Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage

. 2015 Oct ; 103 (10) : 550-62.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25858644

Grantová podpora
R01 GM062357 NIGMS NIH HHS - United States

In numerous Gram-positive bacteria, the glmS ribozyme or catalytic riboswitch regulates the expression of glucosamine-6-phosphate (GlcN6P) synthase via site-specific cleavage of its sugar-phosphate backbone in response to GlcN6P ligand binding. Biochemical data have suggested a crucial catalytic role for an active site guanine (G40 in Thermoanaerobacter tengcongensis, G33 in Bacillus anthracis). We used hybrid quantum chemical/molecular mechanical (QM/MM) calculations to probe the mechanism where G40 is deprotonated and acts as a general base. The calculations suggest that the deprotonated guanine G40(-) is sufficiently reactive to overcome the thermodynamic penalty arising from its rare protonation state, and thus is able to activate the A-1(2'-OH) group toward nucleophilic attack on the adjacent backbone. Furthermore, deprotonation of A-1(2'-OH) and nucleophilic attack are predicted to occur as separate steps, where activation of A-1(2'-OH) precedes nucleophilic attack. Conversely, the transition state associated with the rate-determining step corresponds to concurrent nucleophilic attack and protonation of the G1(O5') leaving group by the ammonium moiety of the GlcN6P cofactor. Overall, our calculations help to explain the crucial roles of G40 (as a general base) and GlcN6P (as a general acid) during glmS ribozyme self-cleavage. In addition, we show that the QM/MM description of the glmS ribozyme self-cleavage reaction is significantly more sensitive to the size of the QM region and the quality of the QM-MM coupling than that of other small ribozymes.

Zobrazit více v PubMed

Barrick JE, Breaker RR. Genome Biol. 2007;8 PubMed PMC

Batey RT, Gilbert SD, Montange RK. Nature. 2004;432:411–415. PubMed

Coppins RL, Hall KB, Groisman EA. Curr Opin Microbiol. 2007;10:176–181. PubMed PMC

Corbino KA, Barrick JE, Lim J, Welz R, Tucker BJ, Puskarz I, Mandal M, Rudnick ND, Breaker RR. Genome Biol. 2005;6 PubMed PMC

Grundy FJ, Henkin TM. Crit Rev Biochem Mol. 2006;41:329–338. PubMed

Henkin TM. Gene Dev. 2008;22:3383–3390. PubMed PMC

Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR. Cell. 2003;113:577–586. PubMed

Tucker BJ, Breaker RR. Curr Opin Struc Biol. 2005;15:342–348. PubMed

Winkler WC. Curr Opin Chem Biol. 2005;9:594–602. PubMed

Winkler WC, Breaker RR. Annu Rev Microbiol. 2005;59:487–517. PubMed

Deigan KE, Ferre-D'Amare AR. Accounts Chem Res. 2011;44:1329–1338. PubMed PMC

Blount KF, Breaker RR. Nat Biotechnol. 2006;24:1558–1564. PubMed

Barrick JE, Corbino KA, Winkler WC, Nahvi A, Mandal M, Collins J, Lee M, Roth A, Sudarsan N, Jona I, Wickiser JK, Breaker RRP. Natl Acad Sci USA. 2004;101:6421–6426. PubMed PMC

Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR. Nature. 2004;428:281–286. PubMed

Milewski S. Bba-Protein Struct M. 2002;1597:173–192. PubMed

Fedor MJ. Annu Rev Biophys. 2009;38:271–299. PubMed

Hampel KJ, Tinsley MM. Biochemistry-Us. 2006;45:7861–7871. PubMed

Tinsley RA, Furchak JRW, Walter NG. Rna. 2007;13:468–477. PubMed PMC

McCarthy TJ, Plog MA, Floy SA, Jansen JA, Soukup JK, Soukup GA. Chem Biol. 2005;12:1221–1226. PubMed

Collins JA, Irnov I, Baker S, Winkler WC. Gene Dev. 2007;21:3356–3368. PubMed PMC

Lau MWL, Ferre-D'Amare AR. Nat Chem Biol. 2013;9:805-+. PubMed PMC

Bevilacqua PC, Yajima R. Curr Opin Chem Biol. 2006;10:455–464. PubMed

Lilley DMJ. Trends Biochem Sci. 2003;28:495–501. PubMed

Roth A, Nahvi A, Lee M, Jona I, Breaker RR. Rna. 2006;12:607–619. PubMed PMC

Gong B, Klein DJ, Ferre-D'Amare AR, Carey PR. J Am Chem Soc. 2011;133:14188–14191. PubMed PMC

Viladoms J, Fedor MJ. J Am Chem Soc. 2012;134:19043–19049. PubMed PMC

Davis JH, Dunican BF, Strobel SA. Biochemistry-Us. 2011;50:7236–7242. PubMed PMC

Xin Y, Hamelberg D. Rna. 2010;16:2455–2463. PubMed PMC

Viladoms J, Scott LG, Fedor MJ. J Am Chem Soc. 2011;133:18388–18396. PubMed PMC

Brooks KM, Hampel KJ. Biochemistry-Us. 2011;50:2424–2433. PubMed PMC

Klein DJ, Been MD, Ferre-D'Amare AR. J Am Chem Soc. 2007;129:14858-+. PubMed

Klein DJ, Wilkinson SR, Been MD, Ferre-D'Amare AR. J Mol Biol. 2007;373:178–189. PubMed PMC

Klein DJ, Ferre-D'Amare AR. Science. 2006;313:1752–1756. PubMed

Cochrane JC, Lipchock SV, Strobel SA. Chem Biol. 2007;14:97–105. PubMed PMC

Cochrane JC, Strobel SA. Accounts Chem Res. 2008;41:1027–1035. PubMed

Banas P, Walter NG, Sponer J, Otyepka M. J Phys Chem B. 2010;114:8701–8712. PubMed PMC

Sripathi KN, Tay WW, Banas P, Otyepka M, Poner JS, Walter NS. Rna. 2014;20:1112–1128. PubMed PMC

Mlynsky V, Banas P, Hollas D, Reblova K, Walter NG, Sponer J, Otyepka M. J Phys Chem B. 2010;114:6642–6652. PubMed PMC

Mlynsky V, Banas P, Walter NG, Sponer J, Otyepka M. J Phys Chem B. 2011;115:13911–13924. PubMed PMC

Mlynsky V, Kuhrova P, Zgarbova M, Jurecka P, Walter NG, Otyepka M, Sponer J, Banas P. J Phys Chem B. 2015 PubMed

Cheatham TE, Case DA. Biopolymers. 2013;99:969–977. PubMed PMC

Sponer J, Banas P, Jurecka P, Zgarbova M, Kuhrova P, Havrila M, Krepl M, Stadlbauer P, Otyepka M. J Phys Chem Lett. 2014;5:1771–1782. PubMed

Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham TE, III, Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA. San Francisco: University of California; 2014.

Salomon-Ferrer R, Gotz AW, Poole D, Le Grand S, Walker RC. J Chem Theory Comput. 2013;9:3878–3888. PubMed

Bayly CI, Cieplak P, Cornell WD, Kollman PA. J Phys Chem-Us. 1993;97:10269–10280.

Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. J Am Chem Soc. 1996;118:2309–2309.

Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M. Biophys J. 2007;92:3817–3829. PubMed PMC

Zgarbova M, Otyepka M, Sponer J, Mladek A, Banas P, Cheatham TE, Jurecka P. J Chem Theory Comput. 2011;7:2886–2902. PubMed PMC

Banas P, Hollas D, Zgarbova M, Jurecka P, Orozco M, Cheatham TE, Sponer J, Otyepka M. J Chem Theory Comput. 2010;6:3836–3849. PubMed PMC

Joung IS, Cheatham TE. J Phys Chem B. 2008;112:9020–9041. PubMed PMC

Aqvist J. J Phys Chem-Us. 1990;94:8021–8024.

Gresh N, Sponer JE, Spackova N, Leszczynski J, Sponer J. J Phys Chem B. 2003;107:8669–8681.

Banas P, Jurecka P, Walter NG, Sponer J, Otyepka M. Methods. 2009;49:202–216. PubMed PMC

Ditzler MA, Otyepka M, Sponer J, Walter NG. Accounts Chem Res. 2010;43:40–47. PubMed PMC

Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K. J Phys Chem-Us. 1996;100:19357–19363.

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Wallingford, CT, USA: Gaussian, Inc.; 2009.

Salahub DR, de la Lande A, Goursot A, Zhang R, Zhang Y. Struct Bond. 2013;150:1–64.

Lynch BJ, Truhlar DG. J Phys Chem A. 2001;105:2936–2941.

Lynch BJ, Fast PL, Harris M, Truhlar DG. J Phys Chem A. 2000;104:4811–4815.

Mlynsky V, Banas P, Sponer J, van der Kamp MW, Mulholland AJ, Otyepka M. J Chem Theory Comput. 2014;10:1608–1622. PubMed

Zirbel CL, Sponer JE, Sponer J, Stombaugh J, Leontis NB. Nucleic Acids Res. 2009;37:4898–4918. PubMed PMC

Banas P, Rulisek L, Hanosova V, Svozil D, Walter NG, Sponer J, Otyepka M. J Phys Chem B. 2008;112:11177–11187. PubMed PMC

Mlynsky V, Walter NG, Sponer J, Otyepka M, Banas P. Phys Chem Chem Phys. 2015;17:670–679. PubMed PMC

Hu LH, Soderhjelm P, Ryde U. J Chem Theory Comput. 2011;7:761–777. PubMed

Vreven T, Byun KS, Komaromi I, Dapprich S, Montgomery JA, Morokuma K, Frisch MJ. J Chem Theory Comput. 2006;2:815–826. PubMed

Zhang S, Ganguly A, Goyal P, Bingaman JL, Bevilacqua PC, Hammes-Schiffer S. J Am Chem Soc. 2015;137:784–798. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview

. 2018 Apr 25 ; 118 (8) : 4177-4338. [epub] 20180103

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...