Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM062357
NIGMS NIH HHS - United States
PubMed
25858644
PubMed Central
PMC4553064
DOI
10.1002/bip.22657
Knihovny.cz E-zdroje
- Klíčová slova
- QM/MM, RNA catalysis, glmS, riboswitch, ribozyme,
- MeSH
- katalýza MeSH
- riboswitch MeSH
- RNA katalytická chemie MeSH
- teoretické modely MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- riboswitch MeSH
- RNA katalytická MeSH
In numerous Gram-positive bacteria, the glmS ribozyme or catalytic riboswitch regulates the expression of glucosamine-6-phosphate (GlcN6P) synthase via site-specific cleavage of its sugar-phosphate backbone in response to GlcN6P ligand binding. Biochemical data have suggested a crucial catalytic role for an active site guanine (G40 in Thermoanaerobacter tengcongensis, G33 in Bacillus anthracis). We used hybrid quantum chemical/molecular mechanical (QM/MM) calculations to probe the mechanism where G40 is deprotonated and acts as a general base. The calculations suggest that the deprotonated guanine G40(-) is sufficiently reactive to overcome the thermodynamic penalty arising from its rare protonation state, and thus is able to activate the A-1(2'-OH) group toward nucleophilic attack on the adjacent backbone. Furthermore, deprotonation of A-1(2'-OH) and nucleophilic attack are predicted to occur as separate steps, where activation of A-1(2'-OH) precedes nucleophilic attack. Conversely, the transition state associated with the rate-determining step corresponds to concurrent nucleophilic attack and protonation of the G1(O5') leaving group by the ammonium moiety of the GlcN6P cofactor. Overall, our calculations help to explain the crucial roles of G40 (as a general base) and GlcN6P (as a general acid) during glmS ribozyme self-cleavage. In addition, we show that the QM/MM description of the glmS ribozyme self-cleavage reaction is significantly more sensitive to the size of the QM region and the quality of the QM-MM coupling than that of other small ribozymes.
Zobrazit více v PubMed
Barrick JE, Breaker RR. Genome Biol. 2007;8 PubMed PMC
Batey RT, Gilbert SD, Montange RK. Nature. 2004;432:411–415. PubMed
Coppins RL, Hall KB, Groisman EA. Curr Opin Microbiol. 2007;10:176–181. PubMed PMC
Corbino KA, Barrick JE, Lim J, Welz R, Tucker BJ, Puskarz I, Mandal M, Rudnick ND, Breaker RR. Genome Biol. 2005;6 PubMed PMC
Grundy FJ, Henkin TM. Crit Rev Biochem Mol. 2006;41:329–338. PubMed
Henkin TM. Gene Dev. 2008;22:3383–3390. PubMed PMC
Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR. Cell. 2003;113:577–586. PubMed
Tucker BJ, Breaker RR. Curr Opin Struc Biol. 2005;15:342–348. PubMed
Winkler WC. Curr Opin Chem Biol. 2005;9:594–602. PubMed
Winkler WC, Breaker RR. Annu Rev Microbiol. 2005;59:487–517. PubMed
Deigan KE, Ferre-D'Amare AR. Accounts Chem Res. 2011;44:1329–1338. PubMed PMC
Blount KF, Breaker RR. Nat Biotechnol. 2006;24:1558–1564. PubMed
Barrick JE, Corbino KA, Winkler WC, Nahvi A, Mandal M, Collins J, Lee M, Roth A, Sudarsan N, Jona I, Wickiser JK, Breaker RRP. Natl Acad Sci USA. 2004;101:6421–6426. PubMed PMC
Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR. Nature. 2004;428:281–286. PubMed
Milewski S. Bba-Protein Struct M. 2002;1597:173–192. PubMed
Fedor MJ. Annu Rev Biophys. 2009;38:271–299. PubMed
Hampel KJ, Tinsley MM. Biochemistry-Us. 2006;45:7861–7871. PubMed
Tinsley RA, Furchak JRW, Walter NG. Rna. 2007;13:468–477. PubMed PMC
McCarthy TJ, Plog MA, Floy SA, Jansen JA, Soukup JK, Soukup GA. Chem Biol. 2005;12:1221–1226. PubMed
Collins JA, Irnov I, Baker S, Winkler WC. Gene Dev. 2007;21:3356–3368. PubMed PMC
Lau MWL, Ferre-D'Amare AR. Nat Chem Biol. 2013;9:805-+. PubMed PMC
Bevilacqua PC, Yajima R. Curr Opin Chem Biol. 2006;10:455–464. PubMed
Lilley DMJ. Trends Biochem Sci. 2003;28:495–501. PubMed
Roth A, Nahvi A, Lee M, Jona I, Breaker RR. Rna. 2006;12:607–619. PubMed PMC
Gong B, Klein DJ, Ferre-D'Amare AR, Carey PR. J Am Chem Soc. 2011;133:14188–14191. PubMed PMC
Viladoms J, Fedor MJ. J Am Chem Soc. 2012;134:19043–19049. PubMed PMC
Davis JH, Dunican BF, Strobel SA. Biochemistry-Us. 2011;50:7236–7242. PubMed PMC
Xin Y, Hamelberg D. Rna. 2010;16:2455–2463. PubMed PMC
Viladoms J, Scott LG, Fedor MJ. J Am Chem Soc. 2011;133:18388–18396. PubMed PMC
Brooks KM, Hampel KJ. Biochemistry-Us. 2011;50:2424–2433. PubMed PMC
Klein DJ, Been MD, Ferre-D'Amare AR. J Am Chem Soc. 2007;129:14858-+. PubMed
Klein DJ, Wilkinson SR, Been MD, Ferre-D'Amare AR. J Mol Biol. 2007;373:178–189. PubMed PMC
Klein DJ, Ferre-D'Amare AR. Science. 2006;313:1752–1756. PubMed
Cochrane JC, Lipchock SV, Strobel SA. Chem Biol. 2007;14:97–105. PubMed PMC
Cochrane JC, Strobel SA. Accounts Chem Res. 2008;41:1027–1035. PubMed
Banas P, Walter NG, Sponer J, Otyepka M. J Phys Chem B. 2010;114:8701–8712. PubMed PMC
Sripathi KN, Tay WW, Banas P, Otyepka M, Poner JS, Walter NS. Rna. 2014;20:1112–1128. PubMed PMC
Mlynsky V, Banas P, Hollas D, Reblova K, Walter NG, Sponer J, Otyepka M. J Phys Chem B. 2010;114:6642–6652. PubMed PMC
Mlynsky V, Banas P, Walter NG, Sponer J, Otyepka M. J Phys Chem B. 2011;115:13911–13924. PubMed PMC
Mlynsky V, Kuhrova P, Zgarbova M, Jurecka P, Walter NG, Otyepka M, Sponer J, Banas P. J Phys Chem B. 2015 PubMed
Cheatham TE, Case DA. Biopolymers. 2013;99:969–977. PubMed PMC
Sponer J, Banas P, Jurecka P, Zgarbova M, Kuhrova P, Havrila M, Krepl M, Stadlbauer P, Otyepka M. J Phys Chem Lett. 2014;5:1771–1782. PubMed
Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham TE, III, Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA. San Francisco: University of California; 2014.
Salomon-Ferrer R, Gotz AW, Poole D, Le Grand S, Walker RC. J Chem Theory Comput. 2013;9:3878–3888. PubMed
Bayly CI, Cieplak P, Cornell WD, Kollman PA. J Phys Chem-Us. 1993;97:10269–10280.
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. J Am Chem Soc. 1996;118:2309–2309.
Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M. Biophys J. 2007;92:3817–3829. PubMed PMC
Zgarbova M, Otyepka M, Sponer J, Mladek A, Banas P, Cheatham TE, Jurecka P. J Chem Theory Comput. 2011;7:2886–2902. PubMed PMC
Banas P, Hollas D, Zgarbova M, Jurecka P, Orozco M, Cheatham TE, Sponer J, Otyepka M. J Chem Theory Comput. 2010;6:3836–3849. PubMed PMC
Joung IS, Cheatham TE. J Phys Chem B. 2008;112:9020–9041. PubMed PMC
Aqvist J. J Phys Chem-Us. 1990;94:8021–8024.
Gresh N, Sponer JE, Spackova N, Leszczynski J, Sponer J. J Phys Chem B. 2003;107:8669–8681.
Banas P, Jurecka P, Walter NG, Sponer J, Otyepka M. Methods. 2009;49:202–216. PubMed PMC
Ditzler MA, Otyepka M, Sponer J, Walter NG. Accounts Chem Res. 2010;43:40–47. PubMed PMC
Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K. J Phys Chem-Us. 1996;100:19357–19363.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Wallingford, CT, USA: Gaussian, Inc.; 2009.
Salahub DR, de la Lande A, Goursot A, Zhang R, Zhang Y. Struct Bond. 2013;150:1–64.
Lynch BJ, Truhlar DG. J Phys Chem A. 2001;105:2936–2941.
Lynch BJ, Fast PL, Harris M, Truhlar DG. J Phys Chem A. 2000;104:4811–4815.
Mlynsky V, Banas P, Sponer J, van der Kamp MW, Mulholland AJ, Otyepka M. J Chem Theory Comput. 2014;10:1608–1622. PubMed
Zirbel CL, Sponer JE, Sponer J, Stombaugh J, Leontis NB. Nucleic Acids Res. 2009;37:4898–4918. PubMed PMC
Banas P, Rulisek L, Hanosova V, Svozil D, Walter NG, Sponer J, Otyepka M. J Phys Chem B. 2008;112:11177–11187. PubMed PMC
Mlynsky V, Walter NG, Sponer J, Otyepka M, Banas P. Phys Chem Chem Phys. 2015;17:670–679. PubMed PMC
Hu LH, Soderhjelm P, Ryde U. J Chem Theory Comput. 2011;7:761–777. PubMed
Vreven T, Byun KS, Komaromi I, Dapprich S, Montgomery JA, Morokuma K, Frisch MJ. J Chem Theory Comput. 2006;2:815–826. PubMed
Zhang S, Ganguly A, Goyal P, Bingaman JL, Bevilacqua PC, Hammes-Schiffer S. J Am Chem Soc. 2015;137:784–798. PubMed PMC
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview