General base catalysis for cleavage by the active-site cytosine of the hepatitis delta virus ribozyme: QM/MM calculations establish chemical feasibility

. 2008 Sep 04 ; 112 (35) : 11177-87. [epub] 20080808

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid18686993

Grantová podpora
R01 GM062357-06A2 NIGMS NIH HHS - United States
R01 GM062357-03S2 NIGMS NIH HHS - United States
R01 GM062357-07 NIGMS NIH HHS - United States
R01 GM062357 NIGMS NIH HHS - United States
GM62357 NIGMS NIH HHS - United States

The hepatitis delta virus (HDV) ribozyme is an RNA motif embedded in human pathogenic HDV RNA. Previous experimental studies have established that the active-site nucleotide C75 is essential for self-cleavage of the ribozyme, although its exact catalytic role in the process remains debated. Structural data from X-ray crystallography generally indicate that C75 acts as the general base that initiates catalysis by deprotonating the 2'-OH nucleophile at the cleavage site, while a hydrated magnesium ion likely protonates the 5'-oxygen leaving group. In contrast, some mechanistic studies support the role of C75 acting as general acid and thus being protonated before the reaction. We report combined quantum chemical/molecular mechanical calculations for the C75 general base pathway, utilizing the available structural data for the wild type HDV genomic ribozyme as a starting point. Several starting configurations differing in magnesium ion placement were considered and both one-dimensional and two-dimensional potential energy surface scans were used to explore plausible reaction paths. Our calculations show that C75 is readily capable of acting as the general base, in concert with the hydrated magnesium ion as the general acid. We identify a most likely position for the magnesium ion, which also suggests it acts as a Lewis acid. The calculated energy barrier of the proposed mechanism, approximately 20 kcal/mol, would lower the reaction barrier by approximately 15 kcal/mol compared with the uncatalyzed reaction and is in good agreement with experimental data.

Zobrazit více v PubMed

Fedor MJ, Williamson JR. Nat Rev Mol Cell Biol. 2005;6:399. PubMed

Doudna JA, Lorsch JR. Nat Struct Mol Biol. 2005;12:395. PubMed

Been MD. Curr Top Microbiol Immunol. 2006;307:47. PubMed

Salehi-Ashtiani K, Luptak A, Litovchick A, Szostak JW. Science. 2006;313:1788. PubMed

Perrotta AT, Shih I, Been MD. Science. 1999;286:123. PubMed

Nakano S, Chadalavada DM, Bevilacqua PC. Science. 2000;287:1493. PubMed

Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. Science. 2000;289:920. PubMed

Muth GW, Ortoleva-Donnelly L, Strobel SA. Science. 2000;289:947. PubMed

Pinard R, Hampel KJ, Heckman JE, Lambert D, Chan PA, Major F, Burke JM. EMBO J. 2001;20:6434. PubMed PMC

Lafontaine DA, Norman DG, Lilley DM. Biochimie. 2002;84:889. PubMed

Beringer M, Rodnina MV. Mol Cell. 2007;26:311. PubMed

Ke AL, Zhou KH, Ding F, Cate JHD, Doudna JA. Nature. 2004;429:201. PubMed

Krasovska MV, Sefcikova J, Spackova N, Sponer J, Walter NG. J Mol Biol. 2005;351:731. PubMed

Krasovska MV, Sefcikova J, Reblova K, Schneider B, Walter NG, Sponer J. Biophys J. 2006;91:626. PubMed PMC

Nakano S, Bevilacqua PC. Biochemistry. 2007;46:3001. PubMed

Wadkins TS, Shih I, Perrotta AT, Been MD. J Mol Biol. 2001;305:1045. PubMed

Perrotta AT, Wadkins TS, Been MD. RNA-Publ RNA Soc. 2006;12:1282. PubMed PMC

Ferre-D’Amare AR, Zhou K, Doudna JA. Nature. 1998;395:567. PubMed

Das SR, Piccirilli JA. Nature Chem Biol. 2005;1:45. PubMed

Jeong S, Sefcikova J, Tinsley RA, Rueda D, Walter NG. Biochemistry. 2003;42:7727. PubMed

Pereira MJ, Harris DA, Rueda D, Walter NG. Biochemistry. 2002;41:730. PubMed

Tinsley RA, Harris DA, Walter NG. Biochemistry. 2004;43:8935. PubMed

Harris DA, Tinsley RA, Walter NG. J Mol Biol. 2004;341:389. PubMed

Tinsley RA, Walter NG. Biol Chem. 2007;388:705. PubMed

Tang CL, Alexov E, Pyle AM, Honig B. J Mol Biol. 2007;366:1475. PubMed

Ke A, Ding F, Batchelor JD, Doudna JA. Structure. 2007;15:281. PubMed

Wang C, Gao H, Gaffney BL, Jones RA. J Am Chem Soc. 1991;113:5486.

Doronina SO, Behr JP. Chem Soc Rev. 1997;26:63.

Soliva R, Laughton CA, Luque FJ, Orozco M. J Am Chem Soc. 1998;120:11226.

Nixon PL, Giedroc DP. J Mol Biol. 2000;296:659. PubMed

Csaszar K, Spackova N, Stefl R, Sponer J, Leontis NB. J Mol Biol. 2001;313:1073. PubMed

Ferre-D’Amare AR, Doudna JA. J Mol Biol. 2000;295:541. PubMed

Gehring K, Leroy JL, Gueron M. Nature. 1993;363:561. PubMed

Kang CH, Berger I, Lockshin C, Ratliff R, Moyzis R, Rich A. Proc Natl Acad Sci USA. 1994;91:11636. PubMed PMC

Spackova N, Berger I, Egli M, Sponer J. J Am Chem Soc. 1998;120:6147.

Rhodes MM, Reblova K, Sponer J, Walter NG. Proc Natl Acad Sci USA. 2006;103:13380. PubMed PMC

Luptak A, Ferre-D’Amare AR, Zhou K, Zilm KW, Doudna JA. J Am Chem Soc. 2001;123:8447. PubMed

Gong B, Chen JH, Chase E, Chadalavada DM, Yajima R, Golden BL, Bevilacqua PC, Carey PR. J Am Chem Soc. 2007;129:13335. PubMed

Liu HN, Robinet JJ, Ananvoranich S, Gauld JW. J Phys Chem B. 2007;111:439. PubMed

Wei K, Liu L, Cheng YH, Fu Y, Guo QX. J Phys Chem B. 2007;111:1514. PubMed

Warshel A, Levitt M. J Mol Biol. 1976;103:227. PubMed

Case DA, et al. AMBER 8. University of California; San Francisco: 2004. See Supporting information for complete citation.

Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. J Am Chem Soc. 1995;117:5179.

Klein DJ, Moore PB, Steitz TA. RNA- Publ RNA Soc. 2004;10:1366. PubMed PMC

Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K. J Phys Chem. 1996;100:19357.

Frisch MJ, et al. Gaussian 03. Gaussian, Inc.: Pittsburgh; 2003. See Supporting information for complete citation.

Becke AD. Phys Rev A. 1988;38:3098. PubMed

Lee CT, Yang WT, Parr RG. Phys Rev B. 1988;37:785. PubMed

Dunlap BI. J Chem Phys. 1983;78:3140.

Dunlap BI. J Mol Struct. 2000;529:37.

Lynch BJ, Fast PL, Harris M, Truhlar DG. J Phys Chem A. 2000;104:4811.

Lynch BJ, Truhlar DG. J Phys Chem A. 2001;105:2936.

Otyepka M, Banas P, Magistrato A, Carloni P, Damborsky J. Proteins. 2008;70:707. PubMed

Carloni P, Rothlisberger U, Parrinello M. Acc Chem Res. 2002;35:455. PubMed

Piana S, Carloni P. Proteins. 2000;39:26. PubMed

Piana S, Sebastiani D, Carloni P, Parrinello M. J Am Chem Soc. 2001;123:8730. PubMed

Piana S, Bucher D, Carloni P, Rothlisberger U. J Phys Chem B. 2004;108:11139.

Laio A, VandeVondele J, Rothlisberger U. J Chem Phys. 2002;116:6941.

Laio A, Gervasio FL, VandeVondele J, Sulpizi M, Rothlisberger U. J Phys Chem B. 2004;108:7963.

Halkier A, Helgaker T, Jorgensen P, Klopper W, Olsen J. Chem Phys Lett. 1999;302:437.

Halkier A, Helgaker T, Jorgensen P, Klopper W, Koch H, Olsen J, Wilson AK. Chem Phys Lett. 1998;286:243.

Jurecka P, Hobza P. Chem Phys Lett. 2002;365:89.

Jurecka P, Hobza P. J Am Chem Soc. 2003;125:15608. PubMed

Torres RA, Himo F, Bruice TC, Noodleman L, Lovell T. J Am Chem Soc. 2003;125:9861. PubMed

Bevilacqua PC, Yajima R. Curr Opin Chem Biol. 2006;10:455. PubMed

Leclerc F, Karplus M. J Phys Chem B. 2006;110:3395. PubMed

Lopez X, Dejaegere A, Leclerc F, York DM, Karplus M. J Phys Chem B. 2006;110:11525. PubMed

Tanner NK, Schaff S, Thill G, Petitkoskas E, Craindenoyelle AM, Westhof E. Curr Biol. 1994;4:488. PubMed

Brown TS, Chadalavada DM, Bevilacqua PC. J Mol Biol. 2004;341:695. PubMed

Eyring H. J Chem Phys. 1935;3:107.

Kwiecien RA, Khavrutskii IV, Musaev DG, Morokuma K, Banerjee R, Paneth P. J Am Chem Soc. 2006;128:1287. PubMed

Lundberg M, Morokuma K. J Phys Chem B. 2007;111:9380. PubMed

Prabhakar R, Morokuma K, Musaev DG. J Comput Chem. 2005;26:443. PubMed

Prabhakar R, Vreven T, Frisch MJ, Morokuma K, Musaev DG. J Phys Chem B. 2006;110:13608. PubMed

Warshel A, Sharma PK, Kato M, Xiang Y, Liu HB, Olsson MHM. Chem Rev (Washington, DC) 2006;106:3210. PubMed

Radhakrishnan R. Biophys J. 2007;93:2391. PubMed PMC

Bock CW, Kaufman A, Glusker JP. Inorg Chem. 1994;33:419.

Fauzi H, Kawakami J, Nishikawa F, Nishikawa S. Nucleic Acids Res. 1997;25:3124. PubMed PMC

Sponer J, Sabat M, Gorb L, Leszczynski J, Lippert B, Hobza P. J Phys Chem B. 2000;104:7535.

Gresh N, Sponer JE, Spackova N, Leszczynski J, Sponer J. J Phys Chem B. 2003;107:8669.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview

. 2018 Apr 25 ; 118 (8) : 4177-4338. [epub] 20180103

Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage

. 2015 Oct ; 103 (10) : 550-62.

The role of an active site Mg(2+) in HDV ribozyme self-cleavage: insights from QM/MM calculations

. 2015 Jan 07 ; 17 (1) : 670-9.

QM/MM studies of hairpin ribozyme self-cleavage suggest the feasibility of multiple competing reaction mechanisms

. 2011 Dec 01 ; 115 (47) : 13911-24. [epub] 20111108

Protonation states of the key active site residues and structural dynamics of the glmS riboswitch as revealed by molecular dynamics

. 2010 Jul 08 ; 114 (26) : 8701-12.

Extensive molecular dynamics simulations showing that canonical G8 and protonated A38H+ forms are most consistent with crystal structures of hairpin ribozyme

. 2010 May 20 ; 114 (19) : 6642-52.

Theoretical studies of RNA catalysis: hybrid QM/MM methods and their comparison with MD and QM

. 2009 Oct ; 49 (2) : 202-16. [epub] 20090504

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...