-
Something wrong with this record ?
A survey on applying machine learning techniques for management of diseases
Enas M.F. El Houby
Language English Country Czech Republic
Document type Review
- Keywords
- rozhodovací strom, Algoritmus k-nejbližších sousedů, associative classification,
- MeSH
- Algorithms MeSH
- Data Mining MeSH
- Databases as Topic MeSH
- Hepatitis * diagnosis classification MeSH
- Cardiovascular Diseases * diagnosis classification MeSH
- Medical Informatics MeSH
- Humans MeSH
- Disease Management MeSH
- Neoplasms * diagnosis classification MeSH
- Neural Networks, Computer MeSH
- Prognosis MeSH
- Data Accuracy MeSH
- Machine Learning * classification MeSH
- Check Tag
- Humans MeSH
- Publication type
- Review MeSH
During the past years, the increase in scientific knowledge and the massive data production have caused an exponential growth in databases and repositories. Biomedical domain represents one of the rich data domains. An extensive amount of biomedical data is currently available, ranging from details of clinical symptoms to various types of biochemical data and outputs of imaging devices. Manually extracting biomedical patterns from data and transforming them into machine-understandable knowledge is a difficult task because biomedical domain comprises huge, dynamic, and complicated knowledge. Data mining is capable of improving the quality of extracting biomedical patterns. In this research, an overview of the applications of data mining on the management of diseases is presented. The main focus is to investigate machine learning techniques (MLT) which are widely used to predict, prognose and treat important frequent diseases such as cancers, hepatitis and heart diseases. The techniques namely Artificial Neural Network, K-Nearest Neighbour, Decision Tree, and Associative Classification are illustrated and analyzed. This survey provides a general analysis of the current status of management of diseases using MLT. The achieved accuracy of the various applications ranged from 70% to 100% according to the disease, the solved problem, and the used data and technique.
References provided by Crossref.org
Literatura
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18039979
- 003
- CZ-PrNML
- 005
- 20190304091701.0
- 007
- ta
- 008
- 181211s2018 xr ad f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jab.2018.01.002 $2 doi
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a El Houby, Enas M.F. $u National Research Centre, Systems and Information Department, Engineering Division, Cairo, Egypt
- 245 12
- $a A survey on applying machine learning techniques for management of diseases / $c Enas M.F. El Houby
- 504 __
- $a Literatura
- 520 9_
- $a During the past years, the increase in scientific knowledge and the massive data production have caused an exponential growth in databases and repositories. Biomedical domain represents one of the rich data domains. An extensive amount of biomedical data is currently available, ranging from details of clinical symptoms to various types of biochemical data and outputs of imaging devices. Manually extracting biomedical patterns from data and transforming them into machine-understandable knowledge is a difficult task because biomedical domain comprises huge, dynamic, and complicated knowledge. Data mining is capable of improving the quality of extracting biomedical patterns. In this research, an overview of the applications of data mining on the management of diseases is presented. The main focus is to investigate machine learning techniques (MLT) which are widely used to predict, prognose and treat important frequent diseases such as cancers, hepatitis and heart diseases. The techniques namely Artificial Neural Network, K-Nearest Neighbour, Decision Tree, and Associative Classification are illustrated and analyzed. This survey provides a general analysis of the current status of management of diseases using MLT. The achieved accuracy of the various applications ranged from 70% to 100% according to the disease, the solved problem, and the used data and technique.
- 650 12
- $a strojové učení $x klasifikace $7 D000069550
- 650 _2
- $a data mining $7 D057225
- 650 _2
- $a neuronové sítě $7 D016571
- 650 _2
- $a management nemoci $7 D019468
- 650 _2
- $a lékařská informatika $7 D008490
- 650 12
- $a kardiovaskulární nemoci $x diagnóza $x klasifikace $7 D002318
- 650 _2
- $a prognóza $7 D011379
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a databáze jako téma $7 D019992
- 650 _2
- $a správnost dat $7 D000068598
- 650 12
- $a hepatitida $x diagnóza $x klasifikace $7 D006505
- 650 12
- $a nádory $x diagnóza $x klasifikace $7 D009369
- 650 _2
- $a lidé $7 D006801
- 653 00
- $a rozhodovací strom
- 653 00
- $a Algoritmus k-nejbližších sousedů
- 653 00
- $a associative classification
- 655 _2
- $a přehledy $7 D016454
- 773 0_
- $t Journal of applied biomedicine $x 1214-021X $g Roč. 16, č. 3 (2018), s. 165-174 $w MED00012667
- 856 41
- $u https://jab.zsf.jcu.cz/pdfs/jab/2018/03/02.pdf $y plný text volně přístupný
- 910 __
- $a ABA008 $b B 2301 $c 1249 $y 4 $z 0
- 990 __
- $a 20181211090250 $b ABA008
- 991 __
- $a 20190304092013 $b ABA008
- 999 __
- $a ok $b bmc $g 1358053 $s 1037042
- BAS __
- $a 3
- BMC __
- $a 2018 $b 16 $c 3 $d 165-174 $i 1214-021X $m Journal of Applied Biomedicine $x MED00012667
- LZP __
- $c NLK185 $d 20190304 $a NLK 2018-52/dk