. This parameterization offers a potential substitute for genetic testing and is practical for low frequencies. These single-lead ECG data could enhance smartwatches' functionality and similar cardiovascular monitoring applications. The results underscore the viability of ECG morphology-based genotype classification, promising a significant step towards streamlined diagnosis and improved patient care in LQTS.
- MeSH
- Adult MeSH
- Electrocardiography * methods MeSH
- Genotype MeSH
- Humans MeSH
- Machine Learning * MeSH
- Support Vector Machine MeSH
- Long QT Syndrome * genetics diagnosis physiopathology MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
The scarcity of high-quality annotations in many application scenarios has recently led to an increasing interest in devising learning techniques that combine unlabeled data with labeled data in a network. In this work, we focus on the label propagation problem in multilayer networks. Our approach is inspired by the heat diffusion model, which shows usefulness in machine learning problems such as classification and dimensionality reduction. We propose a novel boundary-based heat diffusion algorithm that guarantees a closed-form solution with an efficient implementation. We experimentally validated our method on synthetic networks and five real-world multilayer network datasets representing scientific coauthorship, spreading drug adoption among physicians, two bibliographic networks, and a movie network. The results demonstrate the benefits of the proposed algorithm, where our boundary-based heat diffusion dominates the performance of the state-of-the-art methods.
- MeSH
- Algorithms MeSH
- Supervised Machine Learning * MeSH
- Machine Learning MeSH
- Hot Temperature * MeSH
- Publication type
- Journal Article MeSH
During the past years, the increase in scientific knowledge and the massive data production have caused an exponential growth in databases and repositories. Biomedical domain represents one of the rich data domains. An extensive amount of biomedical data is currently available, ranging from details of clinical symptoms to various types of biochemical data and outputs of imaging devices. Manually extracting biomedical patterns from data and transforming them into machine-understandable knowledge is a difficult task because biomedical domain comprises huge, dynamic, and complicated knowledge. Data mining is capable of improving the quality of extracting biomedical patterns. In this research, an overview of the applications of data mining on the management of diseases is presented. The main focus is to investigate machine learning techniques (MLT) which are widely used to predict, prognose and treat important frequent diseases such as cancers, hepatitis and heart diseases. The techniques namely Artificial Neural Network, K-Nearest Neighbour, Decision Tree, and Associative Classification are illustrated and analyzed. This survey provides a general analysis of the current status of management of diseases using MLT. The achieved accuracy of the various applications ranged from 70% to 100% according to the disease, the solved problem, and the used data and technique.
- Keywords
- rozhodovací strom, Algoritmus k-nejbližších sousedů, associative classification,
- MeSH
- Algorithms MeSH
- Data Mining MeSH
- Databases as Topic MeSH
- Hepatitis * diagnosis classification MeSH
- Cardiovascular Diseases * diagnosis classification MeSH
- Medical Informatics MeSH
- Humans MeSH
- Disease Management MeSH
- Neoplasms * diagnosis classification MeSH
- Neural Networks, Computer MeSH
- Prognosis MeSH
- Data Accuracy MeSH
- Machine Learning * classification MeSH
- Check Tag
- Humans MeSH
- Publication type
- Review MeSH
Acute heart failure (AHF) is a common and severe condition with a poor prognosis. Its course is often complicated by worsening renal function (WRF), exacerbating the outcome. The population of AHF patients experiencing WRF is heterogenous, and some novel possibilities for its analysis have recently emerged. Clustering is a machine learning (ML) technique that divides the population into distinct subgroups based on the similarity of cases (patients). Given that, we decided to use clustering to find subgroups inside the AHF population that differ in terms of WRF occurrence. We evaluated data from the three hundred and twelve AHF patients hospitalized in our institution who had creatinine assessed four times during hospitalization. Eighty-six variables evaluated at admission were included in the analysis. The k-medoids algorithm was used for clustering, and the quality of the procedure was judged by the Davies-Bouldin index. Three clinically and prognostically different clusters were distinguished. The groups had significantly (p = 0.004) different incidences of WRF. Inside the AHF population, we successfully discovered that three groups varied in renal prognosis. Our results provide novel insight into the AHF and WRF interplay and can be valuable for future trial construction and more tailored treatment.
- MeSH
- Acute Disease MeSH
- Creatinine MeSH
- Kidney physiology MeSH
- Humans MeSH
- Heart Failure * MeSH
- Machine Learning MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Early detection of malignant thyroid nodules is crucial for effective treatment, but traditional diagnostic methods face challenges such as variability in expert opinions and limited integration of advanced imaging techniques. This prospective cohort study investigates a novel multimodal approach, integrating traditional methods with advanced machine learning techniques. We studied 181 patients who underwent fine-needle aspiration (FNA) biopsy, each contributing one nodule, resulting in a total of 181 nodules for our analysis. Data collection included sex, age, and ultrasound imaging, which incorporated elastography. Features extracted from these images included Thyroid Imaging Reporting and Data System (TIRADS) scores, elastography parameters, and radiomic features. The pathological results based on the FNA biopsy, provided by the pathologists, served as our gold standard for nodule classification. Our methodology, termed ELTIRADS, combines these features with interpretable machine learning techniques. Performance evaluation showed that a Support Vector Machine (SVM) classifier using TIRADS, elastography data, and radiomic features achieved high accuracy (0.92), with sensitivity (0.89), specificity (0.94), precision (0.89), and F1 score (0.89). To enhance interpretability, we used hierarchical clustering, shapley additive explanations (SHAP), and partial dependence plots (PDP). This combined approach holds promise for enhancing the accuracy of thyroid nodule malignancy detection, thereby contributing to advancements in personalized and precision medicine in the field of thyroid cancer research.
- MeSH
- Adult MeSH
- Elasticity Imaging Techniques * methods MeSH
- Middle Aged MeSH
- Humans MeSH
- Thyroid Neoplasms diagnostic imaging classification pathology diagnosis MeSH
- Prospective Studies MeSH
- Radiomics MeSH
- Aged MeSH
- Thyroid Gland diagnostic imaging pathology MeSH
- Machine Learning * MeSH
- Support Vector Machine MeSH
- Biopsy, Fine-Needle MeSH
- Thyroid Nodule * diagnostic imaging pathology classification MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH