• This record comes from PubMed

Identification and Validation of Circulating Micrornas as Prognostic Biomarkers in Pancreatic Ductal Adenocarcinoma Patients Undergoing Surgical Resection

. 2020 Jul 30 ; 9 (8) : . [epub] 20200730

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
16-31314A Ministerstvo Zdravotnictví Ceské Republiky

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal and aggressive cancers with a less than 6% five-year survival rate. Circulating microRNAs (miRNAs) are emerging as a useful tool for non-invasive diagnosis and prognosis estimation in the various cancer types, including PDAC. Our study aimed to evaluate whether miRNAs in the pre-operative blood plasma specimen have the potential to predict the prognosis of PDAC patients. In total, 112 PDAC patients planned for surgical resection were enrolled in our prospective study. To identify prognostic miRNAs, we used small RNA sequencing in 24 plasma samples of PDAC patients with poor prognosis (overall survival (OS) < 16 months) and 24 plasma samples of PDAC patients with a good prognosis (OS > 20 months). qPCR validation of selected miRNA candidates was performed in the independent cohort of PDAC patients (n = 64). In the discovery phase of the study, we identified 44 miRNAs with significantly different levels in the plasma samples of the group of good and poor prognosis patients. Among these miRNAs, 23 showed lower levels, and 21 showed higher levels in plasma specimens from PDAC patients with poor prognosis. Eleven miRNAs were selected for the validation, but only miR-99a-5p and miR-365a-3p were confirmed to have significantly lower levels and miR-200c-3p higher levels in plasma samples of poor prognosis cases. Using the combination of these 3-miRNA levels, we were able to identify the patients with poor prognosis with sensitivity 85% and specificity 80% (Area Under the Curve = 0.890). Overall, 3-miRNA prognostic score associated with OS was identified in the pre-operative blood plasma samples of PDAC patients undergoing surgical resection. Following further independent validations, the detection of these miRNA may enable identification of PDAC patients who have no survival benefit from the surgical treatment, which is associated with the high morbidity rates.

See more in PubMed

Kleeff J., Korc M., Apte M., La Vecchia C., Johnson C.D., Biankin A.V., Neale R.E., Tempero M., Tuveson D.A., Hruban R.H., et al. Pancreatic cancer. Nat. Rev. Dis. Primers. 2016;2:16022. doi: 10.1038/nrdp.2016.22. PubMed DOI

Rawla P., Sunkara T., Gaduputi V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J. Oncol. 2019;10:10–27. doi: 10.14740/wjon1166. PubMed DOI PMC

Poredska K., Kunovsky L., Prochazka V., Dolina J., Chovancova M., Vlazny J., Andrasina T., Eid M., Jabandziev P., Kysela P. Triple malignancy (NET, GIST and pheochromocytoma) as a first manifestation of neurofibromatosis type-1 in an adult patient. Diag. Pathol. 2019;14:77. doi: 10.1186/s13000-019-0848-7. PubMed DOI PMC

Neoptolemos J.P., Stocken D.D., Friess H., Bassi C., Dunn J.A., Hickey H., Beger H., Fernandez-Cruz L., Dervenis C., Lacaine F., et al. A Randomized Trial of Chemoradiotherapy and Chemotherapy after Resection of Pancreatic Cancer. N. Engl. J. Med. 2004;350:1200–1210. doi: 10.1056/NEJMoa032295. PubMed DOI

Neoptolemos J.P., Stocken D.D., Smith C.T., Bassi C., Ghaneh P., Owen E., Moore M., Padbury R., Doi R., Smith D., et al. Adjuvant 5-fluorouracil and folinic acid vs observation for pancreatic cancer: Composite data from the ESPAC-1 and -3(v1) trials. Br. J. Cancer. 2009;100:246–250. doi: 10.1038/sj.bjc.6604838. PubMed DOI PMC

Neoptolemos J.P., Palmer D.H., Ghaneh P., E Psarelli E., Valle J.W., Halloran C.M., Faluyi O., A O’Reilly D., Cunningham D., Wadsley J., et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): A multicentre, open-label, randomised, phase 3 trial. Lancet. 2017;389:1011–1024. doi: 10.1016/S0140-6736(16)32409-6. PubMed DOI

Jang J.-Y., Kang M., Heo J.S., Choi S.H., Choi D.W., Park S.-J., Han S.-S., Yoon D.S., Yu H.C., Kang K.J., et al. A Prospective Randomized Controlled Study Comparing Outcomes of Standard Resection and Extended Resection, Including Dissection of the Nerve Plexus and Various Lymph Nodes, in Patients with Pancreatic Head Cancer. Ann. Surg. 2014;259:656–664. doi: 10.1097/SLA.0000000000000384. PubMed DOI

Farnell M.B., Pearson R.K., Sarr M.G., DiMagno E.P., Burgart L.J., Dahl T.R., Foster N., Sargent D., the Pancreas Cancer Working Group A prospective randomized trial comparing standard pancreatoduodenectomy with pancreatoduodenectomy with extended lymphadenectomy in resectable pancreatic head adenocarcinoma. Surgery. 2005;138:618–630. doi: 10.1016/j.surg.2005.06.044. PubMed DOI

Zheng L., Wolfgang C.L. Which patients with resectable pancreatic cancer truly benefit from oncological resection: Is it destiny or biology? Cancer Boil. 2015;16:360–362. doi: 10.1080/15384047.2014.1002699. PubMed DOI PMC

Rhim A.D., Mirek E.T., Aiello N.M., Maitra A., Bailey J.M., McAllister F., Reichert M., Beatty G.L., Rustgi A.K., Vonderheide R.H., et al. EMT and Dissemination Precede Pancreatic Tumor Formation. Cell. 2012;148:349–361. doi: 10.1016/j.cell.2011.11.025. PubMed DOI PMC

Strobel O., Neoptolemos J.P., Jäger D., Büchler M.W. Optimizing the outcomes of pancreatic cancer surgery. Nat. Rev. Clin. Oncol. 2018;16:11–26. doi: 10.1038/s41571-018-0112-1. PubMed DOI

Hong S.B., Lee S.S., Kim J.H., Kim H.J., Byun J.H., Hong S.-M., Song K.-B., Kim S. Pancreatic Cancer CT: Prediction of Resectability according to NCCN Criteria. Radiology. 2018;289:710–718. doi: 10.1148/radiol.2018180628. PubMed DOI

Pandiaraja J., Viswanathan S., Antomy T.B., Thirumuruganand S., Kumaresan D.S. The Role of CA19-9 in Predicting Tumour Resectability in Carcinoma Head of Pancreas. J. Clin. Diagn. Res. 2016;10:PC06–PC09. doi: 10.7860/JCDR/2016/17106.7398. PubMed DOI PMC

Schanen B.C., Li X. Transcriptional regulation of mammalian miRNA genes. Genomics. 2011;97:1–6. doi: 10.1016/j.ygeno.2010.10.005. PubMed DOI PMC

Jabandziev P., Bohosova J., Pinkasova T., Kunovsky L., Slaby O., Goel A. The Emerging Role of Noncoding RNAs in Pediatric Inflammatory Bowel Disease. Inflamm. Bowel. Dis. 2020;26:985–993. doi: 10.1093/ibd/izaa009. PubMed DOI PMC

Galatenko V.V., Galatenko A.V., Samatov T.R., Turchinovich A.A., Shkurnikov M.Y., Makarova J.A., Tonevitsky A.G. Comprehensive network of miRNA-induced intergenic interactions and a biological role of its core in cancer. Sci. Rep. 2018;8:2418. doi: 10.1038/s41598-018-20215-5. PubMed DOI PMC

Vorvis C., Koutsioumpa M., Iliopoulos D. Developments in miRNA gene signaling pathways in pancreatic cancer. Futur. Oncol. 2016;12:1135–1150. doi: 10.2217/fon-2015-0050. PubMed DOI PMC

Chen X., Ba Y., Ma L., Cai X., Yin Y., Wang K., Guo J., Zhang Y., Chen J., Guo X., et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006. doi: 10.1038/cr.2008.282. PubMed DOI

Mitchell P.S., Parkin R.K., Kroh E.M., Fritz B.R., Wyman S.K., Pogosova-Agadjanyan E.L., Peterson A., Noteboom J., O’Briant K.C., Allen A., et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA. 2008;105:10513–10518. doi: 10.1073/pnas.0804549105. PubMed DOI PMC

Weber J.A., Baxter D.H., Zhang S., Huang D.Y., Huang K.H., Lee M.-J., Galas D.J., Wang K. The MicroRNA Spectrum in 12 Body Fluids. Clin. Chem. 2010;56:1733–1741. doi: 10.1373/clinchem.2010.147405. PubMed DOI PMC

McAlexander M.A., Phillips M.J., Witwer K.W. Comparison of Methods for miRNA Extraction from Plasma and Quantitative Recovery of RNA from Cerebrospinal Fluid. Front. Genet. 2013;4:83. doi: 10.3389/fgene.2013.00083. PubMed DOI PMC

Marabita F., De Candia P., Torri A., Tegnér J., Abrignani S., Rossi R.L. Normalization of circulating microRNA expression data obtained by quantitative real-time RT-PCR. Brief. Bioinform. 2015;17:204–212. doi: 10.1093/bib/bbv056. PubMed DOI PMC

Karasek P., Gablo N., Hlavsa J., Kiss I., Vychytilova-Faltejskova P., Hermanová M., Kala Z., Slaby O., Prochazka V. Pre-operative Plasma miR-21-5p Is a Sensitive Biomarker and Independent Prognostic Factor in Patients with Pancreatic Ductal Adenocarcinoma Undergoing Surgical Resection. Cancer Genom. Proteom. 2018;15:321–327. doi: 10.21873/cgp.20090. PubMed DOI PMC

Huang X., Yuan T., Tschannen M., Sun Z., Jacob H.J., Du M., Liang M., Dittmar R.L., Liu Y., Liang M., et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genom. 2013;14:1–14. doi: 10.1186/1471-2164-14-319. PubMed DOI PMC

Stroese A.J., Ullerich H., Koehler G., Raetzel V., Senninger N., Dhayat S.A. Circulating microRNA-99 family as liquid biopsy marker in pancreatic adenocarcinoma. J. Cancer Res. Clin. Oncol. 2018;144:2377–2390. doi: 10.1007/s00432-018-2749-7. PubMed DOI PMC

Dhayat S.A., Mardin W.A., Seggewiß J., Ströse A.J., Matuszcak C., Hummel R., Senninger N., Mees S.T., Haier J. MicroRNA Profiling Implies New Markers of Gemcitabine Chemoresistance in Mutant p53 Pancreatic Ductal Adenocarcinoma. PLoS ONE. 2015;10:e0143755. doi: 10.1371/journal.pone.0143755. PubMed DOI PMC

Song Y., Dou H., Wang P., Zhao S., Wang T., Gong W., Zhao J., Li E., Tan R., Hou Y., et al. A novel small-molecule compound diaporine A inhibits non-small cell lung cancer growth by regulating miR-99a/mTOR signaling. Cancer Biol. Ther. 2014;15:1423–1430. doi: 10.4161/cbt.29925. PubMed DOI PMC

Wang L., Chang L., Li Z., Gao Q., Cai D., Tian Y., Zeng L., Li M. MiR-99a and -99b inhibit cervical cancer cell proliferation and invasion by targeting mTOR signaling pathway. Med. Oncol. 2014;31:934. doi: 10.1007/s12032-014-0934-3. PubMed DOI

Hu Y., Zhu Q., Tang L. MiR-99a Antitumor Activity in Human Breast Cancer Cells through Targeting of mTOR Expression. PLoS ONE. 2014;9:e92099. doi: 10.1371/journal.pone.0092099. PubMed DOI PMC

Cheng H., Xue J., Yang S., Chen Y., Wang Y., Zhu Y., Wang X., Kuang D., Ruan Q., Duan Y., et al. Co-targeting of IGF1R/mTOR pathway by miR-497 and miR-99a impairs hepatocellular carcinoma development. Oncotarget. 2017;8:47984–47997. doi: 10.18632/oncotarget.18207. PubMed DOI PMC

Kuo Y.-Z., Tai Y.-H., Lo H.-I., Chen Y.-L., Cheng H.-C., Fang W.-Y., Lin S.-H., Yang C.-L., Tsai S.-T., Wu L.-W. MiR-99a exerts anti-metastasis through inhibiting myotubularin-related protein 3 expression in oral cancer. Oral Dis. 2013;20:e65–e75. doi: 10.1111/odi.12133. PubMed DOI

Wang H., Shen J., Jiang C.-P., Liu B. How to Explain the Contradiction of microRNA 200c Expression and Survival in Solid Tumors?: A Meta-analysis. Asian Pac. J. Cancer Prev. 2014;15:3687–3690. doi: 10.7314/APJCP.2014.15.8.3687. PubMed DOI

Yin L., Xiao X., Georgikou C., Yin Y., Liu L., Karakhanova S., Luo Y., Gladkich J., Fellenberg J., Sticht C., et al. MicroRNA-365a-3p inhibits c-Rel-mediated NF-kappaB signaling and the progression of pancreatic cancer. Cancer Lett. 2019;452:203–212. doi: 10.1016/j.canlet.2019.03.025. PubMed DOI

Cao Z., Liu C., Xu J., You L., Wang C., Lou W., Sun B., Miao Y., Liu X., Wang X., et al. Plasma microRNA panels to diagnose pancreatic cancer: Results from a multicenter study. Oncotarget. 2016;7:41575–41583. doi: 10.18632/oncotarget.9491. PubMed DOI PMC

Zou X., Wei J., Huang Z., Zhou X., Lu Z., Zhu W., Miao Y. Identification of a six-miRNA panel in serum benefiting pancreatic cancer diagnosis. Cancer Med. 2019;8:2810–2822. doi: 10.1002/cam4.2145. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...