The Emerging Role of Noncoding RNAs in Pediatric Inflammatory Bowel Disease
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu úvodní články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 CA184792
NCI NIH HHS - United States
R01 CA202797
NCI NIH HHS - United States
PubMed
32009179
PubMed Central
PMC7301403
DOI
10.1093/ibd/izaa009
PII: 5721205
Knihovny.cz E-zdroje
- Klíčová slova
- Crohn’s disease, inflammatory bowel disease, microRNA, noncoding RNA, pediatrics, ulcerative colitis,
- MeSH
- biologické markery analýza MeSH
- Crohnova nemoc genetika MeSH
- dítě MeSH
- genetické markery genetika MeSH
- idiopatické střevní záněty genetika MeSH
- individualizovaná medicína trendy MeSH
- lidé MeSH
- nekódující RNA analýza MeSH
- signální transdukce genetika MeSH
- transkriptom MeSH
- ulcerózní kolitida genetika MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- úvodní články MeSH
- Názvy látek
- biologické markery MeSH
- genetické markery MeSH
- nekódující RNA MeSH
Prevalence of inflammatory bowel disease (IBD), a chronic inflammatory disorder of the gut, has been on the rise in recent years-not only in the adult population but also especially in pediatric patients. Despite the absence of curative treatments, current therapeutic options are able to achieve long-term remission in a significant proportion of cases. To this end, however, there is a need for biomarkers enabling accurate diagnosis, prognosis, and prediction of response to therapies to facilitate a more individualized approach to pediatric IBD patients. In recent years, evidence has continued to evolve concerning noncoding RNAs (ncRNAs) and their roles as integral factors in key immune-related cellular pathways. Specific deregulation patterns of ncRNAs have been linked to pathogenesis of various diseases, including pediatric IBD. In this article, we provide an overview of current knowledge on ncRNAs, their altered expression profiles in pediatric IBD patients, and how these are emerging as potentially valuable clinical biomarkers as we enter an era of personalized medicine.
Zobrazit více v PubMed
Benchimol EI, Fortinsky KJ, Gozdyra P, et al. . Epidemiology of pediatric inflammatory bowel disease: a systematic review of international trends. Inflamm Bowel Dis. 2011;17:423–439. PubMed
Ghione S, Sarter H, Fumery M, et al. ; Epimad Group Dramatic increase in incidence of ulcerative colitis and Crohn’s disease (1988-2011): a population-based study of French adolescents. Am J Gastroenterol. 2018;113:265–272. PubMed
Van Limbergen J, Russell RK, Drummond HE, et al. . Definition of phenotypic characteristics of childhood-onset inflammatory bowel disease. Gastroenterology. 2008;135:1114–1122. PubMed
Kelsen J, Baldassano RN. Inflammatory bowel disease: the difference between children and adults. Inflamm Bowel Dis. 2008;14(Suppl 2):S9–11. PubMed
Molodecky NA, Soon IS, Rabi DM, et al. . Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142:46–54.e42; quiz e30. PubMed
Ng SC, Shi HY, Hamidi N, et al. . Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2018;390:2769–2778. PubMed
Sýkora J, Pomahačová R, Kreslová M, et al. . Current global trends in the incidence of pediatric-onset inflammatory bowel disease. World J Gastroenterol. 2018;24:2741–2763. PubMed PMC
IBD Working Group of the European Society for Paediatric Gastroenterology HpaN. Inflammatory bowel disease in children and adolescents: recommendations for diagnosis--the Porto criteria. J Pediatr Gastroenterol Nutr. 2005;41:1–7. PubMed
Levine A, Koletzko S, Turner D, et al. ; European Society of Pediatric Gastroenterology, Hepatology, and Nutrition ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J Pediatr Gastroenterol Nutr. 2014;58:795–806. PubMed
De Iudicibus S, Stocco G, Martelossi S, et al. . Genetic predictors of glucocorticoid response in pediatric patients with inflammatory bowel diseases. J Clin Gastroenterol. 2011;45:e1–e7. PubMed
Pastore S, Naviglio S, Canuto A, et al. . Serious adverse events associated with anti-tumor necrosis factor alpha agents in pediatric-onset inflammatory bowel disease and juvenile idiopathic arthritis in a real-life setting. Paediatr Drugs. 2018;20:165–171. PubMed
Consortium IHGS. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–945. PubMed
Wise JA, Weiner AM. Dictyostelium small nuclear RNA D2 is homologous to rat nucleolar RNA U3 and is encoded by a dispersed multigene family. Cell. 1980;22:109–118. PubMed
Calvet JP, Pederson T. Base-pairing interactions between small nuclear RNAs and nuclear RNA precursors as revealed by psoralen cross-linking in vivo. Cell. 1981;26:363–370. PubMed
Calvet JP, Meyer LM, Pederson T. Small nuclear RNA U2 is base-paired to heterogeneous nuclear RNA. Science. 1982;217:456–458. PubMed
Lacoste-Royal G, Simard R. Localization of small nuclear RNA by EM autoradiography in Chinese hamster ovary (CHO) cells. Exp Cell Res. 1983;149:311–323. PubMed
Elkin M, Shevelev A, Schulze E, et al. . The expression of the imprinted H19 and IGF-2 genes in human bladder carcinoma. FEBS Lett. 1995;374:57–61. PubMed
Smith CM, Steitz JA. Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5’-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol. 1998;18:6897–6909. PubMed PMC
Bussemakers MJ, van Bokhoven A, Verhaegh GW, et al. . DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999;59:5975–5979. PubMed
Fire A, Albertson D, Harrison SW, et al. . Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle. Development. 1991;113:503–514. PubMed
Fire A, Xu S, Montgomery MK, et al. . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811. PubMed
Frith MC, Pheasant M, Mattick JS. The amazing complexity of the human transcriptome. Eur J Hum Genet. 2005;13:894–897. PubMed
Martens-Uzunova ES, Olvedy M, Jenster G. Beyond microRNA–novel RNAs derived from small non-coding RNA and their implication in cancer. Cancer Lett. 2013;340:201–211. PubMed
Chooniedass-Kothari S, Emberley E, Hamedani MK, et al. . The steroid receptor RNA activator is the first functional RNA encoding a protein. FEBS Lett. 2004;566:43–47. PubMed
Kondo T, Plaza S, Zanet J, et al. . Small peptides switch the transcriptional activity of Shavenbaby during Drosophila embryogenesis. Science. 2010;329:336–339. PubMed
Bánfai B, Jia H, Khatun J, et al. . Long noncoding RNAs are rarely translated in two human cell lines. Genome Res. 2012;22:1646–1657. PubMed PMC
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854. PubMed
Reinhart BJ, Slack FJ, Basson M, et al. . The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–906. PubMed
Slack FJ, Basson M, Liu Z, et al. . The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell. 2000;5:659–669. PubMed
Pasquinelli AE, Reinhart BJ, Slack F, et al. . Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408:86–89. PubMed
Friedman RC, Farh KK, Burge CB, et al. . Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. PubMed PMC
Alles J, Fehlmann T, Fischer U, et al. . An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47:3353–3364. PubMed PMC
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–233. PubMed PMC
Macfarlane LA, Murphy PR. MicroRNA: biogenesis, function and role in cancer. Curr Genomics. 2010;11:537–561. PubMed PMC
Olena AF, Patton JG. Genomic organization of microRNAs. J Cell Physiol. 2010;222:540–545. PubMed PMC
Lee Y, Kim M, Han J, et al. . MicroRNA genes are transcribed by RNA polymerase II. Embo J. 2004;23:4051–4060. PubMed PMC
Aukerman MJ, Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell. 2003;15:2730–2741. PubMed PMC
Tam W. Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA. Gene. 2001;274:157–167. PubMed
Lee Y, Ahn C, Han J, et al. . The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–419. PubMed
Han J, Lee Y, Yeom KH, et al. . The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18:3016–3027. PubMed PMC
Landthaler M, Yalcin A, Tuschl T. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol. 2004;14:2162–2167. PubMed
Yi R, Qin Y, Macara IG, et al. . Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17:3011–3016. PubMed PMC
Lee YS, Nakahara K, Pham JW, et al. . Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell. 2004;117:69–81. PubMed
Chendrimada TP, Gregory RI, Kumaraswamy E, et al. . TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436:740–744. PubMed PMC
Okamura K, Liu N, Lai EC. Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol Cell. 2009;36:431–444. PubMed PMC
Kim YK, Kim B, Kim VN. Re-evaluation of the roles of DROSHA, Export in 5, and DICER in microRNA biogenesis. Proc Natl Acad Sci U S A. 2016;113:E1881–E1889. PubMed PMC
Herrera-Carrillo E, Berkhout B. Dicer-independent processing of small RNA duplexes: mechanistic insights and applications. Nucleic Acids Res. 2017;45:10369–10379. PubMed PMC
Babiarz JE, Ruby JG, Wang Y, et al. . Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev. 2008;22:2773–2785. PubMed PMC
Okamura K, Hagen JW, Duan H, et al. . The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell. 2007;130:89–100. PubMed PMC
Wang J, Zhang J, Zheng H, et al. . Mouse transcriptome: neutral evolution of ‘non-coding’ complementary DNAs. Nature. 2004;431:1 p following 757; discussion following 757. PubMed
Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–159. PubMed
Derrien T, Johnson R, Bussotti G, et al. . The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–1789. PubMed PMC
Guttman M, Amit I, Garber M, et al. . Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458:223–227. PubMed PMC
Pang KC, Frith MC, Mattick JS. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet. 2006;22:1–5. PubMed
Carninci P, Kasukawa T, Katayama S, et al. ; FANTOM Consortium; RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group) The transcriptional landscape of the mammalian genome. Science. 2005;309:1559–1563. PubMed
Ponjavic J, Ponting CP, Lunter G. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res. 2007;17:556–565. PubMed PMC
Iyer MK, Niknafs YS, Malik R, et al. . The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47:199–208. PubMed PMC
Fang S, Zhang L, Guo J, et al. . NONCODEV5: a comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res. 2018;46:D308–D314. PubMed PMC
An G, Sun J, Ren C, et al. . LIVE: a manually curated encyclopedia of experimentally validated interactions of lncRNAs. Database (Oxford). 2019;2019:bazz011. PubMed PMC
Cabili MN, Trapnell C, Goff L, et al. . Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25:1915–1927. PubMed PMC
Ravasi T, Suzuki H, Pang KC, et al. . Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res. 2006;16:11–19. PubMed PMC
Mercer TR, Dinger ME, Sunkin SM, et al. . Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A. 2008;105:716–721. PubMed PMC
Djebali S, Davis CA, Merkel A, et al. . Landscape of transcription in human cells. Nature. 2012;489:101–108. PubMed PMC
Khalil AM, Guttman M, Huarte M, et al. . Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106:11667–11672. PubMed PMC
Wang KC, Yang YW, Liu B, et al. . A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011;472:120–124. PubMed PMC
Feng J, Bi C, Clark BS, et al. . The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev. 2006;20:1470–1484. PubMed PMC
Shamovsky I, Ivannikov M, Kandel ES, et al. . RNA-mediated response to heat shock in mammalian cells. Nature. 2006;440:556–560. PubMed
Lai F, Orom UA, Cesaroni M, et al. . Activating RNAs associate with mediator to enhance chromatin architecture and transcription. Nature. 2013;494:497–501. PubMed PMC
Yang L, Lin C, Jin C, et al. . lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature. 2013;500:598–602. PubMed PMC
Wang X, Arai S, Song X, et al. . Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature. 2008;454:126–130. PubMed PMC
Ramos AD, Andersen RE, Liu SJ, et al. . The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell. 2015;16:439–447. PubMed PMC
Gonzalez I, Munita R, Agirre E, et al. . A lncRNA regulates alternative splicing via establishment of a splicing-specific chromatin signature. Nat Struct Mol Biol. 2015;22:370–376. PubMed PMC
Yoon JH, Abdelmohsen K, Kim J, et al. . Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun. 2013;4:2939. PubMed PMC
Hu G, Lou Z, Gupta M. The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation. Plos One. 2014;9:e107016. PubMed PMC
Carrieri C, Cimatti L, Biagioli M, et al. . Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature. 2012;491:454–457. PubMed
Willingham AT, Orth AP, Batalov S, et al. . A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science. 2005;309:1570–1573. PubMed
Noh JH, Kim KM, Abdelmohsen K, et al. . HuR and GRSF1 modulate the nuclear export and mitochondrial localization of the lncRNA RMRP. Genes Dev. 2016;30:1224–1239. PubMed PMC
Salmena L, Poliseno L, Tay Y, et al. . A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–358. PubMed PMC
Kino T, Hurt DE, Ichijo T, et al. . Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. 2010;3:ra8. PubMed PMC
Melé M, Mattioli K, Mallard W, et al. . Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs. Genome Res. 2017;27:27–37. PubMed PMC
Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17:47–62. PubMed
Kunej T, Obsteter J, Pogacar Z, et al. . The decalog of long non-coding RNA involvement in cancer diagnosis and monitoring. Crit Rev Clin Lab Sci. 2014;51:344–357. PubMed
Ulitsky I. Interactions between short and long noncoding RNAs. FEBS Lett. 2018;592:2874–2883. PubMed
Zheng GX, Do BT, Webster DE, et al. . Dicer-microRNA-Myc circuit promotes transcription of hundreds of long noncoding RNAs. Nat Struct Mol Biol. 2014;21:585–590. PubMed PMC
Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18:5–18. PubMed PMC
Salviano-Silva A, Lobo-Alves SC, Almeida RC, et al. . Besides pathology: long non-coding RNA in cell and tissue homeostasis. Noncoding RNA. 2018;4:3. PubMed PMC
Jia H, Osak M, Bogu GK, et al. . Genome-wide computational identification and manual annotation of human long noncoding RNA genes. Rna. 2010;16:1478–1487. PubMed PMC
Lagos-Quintana M, Rauhut R, Meyer J, et al. . New microRNAs from mouse and human. Rna. 2003;9:175–179. PubMed PMC
Béres NJ, Kiss Z, Sztupinszki Z, et al. . Altered mucosal expression of microRNAs in pediatric patients with inflammatory bowel disease. Dig Liver Dis. 2017;49:378–387. PubMed
Fasseu M, Tréton X, Guichard C, et al. . Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with inflammatory bowel disease. PLoS One. 2010;5:e13160. PubMed PMC
Mirza AH, Kaur S, Brorsson CA, Pociot F. Effects of GWAS-associated genetic variants on lncRNAs within IBD and T1D candidate loci. Plos One. 2014;9:e105723. PubMed PMC
Mirza AH, Berthelsen CH, Seemann SE, et al. . Transcriptomic landscape of lncRNAs in inflammatory bowel disease. Genome Med. 2015;7:39. PubMed PMC
Dalal SR, Kwon JH. The role of MicroRNA in inflammatory bowel disease. Gastroenterol Hepatol (N Y). 2010;6:714–722. PubMed PMC
Koukos G, Polytarchou C, Kaplan JL, et al. . MicroRNA-124 regulates STAT3 expression and is down-regulated in colon tissues of pediatric patients with ulcerative colitis. Gastroenterology. 2013;145:842–52.e2. PubMed PMC
Kwon JH, Keates AC, Anton PM, et al. . Topical antisense oligonucleotide therapy against LIX, an enterocyte-expressed CXC chemokine, reduces murine colitis. Am J Physiol Gastrointest Liver Physiol. 2005;289:G1075–G1083. PubMed
Koukos G, Polytarchou C, Kaplan JL, et al. . A microRNA signature in pediatric ulcerative colitis: deregulation of the miR-4284/CXCL5 pathway in the intestinal epithelium. Inflamm Bowel Dis. 2015;21:996–1005. PubMed PMC
Zahm AM, Hand NJ, Tsoucas DM, et al. . Rectal microRNAs are perturbed in pediatric inflammatory bowel disease of the colon. J Crohns Colitis. 2014;8:1108–1117. PubMed PMC
Béres NJ, Szabó D, Kocsis D, et al. . Role of altered expression of miR-146a, miR-155, and miR-122 in pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2016;22:327–335. PubMed
Szűcs D, Béres NJ, Rokonay R, et al. . Increased duodenal expression of miR-146a and -155 in pediatric Crohn’s disease. World J Gastroenterol. 2016;22:6027–6035. PubMed PMC
Sheedy FJ. Turning 21: induction of miR-21 as a key switch in the inflammatory response. Front Immunol. 2015;6:19. PubMed PMC
Neudecker V, Haneklaus M, Jensen O, et al. . Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome. J Exp Med. 2017;214:1737–1752. PubMed PMC
Tang WJ, Peng KY, Tang ZF, et al. . MicroRNA-15a - cell division cycle 42 signaling pathway in pathogenesis of pediatric inflammatory bowel disease. World J Gastroenterol. 2018;24:5234–5245. PubMed PMC
Zahm AM, Thayu M, Hand NJ, et al. . Circulating microRNA is a biomarker of pediatric Crohn disease. J Pediatr Gastroenterol Nutr. 2011;53:26–33. PubMed PMC
Heier CR, Fiorillo AA, Chaisson E, et al. . Identification of pathway-specific serum biomarkers of response to glucocorticoid and infliximab treatment in children with inflammatory bowel disease. Clin Transl Gastroenterol. 2016;7:e192. PubMed PMC
De Iudicibus S, Lucafò M, Vitulo N, et al. . High-throughput sequencing of microRNAs in glucocorticoid sensitive paediatric inflammatory bowel disease patients. Int J Mol Sci. 2018;19:1399. PubMed PMC
Lucafò M, Di Silvestre A, Romano M, et al. . Role of the long non-coding RNA growth arrest-specific 5 in glucocorticoid response in children with inflammatory bowel disease. Basic Clin Pharmacol Toxicol. 2018;122:87–93. PubMed
Park JH, Peyrin-Biroulet L, Eisenhut M, et al. . IBD immunopathogenesis: a comprehensive review of inflammatory molecules. Autoimmun Rev. 2017;16:416–426. PubMed
lncRNA PVT1 in the Pathogenesis and Clinical Management of Renal Cell Carcinoma