Evolution of late steps in exocytosis: conservation and specialization of the exocyst complex
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
203134/Z/16/Z
Wellcome Trust - United Kingdom
204697/Z/16/Z
Wellcome Trust - United Kingdom
PubMed
31633057
PubMed Central
PMC6784791
DOI
10.12688/wellcomeopenres.15142.2
Knihovny.cz E-zdroje
- Klíčová slova
- Exocytosis, comparative genomics, eukaryotes, exocyst, membrane transport, molecular evolution,
- Publikační typ
- časopisecké články MeSH
Background: The eukaryotic endomembrane system most likely arose via paralogous expansions of genes encoding proteins that specify organelle identity, coat complexes and govern fusion specificity. While the majority of these gene families were established by the time of the last eukaryotic common ancestor (LECA), subsequent evolutionary events has moulded these systems, likely reflecting adaptations retained for increased fitness. As well as sequence evolution, these adaptations include loss of otherwise canonical components, the emergence of lineage-specific proteins and paralog expansion. The exocyst complex is involved in late exocytosis and additional trafficking pathways and a member of the complexes associated with tethering containing helical rods (CATCHR) tethering complex family. CATCHR includes the conserved oligomeric Golgi (COG) complex, homotypic fusion and vacuole protein sorting (HOPS)/class C core vacuole/endosome tethering (CORVET) complexes and several others. The exocyst is integrated into a complex GTPase signalling network in animals, fungi and other lineages. Prompted by discovery of Exo99, a non-canonical subunit in the excavate protist Trypanosoma brucei, and availability of significantly increased genome sequence data, we re-examined evolution of the exocyst. Methods: We examined the evolution of exocyst components by comparative genomics, phylogenetics and structure prediction. Results: The exocyst composition is highly conserved, but with substantial losses of subunits in the Apicomplexa and expansions in Streptophyta plants, Metazoa and land plants, where for the latter, massive paralog expansion of Exo70 represents an extreme and unique example. Significantly, few taxa retain a partial complex, suggesting that, in general, all subunits are probably required for functionality. Further, the ninth exocyst subunit, Exo99, is specific to the Euglenozoa with a distinct architecture compared to the other subunits and which possibly represents a coat system. Conclusions: These data reveal a remarkable degree of evolutionary flexibility within the exocyst complex, suggesting significant diversity in exocytosis mechanisms.
Zobrazit více v PubMed
Ahmed SM, Nishida-Fukuda H, Li Y, et al. : Exocyst dynamics during vesicle tethering and fusion. Nat Commun. 2018;9(1):5140. 10.1038/s41467-018-07467-5 PubMed DOI PMC
Altschul SF, Gish W, Miller W, et al. : Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. 10.1016/S0022-2836(05)80360-2 PubMed DOI
Arasaki K, Kimura H, Tagaya M, et al. : Legionella remodels the plasma membrane-derived vacuole by utilizing exocyst components as tethers. J Cell Biol. 2018;217(11):3863–3872. 10.1083/jcb.201801208 PubMed DOI PMC
Bodemann BO, Orvedahl A, Cheng T, et al. : RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell. 2011;144(2):253–67. 10.1016/j.cell.2010.12.018 PubMed DOI PMC
Boehm CM, Obado S, Gadelha C, et al. : The Trypanosome Exocyst: A Conserved Structure Revealing a New Role in Endocytosis. PLoS Pathog. 2017;13(1):e1006063. 10.1371/journal.ppat.1006063 PubMed DOI PMC
Bonnemaijer PWM, Iglesias AI, Nadkarni GN, et al. : Genome-wide association study of primary open-angle glaucoma in continental and admixed African populations. Hum Genet. 2018;137(10):847–862. 10.1007/s00439-018-1943-7 PubMed DOI PMC
Bowser R, Müller H, Govindan B, et al. : Sec8p and Sec15p are components of a plasma membrane-associated 19.5S particle that may function downstream of Sec4p to control exocytosis. J Cell Biol. 1992;118(5):1041–56. 10.1083/jcb.118.5.1041 PubMed DOI PMC
Chou HT, Dukovski D, Chambers MG, et al. : CATCHR, HOPS and CORVET tethering complexes share a similar architecture. Nat Struct Mol Biol. 2016;23(8):761–3. 10.1038/nsmb.3264 PubMed DOI PMC
Cvrčková F, Zárský V: Old AIMs of the exocyst: evidence for an ancestral association of exocyst subunits with autophagy-associated Atg8 proteins. Plant Signal Behav. 2013;8(11):e27099. 10.4161/psb.27099 PubMed DOI PMC
Cvrčková F, Grunt M, Bezvoda R, et al. : Evolution of the land plant exocyst complexes. Front Plant Sci. 2012;3:159. 10.3389/fpls.2012.00159 PubMed DOI PMC
Dacks JB, Field MC: Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J Cell Sci. 2007;120(Pt 17):2977–85. 10.1242/jcs.013250 PubMed DOI
Dacks JB, Field MC: Evolutionary origins and specialisation of membrane transport. Curr Opin Cell Biol. 2018;53:70–76. 10.1016/j.ceb.2018.06.001 PubMed DOI PMC
Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113. 10.1186/1471-2105-5-113 PubMed DOI PMC
Elias M, Brighouse A, Gabernet-Castello C, et al. : Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J Cell Sci. 2012;125(Pt 10):2500–8. 10.1242/jcs.101378 PubMed DOI PMC
Eme L, Spang A, Lombard J, et al. : Archaea and the origin of eukaryotes. Nat Rev Microbiol. 2018;16(2):120. 10.1038/nrmicro.2017.154 PubMed DOI
Field MC, Rout MP: Pore timing: the evolutionary origins of the nucleus and nuclear pore complex [version 1; peer review: 3 approved]. F1000Res. 2019;8: pii: F1000 Faculty Rev-369. 10.12688/f1000research.16402.1 PubMed DOI PMC
Field HI, Coulson RM, Field MC: An automated graphics tool for comparative genomics: the Coulson plot generator. BMC Bioinformatics. 2013;14:141. 10.1186/1471-2105-14-141 PubMed DOI PMC
Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52(5):696–704. 10.1080/10635150390235520 PubMed DOI
Guo W, Grant A, Novick P: Exo84p is an exocyst protein essential for secretion. J Biol Chem. 1999;274(33):23558–64. 10.1074/jbc.274.33.23558 PubMed DOI
Guy L, Saw JH, Ettema TJ: The archaeal legacy of eukaryotes: a phylogenomic perspective. Cold Spring Harb Perspect Biol. 2014;6(10):a016022. 10.1101/cshperspect.a016022 PubMed DOI PMC
Heider MR, Gu M, Duffy CM, et al. : Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex. Nat Struct Mol Biol. 2016;23(1):59–66. 10.1038/nsmb.3146 PubMed DOI PMC
Heider MR, Munson M: Exorcising the exocyst complex. Traffic. 2012;13(7):898–907. 10.1111/j.1600-0854.2012.01353.x PubMed DOI PMC
Hirst J, Schlacht A, Norcott JP, et al. : Characterization of TSET, an ancient and widespread membrane trafficking complex. eLife. 2014;3:e02866. 10.7554/eLife.02866 PubMed DOI PMC
Jose M, Tollis S, Nair D, et al. : A quantitative imaging-based screen reveals the exocyst as a network hub connecting endocytosis and exocytosis. Mol Biol Cell. 2015;26(13):2519–34. 10.1091/mbc.E14-11-1527 PubMed DOI PMC
Kelley LA, Mezulis S, Yates CM, et al. : The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10(6):845–58. 10.1038/nprot.2015.053 PubMed DOI PMC
Khurana GK, Vishwakarma P, Puri N, et al. : Phylogenetic Analysis of the vesicular fusion SNARE machinery revealing its functional divergence across Eukaryotes. Bioinformation. 2018;14(7):361–368. 10.6026/97320630014361 PubMed DOI PMC
Klinger CM, Klute MJ, Dacks JB: Comparative genomic analysis of multi-subunit tethering complexes demonstrates an ancient pan-eukaryotic complement and sculpting in Apicomplexa. PLoS One. 2013;8(9):e76278. 10.1371/journal.pone.0076278 PubMed DOI PMC
Koumandou VL, Dacks JB, Coulson RM, et al. : Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol Biol. 2007;7:29. 10.1186/1471-2148-7-29 PubMed DOI PMC
Koumandou VL, Wickstead B, Ginger ML, et al. : Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit Rev Biochem Mol Biol. 2013;48(4):373–96. 10.3109/10409238.2013.821444 PubMed DOI PMC
Kulich I, Pečenková T, Sekereš J, et al. : Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic. 2013;14(11):1155–65. 10.1111/tra.12101 PubMed DOI
Lipschutz JH, Lingappa VR, Mostov KE: The exocyst affects protein synthesis by acting on the translocation machinery of the endoplasmic reticulum. J Biol Chem. 2003;278(23):20954–60. 10.1074/jbc.M213210200 PubMed DOI
Lira M, Arancibia D, Orrego PR, et al. : The Exocyst Component Exo70 Modulates Dendrite Arbor Formation, Synapse Density, and Spine Maturation in Primary Hippocampal Neurons. Mol Neurobiol. 2018;1–19. 10.1007/s12035-018-1378-0 PubMed DOI
Luo G, Zhang J, Guo W: The role of Sec3p in secretory vesicle targeting and exocyst complex assembly. Mol Biol Cell. 2014;25(23):3813–22. 10.1091/mbc.E14-04-0907 PubMed DOI PMC
Manna PT, Obado SO, Boehm C, et al. : Lineage-specific proteins essential for endocytosis in trypanosomes. J Cell Sci. 2017;130(8):1379–1392. 10.1242/jcs.191478 PubMed DOI PMC
Mei K, Li Y, Wang S, et al. : Cryo-EM structure of the exocyst complex. Nat Struct Mol Biol. 2018;25(2):139–146. 10.1038/s41594-017-0016-2 PubMed DOI PMC
Monteiro P, Rossé C, Castro-Castro A, et al. : Endosomal WASH and exocyst complexes control exocytosis of MT1-MMP at invadopodia. J Cell Biol. 2013;203(6):1063–79. 10.1083/jcb.201306162 PubMed DOI PMC
Morgera F, Sallah MR, Dubuke ML, et al. : Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1. Mol Biol Cell. 2012;23(2):337–46. 10.1091/mbc.E11-08-0670 PubMed DOI PMC
Nevin WD, Dacks JB: Repeated secondary loss of adaptin complex genes in the Apicomplexa. Parasitol Int. 2009;58(1):86–94. 10.1016/j.parint.2008.12.002 PubMed DOI
Novick P, Field C, Schekman R: Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 1980;21(1):205–15. 10.1016/0092-8674(80)90128-2 PubMed DOI
Pettersen EF, Goddard TD, Huang CC, et al. : UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. 10.1002/jcc.20084 PubMed DOI
Picco A, Irastorza-Azcarate I, Specht T, et al. : The In Vivo Architecture of the Exocyst Provides Structural Basis for Exocytosis. Cell. 2017;168(3):400–412.e18. 10.1016/j.cell.2017.01.004 PubMed DOI
Ramadas R, Thattai M: New organelles by gene duplication in a biophysical model of eukaryote endomembrane evolution. Biophys J. 2013;104(11):2553–63. 10.1016/j.bpj.2013.03.066 PubMed DOI PMC
Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572–4. 10.1093/bioinformatics/btg180 PubMed DOI
Rout MP, Field MC: The Evolution of Organellar Coat Complexes and Organization of the Eukaryotic Cell. Annu Rev Biochem. 2017;86:637–657. 10.1146/annurev-biochem-061516-044643 PubMed DOI
Rutherford S, Moore I: The Arabidopsis Rab GTPase family: another enigma variation. Curr Opin Plant Biol. 2002;5(6):518–28. 10.1016/S1369-5266(02)00307-2 PubMed DOI
Schlacht A, Herman EK, Klute MJ, et al. : Missing pieces of an ancient puzzle: evolution of the eukaryotic membrane-trafficking system. Cold Spring Harb Perspect Biol. 2014;6(10):a016048. 10.1101/cshperspect.a016048 PubMed DOI PMC
Sivaram MV, Furgason ML, Brewer DN, et al. : The structure of the exocyst subunit Sec6p defines a conserved architecture with diverse roles. Nat Struct Mol Biol. 2006;13(6):555–6. 10.1038/nsmb1096 PubMed DOI
Spang A, Eme L, Saw JH, et al. : Asgard archaea are the closest prokaryotic relatives of eukaryotes. PLoS Genet. 2018;14(3):e1007080. 10.1371/journal.pgen.1007080 PubMed DOI PMC
Synek L, Schlager N, Eliás M, et al. : AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J. 2006;48(1):54–72. 10.1111/j.1365-313X.2006.02854.x PubMed DOI PMC
Synek L, Sekereš J, Zárský V: The exocyst at the interface between cytoskeleton and membranes in eukaryotic cells. Front Plant Sci. 2014;4:543. 10.3389/fpls.2013.00543 PubMed DOI PMC
Takemoto K, Ebine K, Askani JC, et al. : Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis. Proc Natl Acad Sci U S A. 2018;115(10):E2457–E2466. 10.1073/pnas.1717839115 PubMed DOI PMC
TerBush DR, Maurice T, Roth D, et al. : The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 1996;15(23):6483–94. 10.1002/j.1460-2075.1996.tb01039.x PubMed DOI PMC
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–80. 10.1093/nar/22.22.4673 PubMed DOI PMC
Tomavo S: Evolutionary repurposing of endosomal systems for apical organelle biogenesis in Toxoplasma gondii. Int J Parasitol. 2014;44(2):133–8. 10.1016/j.ijpara.2013.10.003 PubMed DOI
Vasan N, Hutagalung A, Novick P, et al. : Structure of a C-terminal fragment of its Vps53 subunit suggests similarity of Golgi-associated retrograde protein (GARP) complex to a family of tethering complexes. Proc Natl Acad Sci U S A. 2010;107(32):14176–81. 10.1073/pnas.1009419107 PubMed DOI PMC
Venkatesh D, Boehm C, Barlow LD, et al. : Evolution of the endomembrane systems of trypanosomatids - conservation and specialisation. J Cell Sci. 2017;130(8):1421–1434. 10.1242/jcs.197640 PubMed DOI PMC
Whyte JR, Munro S: Vesicle tethering complexes in membrane traffic. J Cell Sci. 2002;115(Pt 13):2627–37. PubMed
Woo YH, Ansari H, Otto TD, et al. : Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife. 2015;4:e06974. 10.7554/eLife.06974 PubMed DOI PMC
Wu H, Rossi G, Brennwald P: The ghost in the machine: small GTPases as spatial regulators of exocytosis. Trends Cell Biol. 2008;18(9):397–404. 10.1016/j.tcb.2008.06.007 PubMed DOI PMC
Yu IM, Hughson FM: Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol. 2010;26:137–56. 10.1146/annurev.cellbio.042308.113327 PubMed DOI
Zárský V, Cvrcková F, Potocký M, et al. : Exocytosis and cell polarity in plants - exocyst and recycling domains. New Phytol. 2009;183(2):255–72. 10.1111/j.1469-8137.2009.02880.x PubMed DOI
Zárský V, Kulich I, Fendrych M, et al. : Exocyst complexes multiple functions in plant cells secretory pathways. Curr Opin Plant Biol. 2013;16(6):726–33. 10.1016/j.pbi.2013.10.013 PubMed DOI
Žárský V, Sekereš J, Kubátová Z, et al. : Three subfamilies of exocyst EXO70 family subunits in land plants: early divergence and ongoing functional specialization. J Exp Bot. 2019; pii: erz423. 10.1093/jxb/erz423 PubMed DOI
Zerial M, McBride H: Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2001;2(2):107–17. 10.1038/35052055 PubMed DOI
Zhao T, Rui L, Li J, et al. : A truncated NLR protein, TIR-NBS2, is required for activated defense responses in the exo70B1 mutant. PLoS Genet. 2015;11(1):e1004945. 10.1371/journal.pgen.1004945 PubMed DOI PMC
Zulkefli KL, Houghton FJ, Gosavi P, et al. : A role for Rab11 in the homeostasis of the endosome-lysosomal pathway. Exp Cell Res. 2019;380(1):55–68. 10.1016/j.yexcr.2019.04.010 PubMed DOI
: Legionella remodels the plasma membrane–derived vacuole by utilizing exocyst components as tethers. The Journal of Cell Biology.2018;217(11) : 10.1083/jcb.201801208 3863-3872 10.1083/jcb.201801208 PubMed DOI PMC
: Genome-wide association study of primary open-angle glaucoma in continental and admixed African populations. Hum Genet.2018;137(10) : 10.1007/s00439-018-1943-7 847-862 10.1007/s00439-018-1943-7 PubMed DOI PMC
: The Exocyst Component Exo70 Modulates Dendrite Arbor Formation, Synapse Density, and Spine Maturation in Primary Hippocampal Neurons. Mol Neurobiol.2019;56(7) : 10.1007/s12035-018-1378-0 4620-4638 10.1007/s12035-018-1378-0 PubMed DOI
: SMYD2-Mediated Histone Methylation Contributes to HIV-1 Latency. Cell Host Microbe.2017;21(5) : 10.1016/j.chom.2017.04.011 569-579.e6 10.1016/j.chom.2017.04.011 PubMed DOI PMC
: A quantitative imaging-based screen reveals the exocyst as a network hub connecting endocytosis and exocytosis. Mol Biol Cell.2015;26(13) : 10.1091/mbc.E14-11-1527 2519-34 10.1091/mbc.E14-11-1527 PubMed DOI PMC
: Sec6/8 Complex Is Recruited to Cell–Cell Contacts and Specifies Transport Vesicle Delivery to the Basal-Lateral Membrane in Epithelial Cells. Cell.1998;93(5) : 10.1016/S0092-8674(00)81435-X 731-740 10.1016/S0092-8674(00)81435-X PubMed DOI
: The exocyst protein Sec10 is necessary for primary ciliogenesis and cystogenesis in vitro. Mol Biol Cell.2009;20(10) : 10.1091/mbc.e08-07-0772 2522-9 10.1091/mbc.e08-07-0772 PubMed DOI PMC
: The beta subunit of the Sec61p endoplasmic reticulum translocon interacts with the exocyst complex in Saccharomyces cerevisiae. J Biol Chem.2003;278(23) : 10.1074/jbc.M213111200 20946-53 10.1074/jbc.M213111200 PubMed DOI
: The exocyst affects protein synthesis by acting on the translocation machinery of the endoplasmic reticulum. J Biol Chem.2003;278(23) : 10.1074/jbc.M213210200 20954-60 10.1074/jbc.M213210200 PubMed DOI
: Breaching Self-Tolerance to Alu Duplex RNA Underlies MDA5-Mediated Inflammation. Cell.2018;172(4) : 10.1016/j.cell.2017.12.016 797-810.e13 10.1016/j.cell.2017.12.016 PubMed DOI PMC
: The In Vivo Architecture of the Exocyst Provides Structural Basis for Exocytosis. Cell.2017;168(3) : 10.1016/j.cell.2017.01.004 400-412.e18 10.1016/j.cell.2017.01.004 PubMed DOI
: Arl13b and the exocyst interact synergistically in ciliogenesis. Mol Biol Cell.2016;27(2) : 10.1091/mbc.E15-02-0061 308-20 10.1091/mbc.E15-02-0061 PubMed DOI PMC
: The exocyst is a Ral effector complex. Nat Cell Biol.2002;4(1) : 10.1038/ncb728 66-72 10.1038/ncb728 PubMed DOI
: The exocyst complex binds the small GTPase RalA to mediate filopodia formation. Nat Cell Biol.2002;4(1) : 10.1038/ncb720 73-8 10.1038/ncb720 PubMed DOI
: The brain exocyst complex interacts with RalA in a GTP-dependent manner: identification of a novel mammalian Sec3 gene and a second Sec15 gene. J Biol Chem.2001;276(32) : 10.1074/jbc.C100320200 29792-7 10.1074/jbc.C100320200 PubMed DOI
: Coordination of Rab8 and Rab11 in primary ciliogenesis. Proc Natl Acad Sci U S A.2010;107(14) : 10.1073/pnas.1002401107 6346-51 10.1073/pnas.1002401107 PubMed DOI PMC
: Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem.2001;276(39) : 10.1074/jbc.M101287200 36734-41 10.1074/jbc.M101287200 PubMed DOI
: Cdc42 deficiency causes ciliary abnormalities and cystic kidneys. J Am Soc Nephrol.2013;24(9) : 10.1681/ASN.2012121236 1435-50 10.1681/ASN.2012121236 PubMed DOI PMC
: Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell.1980;21(1) : 10.1016/0092-8674(80)90128-2 205-215 10.1016/0092-8674(80)90128-2 PubMed DOI
: The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J.1996;15(23) :6483-94 PubMed PMC
: Sec8p and Sec15p are components of a plasma membrane-associated 19.5S particle that may function downstream of Sec4p to control exocytosis. J Cell Biol.1992;118(5) : 10.1083/jcb.118.5.1041 1041-56 10.1083/jcb.118.5.1041 PubMed DOI PMC
: AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J.2006;48(1) : 10.1111/j.1365-313X.2006.02854.x 54-72 10.1111/j.1365-313X.2006.02854.x PubMed DOI PMC
: Evolution of the land plant exocyst complexes. Front Plant Sci.2012;3: 10.3389/fpls.2012.00159 159 10.3389/fpls.2012.00159 PubMed DOI PMC
: The Physcomitrella patens exocyst subunit EXO70.3d has distinct roles in growth and development, and is essential for completion of the moss life cycle. New Phytol.2017;216(2) : 10.1111/nph.14548 438-454 10.1111/nph.14548 PubMed DOI
: Exocytosis and cell polarity in plants - exocyst and recycling domains. New Phytol.2009;183(2) : 10.1111/j.1469-8137.2009.02880.x 255-72 10.1111/j.1469-8137.2009.02880.x PubMed DOI
: Exocyst complexes multiple functions in plant cells secretory pathways. Curr Opin Plant Biol.2013;16(6) : 10.1016/j.pbi.2013.10.013 726-33 10.1016/j.pbi.2013.10.013 PubMed DOI
: RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell.2011;144(2) : 10.1016/j.cell.2010.12.018 253-67 10.1016/j.cell.2010.12.018 PubMed DOI PMC
: Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic.2013;14(11) : 10.1111/tra.12101 1155-65 10.1111/tra.12101 PubMed DOI
Lessons from the deep: mechanisms behind diversification of eukaryotic protein complexes