General base catalysis for cleavage by the active-site cytosine of the hepatitis delta virus ribozyme: QM/MM calculations establish chemical feasibility
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM062357-06A2
NIGMS NIH HHS - United States
R01 GM062357-03S2
NIGMS NIH HHS - United States
R01 GM062357-07
NIGMS NIH HHS - United States
R01 GM062357
NIGMS NIH HHS - United States
GM62357
NIGMS NIH HHS - United States
PubMed
18686993
PubMed Central
PMC2566740
DOI
10.1021/jp802592z
Knihovny.cz E-zdroje
- MeSH
- cytosin metabolismus MeSH
- genomika MeSH
- katalýza MeSH
- kvantová teorie * MeSH
- molekulární modely * MeSH
- RNA katalytická chemie metabolismus MeSH
- sekundární struktura proteinů MeSH
- studie proveditelnosti MeSH
- vazebná místa MeSH
- virus hepatitidy delta enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- cytosin MeSH
- RNA katalytická MeSH
The hepatitis delta virus (HDV) ribozyme is an RNA motif embedded in human pathogenic HDV RNA. Previous experimental studies have established that the active-site nucleotide C75 is essential for self-cleavage of the ribozyme, although its exact catalytic role in the process remains debated. Structural data from X-ray crystallography generally indicate that C75 acts as the general base that initiates catalysis by deprotonating the 2'-OH nucleophile at the cleavage site, while a hydrated magnesium ion likely protonates the 5'-oxygen leaving group. In contrast, some mechanistic studies support the role of C75 acting as general acid and thus being protonated before the reaction. We report combined quantum chemical/molecular mechanical calculations for the C75 general base pathway, utilizing the available structural data for the wild type HDV genomic ribozyme as a starting point. Several starting configurations differing in magnesium ion placement were considered and both one-dimensional and two-dimensional potential energy surface scans were used to explore plausible reaction paths. Our calculations show that C75 is readily capable of acting as the general base, in concert with the hydrated magnesium ion as the general acid. We identify a most likely position for the magnesium ion, which also suggests it acts as a Lewis acid. The calculated energy barrier of the proposed mechanism, approximately 20 kcal/mol, would lower the reaction barrier by approximately 15 kcal/mol compared with the uncatalyzed reaction and is in good agreement with experimental data.
Zobrazit více v PubMed
Fedor MJ, Williamson JR. Nat Rev Mol Cell Biol. 2005;6:399. PubMed
Doudna JA, Lorsch JR. Nat Struct Mol Biol. 2005;12:395. PubMed
Been MD. Curr Top Microbiol Immunol. 2006;307:47. PubMed
Salehi-Ashtiani K, Luptak A, Litovchick A, Szostak JW. Science. 2006;313:1788. PubMed
Perrotta AT, Shih I, Been MD. Science. 1999;286:123. PubMed
Nakano S, Chadalavada DM, Bevilacqua PC. Science. 2000;287:1493. PubMed
Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. Science. 2000;289:920. PubMed
Muth GW, Ortoleva-Donnelly L, Strobel SA. Science. 2000;289:947. PubMed
Pinard R, Hampel KJ, Heckman JE, Lambert D, Chan PA, Major F, Burke JM. EMBO J. 2001;20:6434. PubMed PMC
Lafontaine DA, Norman DG, Lilley DM. Biochimie. 2002;84:889. PubMed
Beringer M, Rodnina MV. Mol Cell. 2007;26:311. PubMed
Ke AL, Zhou KH, Ding F, Cate JHD, Doudna JA. Nature. 2004;429:201. PubMed
Krasovska MV, Sefcikova J, Spackova N, Sponer J, Walter NG. J Mol Biol. 2005;351:731. PubMed
Krasovska MV, Sefcikova J, Reblova K, Schneider B, Walter NG, Sponer J. Biophys J. 2006;91:626. PubMed PMC
Nakano S, Bevilacqua PC. Biochemistry. 2007;46:3001. PubMed
Wadkins TS, Shih I, Perrotta AT, Been MD. J Mol Biol. 2001;305:1045. PubMed
Perrotta AT, Wadkins TS, Been MD. RNA-Publ RNA Soc. 2006;12:1282. PubMed PMC
Ferre-D’Amare AR, Zhou K, Doudna JA. Nature. 1998;395:567. PubMed
Das SR, Piccirilli JA. Nature Chem Biol. 2005;1:45. PubMed
Jeong S, Sefcikova J, Tinsley RA, Rueda D, Walter NG. Biochemistry. 2003;42:7727. PubMed
Pereira MJ, Harris DA, Rueda D, Walter NG. Biochemistry. 2002;41:730. PubMed
Tinsley RA, Harris DA, Walter NG. Biochemistry. 2004;43:8935. PubMed
Harris DA, Tinsley RA, Walter NG. J Mol Biol. 2004;341:389. PubMed
Tinsley RA, Walter NG. Biol Chem. 2007;388:705. PubMed
Tang CL, Alexov E, Pyle AM, Honig B. J Mol Biol. 2007;366:1475. PubMed
Ke A, Ding F, Batchelor JD, Doudna JA. Structure. 2007;15:281. PubMed
Wang C, Gao H, Gaffney BL, Jones RA. J Am Chem Soc. 1991;113:5486.
Doronina SO, Behr JP. Chem Soc Rev. 1997;26:63.
Soliva R, Laughton CA, Luque FJ, Orozco M. J Am Chem Soc. 1998;120:11226.
Nixon PL, Giedroc DP. J Mol Biol. 2000;296:659. PubMed
Csaszar K, Spackova N, Stefl R, Sponer J, Leontis NB. J Mol Biol. 2001;313:1073. PubMed
Ferre-D’Amare AR, Doudna JA. J Mol Biol. 2000;295:541. PubMed
Gehring K, Leroy JL, Gueron M. Nature. 1993;363:561. PubMed
Kang CH, Berger I, Lockshin C, Ratliff R, Moyzis R, Rich A. Proc Natl Acad Sci USA. 1994;91:11636. PubMed PMC
Spackova N, Berger I, Egli M, Sponer J. J Am Chem Soc. 1998;120:6147.
Rhodes MM, Reblova K, Sponer J, Walter NG. Proc Natl Acad Sci USA. 2006;103:13380. PubMed PMC
Luptak A, Ferre-D’Amare AR, Zhou K, Zilm KW, Doudna JA. J Am Chem Soc. 2001;123:8447. PubMed
Gong B, Chen JH, Chase E, Chadalavada DM, Yajima R, Golden BL, Bevilacqua PC, Carey PR. J Am Chem Soc. 2007;129:13335. PubMed
Liu HN, Robinet JJ, Ananvoranich S, Gauld JW. J Phys Chem B. 2007;111:439. PubMed
Wei K, Liu L, Cheng YH, Fu Y, Guo QX. J Phys Chem B. 2007;111:1514. PubMed
Warshel A, Levitt M. J Mol Biol. 1976;103:227. PubMed
Case DA, et al. AMBER 8. University of California; San Francisco: 2004. See Supporting information for complete citation.
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. J Am Chem Soc. 1995;117:5179.
Klein DJ, Moore PB, Steitz TA. RNA- Publ RNA Soc. 2004;10:1366. PubMed PMC
Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K. J Phys Chem. 1996;100:19357.
Frisch MJ, et al. Gaussian 03. Gaussian, Inc.: Pittsburgh; 2003. See Supporting information for complete citation.
Becke AD. Phys Rev A. 1988;38:3098. PubMed
Lee CT, Yang WT, Parr RG. Phys Rev B. 1988;37:785. PubMed
Dunlap BI. J Chem Phys. 1983;78:3140.
Dunlap BI. J Mol Struct. 2000;529:37.
Lynch BJ, Fast PL, Harris M, Truhlar DG. J Phys Chem A. 2000;104:4811.
Lynch BJ, Truhlar DG. J Phys Chem A. 2001;105:2936.
Otyepka M, Banas P, Magistrato A, Carloni P, Damborsky J. Proteins. 2008;70:707. PubMed
Carloni P, Rothlisberger U, Parrinello M. Acc Chem Res. 2002;35:455. PubMed
Piana S, Carloni P. Proteins. 2000;39:26. PubMed
Piana S, Sebastiani D, Carloni P, Parrinello M. J Am Chem Soc. 2001;123:8730. PubMed
Piana S, Bucher D, Carloni P, Rothlisberger U. J Phys Chem B. 2004;108:11139.
Laio A, VandeVondele J, Rothlisberger U. J Chem Phys. 2002;116:6941.
Laio A, Gervasio FL, VandeVondele J, Sulpizi M, Rothlisberger U. J Phys Chem B. 2004;108:7963.
Halkier A, Helgaker T, Jorgensen P, Klopper W, Olsen J. Chem Phys Lett. 1999;302:437.
Halkier A, Helgaker T, Jorgensen P, Klopper W, Koch H, Olsen J, Wilson AK. Chem Phys Lett. 1998;286:243.
Jurecka P, Hobza P. Chem Phys Lett. 2002;365:89.
Jurecka P, Hobza P. J Am Chem Soc. 2003;125:15608. PubMed
Torres RA, Himo F, Bruice TC, Noodleman L, Lovell T. J Am Chem Soc. 2003;125:9861. PubMed
Bevilacqua PC, Yajima R. Curr Opin Chem Biol. 2006;10:455. PubMed
Leclerc F, Karplus M. J Phys Chem B. 2006;110:3395. PubMed
Lopez X, Dejaegere A, Leclerc F, York DM, Karplus M. J Phys Chem B. 2006;110:11525. PubMed
Tanner NK, Schaff S, Thill G, Petitkoskas E, Craindenoyelle AM, Westhof E. Curr Biol. 1994;4:488. PubMed
Brown TS, Chadalavada DM, Bevilacqua PC. J Mol Biol. 2004;341:695. PubMed
Eyring H. J Chem Phys. 1935;3:107.
Kwiecien RA, Khavrutskii IV, Musaev DG, Morokuma K, Banerjee R, Paneth P. J Am Chem Soc. 2006;128:1287. PubMed
Lundberg M, Morokuma K. J Phys Chem B. 2007;111:9380. PubMed
Prabhakar R, Morokuma K, Musaev DG. J Comput Chem. 2005;26:443. PubMed
Prabhakar R, Vreven T, Frisch MJ, Morokuma K, Musaev DG. J Phys Chem B. 2006;110:13608. PubMed
Warshel A, Sharma PK, Kato M, Xiang Y, Liu HB, Olsson MHM. Chem Rev (Washington, DC) 2006;106:3210. PubMed
Radhakrishnan R. Biophys J. 2007;93:2391. PubMed PMC
Bock CW, Kaufman A, Glusker JP. Inorg Chem. 1994;33:419.
Fauzi H, Kawakami J, Nishikawa F, Nishikawa S. Nucleic Acids Res. 1997;25:3124. PubMed PMC
Sponer J, Sabat M, Gorb L, Leszczynski J, Lippert B, Hobza P. J Phys Chem B. 2000;104:7535.
Gresh N, Sponer JE, Spackova N, Leszczynski J, Sponer J. J Phys Chem B. 2003;107:8669.
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage
The role of an active site Mg(2+) in HDV ribozyme self-cleavage: insights from QM/MM calculations
Theoretical studies of RNA catalysis: hybrid QM/MM methods and their comparison with MD and QM