Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

A survey on applying machine learning techniques for management of diseases

Enas M.F. El Houby

. 2018 ; 16 (3) : 165-174.

Language English Country Czech Republic

Document type Review

During the past years, the increase in scientific knowledge and the massive data production have caused an exponential growth in databases and repositories. Biomedical domain represents one of the rich data domains. An extensive amount of biomedical data is currently available, ranging from details of clinical symptoms to various types of biochemical data and outputs of imaging devices. Manually extracting biomedical patterns from data and transforming them into machine-understandable knowledge is a difficult task because biomedical domain comprises huge, dynamic, and complicated knowledge. Data mining is capable of improving the quality of extracting biomedical patterns. In this research, an overview of the applications of data mining on the management of diseases is presented. The main focus is to investigate machine learning techniques (MLT) which are widely used to predict, prognose and treat important frequent diseases such as cancers, hepatitis and heart diseases. The techniques namely Artificial Neural Network, K-Nearest Neighbour, Decision Tree, and Associative Classification are illustrated and analyzed. This survey provides a general analysis of the current status of management of diseases using MLT. The achieved accuracy of the various applications ranged from 70% to 100% according to the disease, the solved problem, and the used data and technique.

References provided by Crossref.org

Bibliography, etc.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc18039979
003      
CZ-PrNML
005      
20190304091701.0
007      
ta
008      
181211s2018 xr ad f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jab.2018.01.002 $2 doi
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a xr
100    1_
$a El Houby, Enas M.F. $u National Research Centre, Systems and Information Department, Engineering Division, Cairo, Egypt
245    12
$a A survey on applying machine learning techniques for management of diseases / $c Enas M.F. El Houby
504    __
$a Literatura
520    9_
$a During the past years, the increase in scientific knowledge and the massive data production have caused an exponential growth in databases and repositories. Biomedical domain represents one of the rich data domains. An extensive amount of biomedical data is currently available, ranging from details of clinical symptoms to various types of biochemical data and outputs of imaging devices. Manually extracting biomedical patterns from data and transforming them into machine-understandable knowledge is a difficult task because biomedical domain comprises huge, dynamic, and complicated knowledge. Data mining is capable of improving the quality of extracting biomedical patterns. In this research, an overview of the applications of data mining on the management of diseases is presented. The main focus is to investigate machine learning techniques (MLT) which are widely used to predict, prognose and treat important frequent diseases such as cancers, hepatitis and heart diseases. The techniques namely Artificial Neural Network, K-Nearest Neighbour, Decision Tree, and Associative Classification are illustrated and analyzed. This survey provides a general analysis of the current status of management of diseases using MLT. The achieved accuracy of the various applications ranged from 70% to 100% according to the disease, the solved problem, and the used data and technique.
650    12
$a strojové učení $x klasifikace $7 D000069550
650    _2
$a data mining $7 D057225
650    _2
$a neuronové sítě $7 D016571
650    _2
$a management nemoci $7 D019468
650    _2
$a lékařská informatika $7 D008490
650    12
$a kardiovaskulární nemoci $x diagnóza $x klasifikace $7 D002318
650    _2
$a prognóza $7 D011379
650    _2
$a algoritmy $7 D000465
650    _2
$a databáze jako téma $7 D019992
650    _2
$a správnost dat $7 D000068598
650    12
$a hepatitida $x diagnóza $x klasifikace $7 D006505
650    12
$a nádory $x diagnóza $x klasifikace $7 D009369
650    _2
$a lidé $7 D006801
653    00
$a rozhodovací strom
653    00
$a Algoritmus k-nejbližších sousedů
653    00
$a associative classification
655    _2
$a přehledy $7 D016454
773    0_
$t Journal of applied biomedicine $x 1214-021X $g Roč. 16, č. 3 (2018), s. 165-174 $w MED00012667
856    41
$u https://jab.zsf.jcu.cz/pdfs/jab/2018/03/02.pdf $y plný text volně přístupný
910    __
$a ABA008 $b B 2301 $c 1249 $y 4 $z 0
990    __
$a 20181211090250 $b ABA008
991    __
$a 20190304092013 $b ABA008
999    __
$a ok $b bmc $g 1358053 $s 1037042
BAS    __
$a 3
BMC    __
$a 2018 $b 16 $c 3 $d 165-174 $i 1214-021X $m Journal of Applied Biomedicine $x MED00012667
LZP    __
$c NLK185 $d 20190304 $a NLK 2018-52/dk

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...