Dissecting neural correlates of theory of mind and executive functions in behavioral variant frontotemporal dementia
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FTLDc 01GI1007A
German Federal Ministry of Education and Research
FTLDc 01GI1007A
German Federal Ministry of Education and Research
FTLDc 01GI1007A
German Federal Ministry of Education and Research
01ED2008A
EU Joint Program-Neurodegenerative Diseases networks Genfi-Prox
01EW2008
EU Moodmarker program
D.3830
Foundation of the state Baden-Württemberg
D.5009
Boehringer Ingelheim Ulm University BioCenter
D.2468
Fondation Thierry Latran
SCHR 774/5-1
Deutsche Forschungsgemeinschaft
project TelDem
eHealthSax Initiative of the Sächsische Aufbaubank
PubMed
39462381
PubMed Central
PMC11515257
DOI
10.1186/s13195-024-01596-4
PII: 10.1186/s13195-024-01596-4
Knihovny.cz E-zdroje
- Klíčová slova
- Executive functions, Frontotemporal dementia, Magnetic resonance imaging, Reading the Mind in the Eyes Test, Social cognition, Theory of mind,
- MeSH
- exekutivní funkce * fyziologie MeSH
- frontotemporální demence * patologie diagnostické zobrazování patofyziologie psychologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mozek diagnostické zobrazování patologie MeSH
- neuropsychologické testy * MeSH
- průřezové studie MeSH
- senioři MeSH
- sociální kognice MeSH
- teorie mysli * fyziologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Behavioral variant frontotemporal dementia (bvFTD) is characterized by profound and early deficits in social cognition (SC) and executive functions (EF). To date it remains unclear whether deficits of the respective cognitive domains are based on the degeneration of distinct brain regions. In 103 patients with a diagnosis of bvFTD (possible/probable/definite: N = 40/58/5) from the frontotemporal lobar degeneration (FTLD) consortium Germany cohort (age 62.5±9.4 years, gender 38 female/65 male) we applied multimodal structural imaging, i.e. voxel-based morphometry, cortical thickness (CTH) and networks of structural covariance via source based morphometry. We cross-sectionally investigated associations with performance in a modified Reading the Mind in the Eyes Test (RMET; reflective of theory of mind - ToM) and five different tests reflective of EF (i.e. Hamasch-Five-Point Test, semantic and phonemic Fluency, Trail Making Test, Stroop interference). Finally, we investigated the conjunction of RMET correlates with functional networks commonly associated with SC respectively ToM and EF as extracted meta-analytically within the Neurosynth database. RMET performance was mainly associated with gray matter volume (GMV) and CTH within temporal and insular cortical regions and less within the prefrontal cortex (PFC), whereas EF performance was mainly associated with prefrontal regions (GMV and CTH). Overlap of RMET and EF associations was primarily located within the insula, adjacent subcortical structures (i.e. putamen) and the dorsolateral PFC (dlPFC). These patterns were more pronounced after adjustment for the respective other cognitive domain. Corroborative results were obtained in analyses of structural covariance networks. Overlap of RMET with meta-analytically extracted functional networks commonly associated with SC, ToM and EF was again primarily located within the temporal and insular region and the dlPFC. In addition, on a meta-analytical level, strong associations were found for temporal cortical RMET correlates with SC and ToM in particular. These data indicate a temporo-frontal dissociation of bvFTD related disturbances of ToM and EF, with atrophy of the anterior temporal lobe being critically involved in ToM deficits. The consistent overlap within the insular cortex may be attributable to the multimodal and integrative role of this region in socioemotional and cognitive processing.
Clinic for Cognitive Neurology University of Leipzig Medical Center Leipzig Germany
Department of Neurology Halle University Medical Center Halle Germany
Department of Neurology Ludwig Maximilians University Munich München Germany
Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
Department of Neurology Rostock University Medical Center Rostock Germany
Department of Neurology Saarland University Hospital Homburg Homburg Germany
Department of Neurology University of Ulm Ulm Germany
Department of Psychiatry and Psychotherapy University of Göttingen Göttingen Germany
Zobrazit více v PubMed
Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–77. 10.1093/brain/awr179. PubMed PMC
Schroeter ML, Laird AR, Chwiesko C, et al. Conceptualizing neuropsychiatric diseases with multimodal data-driven meta-analyses – The case of behavioral variant frontotemporal dementia. Cortex. 2014;57:22–37. 10.1016/j.cortex.2014.02.022. PubMed PMC
Schroeter ML, Vogt B, Frisch S, et al. Executive deficits are related to the inferior frontal junction in early dementia. Brain. 2012;135(1):201–15. 10.1093/brain/awr311. PubMed PMC
Johnen A, Bertoux M. Psychological and cognitive markers of behavioral variant frontotemporal dementia-A clinical neuropsychologist’s view on diagnostic criteria and beyond. Front Neurol. 2019;10:594. 10.3389/fneur.2019.00594. PubMed PMC
Torralva T, Roca M, Gleichgerrcht E, Bekinschtein T, Manes F. A neuropsychological battery to detect specific executive and social cognitive impairments in early frontotemporal dementia. Brain. 2009;132(Pt 5):1299–309. 10.1093/brain/awp041. PubMed
Possin KL, Feigenbaum D, Rankin KP, et al. Dissociable executive functions in behavioral variant frontotemporal and Alzheimer dementias. Neurology. 2013;80(24):2180–5. 10.1212/WNL.0b013e318296e940. PubMed PMC
Moura MVB, Mariano LI, Teixeira AL, Caramelli P, de Souza LC. Social cognition tests can discriminate behavioral variant frontotemporal dementia from alzheimer’s disease independently of executive functioning. Arch Clin Neuropsychol. 2021;36(5):831–7. 10.1093/arclin/acaa084. PubMed
Bertoux M, Volle E, Funkiewiez A, de Souza LC, Leclercq D, Dubois B. Social Cognition and Emotional Assessment (SEA) is a marker of medial and orbital frontal functions: a voxel-based morphometry study in behavioral variant of frontotemporal degeneration. J Int Neuropsychol Soc. 2012;18(6):972–85. 10.1017/S1355617712001300. PubMed
American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. 2013.
Schroeter ML, Pawelke S, Bisenius S, et al. A Modified Reading the Mind in the Eyes Test Predicts Behavioral Variant Frontotemporal Dementia Better Than Executive Function Tests. Front Aging Neurosci. 2018;10. Accessed 13 June 2023. https://www.frontiersin.org/articles/10.3389/fnagi.2018.00011. PubMed DOI PMC
Diamond A. Executive functions. Annu Rev Psychol. 2013;64(1):135–68. 10.1146/annurev-psych-113011-143750. PubMed PMC
Happé F, Cook JL, Bird G. The structure of social cognition: In(ter)dependence of sociocognitive processes. Annu Rev Psychol. 2017;68:243–67. 10.1146/annurev-psych-010416-044046. PubMed
von Hippel W. Aging, executive functioning, and social control. Curr Dir Psychol Sci. 2007;16(5):240–4. 10.1111/j.1467-8721.2007.00512.x.
Wade M, Prime H, Jenkins JM, Yeates KO, Williams T, Lee K. On the relation between theory of mind and executive functioning: a developmental cognitive neuroscience perspective. Psychon Bull Rev. 2018;25(6):2119–40. 10.3758/s13423-018-1459-0. PubMed
Eslinger PJ, Anders S, Ballarini T, et al. The neuroscience of social feelings: mechanisms of adaptive social functioning. Neurosci Biobehav Rev. 2021;128:592–620. 10.1016/j.neubiorev.2021.05.028. PubMed PMC
Schurz M, Radua J, Aichhorn M, Richlan F, Perner J. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci Biobehav Rev. 2014;42:9–34. 10.1016/j.neubiorev.2014.01.009. PubMed
Van Overwalle F. Social cognition and the brain: a meta-analysis. Hum Brain Mapp. 2009;30(3):829–58. 10.1002/hbm.20547. PubMed PMC
Baez S, Pinasco C, Roca M, et al. Brain structural correlates of executive and social cognition profiles in behavioral variant frontotemporal dementia and elderly bipolar disorder. Neuropsychologia. 2019;126:159–69. 10.1016/j.neuropsychologia.2017.02.012. PubMed
Bertoux M, Volle E, de Souza LC, Funkiewiez A, Dubois B, Habert MO. Neural correlates of the mini-SEA (Social cognition and Emotional Assessment) in behavioral variant frontotemporal dementia. Brain Imaging Behav. 2014;8(1):1–6. 10.1007/s11682-013-9261-0. PubMed
Couto B, Manes F, Montañes P, et al. Structural neuroimaging of social cognition in progressive non-fluent aphasia and behavioral variant of frontotemporal dementia. Front Hum Neurosci. 2013;7. Accessed 16 June 2023. https://www.frontiersin.org/articles/10.3389/fnhum.2013.00467. PubMed DOI PMC
de Souza LC, Bertoux M, Radakovic R, et al. I’m looking through you: Mentalizing in frontotemporal dementia and progressive supranuclear palsy. Cortex. 2022;155:373–89. 10.1016/j.cortex.2022.07.015. PubMed
Kumfor F, Honan C, McDonald S, Hazelton JL, Hodges JR, Piguet O. Assessing the “social brain” in dementia: applying TASIT-S. Cortex. 2017;93:166–77. 10.1016/j.cortex.2017.05.022. PubMed
Kumfor F, Ibañez A, Hutchings R, Hazelton JL, Hodges JR, Piguet O. Beyond the face: how context modulates emotion processing in frontotemporal dementia subtypes. Brain. 2018;141(4):1172–85. 10.1093/brain/awy002. PubMed
Kumfor F, Irish M, Hodges JR, Piguet O. Discrete neural correlates for the recognition of negative emotions: insights from frontotemporal dementia. PLoS ONE. 2013;8(6):e67457. 10.1371/journal.pone.0067457. PubMed PMC
Multani N, Taghdiri F, Anor CJ, et al. Association between social cognition changes and resting state functional connectivity in frontotemporal dementia, Alzheimer’s disease, Parkinson’s disease, and healthy controls. Front Neurosci. 2019;13:1259. 10.3389/fnins.2019.01259. PubMed PMC
Strikwerda-Brown C, Ramanan S, Goldberg ZL, et al. The interplay of emotional and social conceptual processes during moral reasoning in frontotemporal dementia. Brain. 2021;144(3):938–52. 10.1093/brain/awaa435. PubMed
Lombardi J, Mayer B, Semler E, et al. Quantifying progression in primary progressive aphasia with structural neuroimaging. Alzheimer’s Dementia. 2021;17(10):1595–609. 10.1002/alz.12323. PubMed
Otto M, Ludolph AC, Landwehrmeyer B, et al. Konsortium zur Erforschung der frontotemporalen Lobärdegeneration. Nervenarzt. 2011;82(8):1002–5. 10.1007/s00115-011-3261-3. PubMed
Schroeter ML, Eickhoff SB, Engel A. From correlational approaches to meta-analytical symptom reading in individual patients: Bilateral lesions in the inferior frontal junction specifically cause dysexecutive syndrome. Cortex. 2020;128:73–87. 10.1016/j.cortex.2020.03.010. PubMed
Schroeter ML, Godulla J, Thiel F, et al. Heart failure decouples the precuneus in interaction with social cognition and executive functions. Sci Rep. 2023;13(1):1236. 10.1038/s41598-023-28338-0. PubMed PMC
Knopman DS, Kramer JH, Boeve BF, et al. Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. Brain. 2008;131(Pt 11):2957–68. 10.1093/brain/awn234. PubMed PMC
Organisation for Economic Co-operation and Development (OECD). Classifying educational programmes: manual for ISCED-97 implementation in OECD countries | VOCEDplus, the international tertiary education and research database. Published 1999. Accessed 16 June 2023. https://www.voced.edu.au/content/ngv:11701.
Grace G. Frontal systems behavior scale : professional manual. Psychol Assess Resources. Published online 2001. Accessed 16 June 2023. https://cir.nii.ac.jp/crid/1572824499851264512.
Marin RS, Biedrzycki RC, Firinciogullari S. Reliability and validity of the apathy evaluation scale. Psychiatry Res. 1991;38(2):143–62. 10.1016/0165-1781(91)90040-V. PubMed
Baron-Cohen S, Wheelwright S, Hill J, Raste Y, Plumb I. The, “Reading the Mind in the Eyes” test revised version: a study with normal adults, and adults with asperger syndrome or high-functioning autism. J Child Psychol Psychiatry Allied Disciplines. 2001;42(2):241–51. 10.1017/S0021963001006643. PubMed
Haid TH, Martl C, Schubert F, Wenzl M, Kofler M, Saltuari L. Der, “HAMASCH 5 Punkt test”. erste Normierungsergebnisse. Z Für Neuropsychol. 2002;13:233.
Crawford JR, Henry JD. Assessment of executive dysfunction. In: Effectiveness of Rehabilitation for Cognitive Deficits. Oxford University Press; 2005. p. 233-245. 10.1093/acprof:oso/9780198526544.003.0019.
Lezak MD. Neuropsychological assessment. New York: Oxford University Press; 2004.
Morris JC, Heyman A, Mohs RC, et al. The consortium to establish a registry for Alzheimer’s disease (CERAD): I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology. 1989;39:1159–65. 10.1212/WNL.39.9.1159. PubMed
Arbuthnott K, Frank J. Trail making test, Part B as a measure of executive control: validation using a set-switching paradigm. J Clin Exp Neuropsychol. 2000;22(4):518–28. 10.1076/1380-3395(200008)22:4;1-0;FT518. PubMed
MacLeod CM. Half a century of research on the Stroop effect: an integrative review. Psychol Bull. 1991;109:163–203. 10.1037/0033-2909.109.2.163. PubMed
Schroeter ML, Zysset S, Wahl M, von Cramon DY. Prefrontal activation due to Stroop interference increases during development—an event-related fNIRS study. Neuroimage. 2004;23(4):1317–25. 10.1016/j.neuroimage.2004.08.001. PubMed
Schroeter ML, Zysset S, Kupka T, Kruggel F, von Yves CD. Near-infrared spectroscopy can detect brain activity during a color-word matching Stroop task in an event-related design. Hum Brain Mapp. 2002;17(1):61–71. 10.1002/hbm.10052. PubMed PMC
Chapman CA, Polyakova M, Mueller K, et al. Structural correlates of language processing in primary progressive aphasia. Brain Commun. 2023;5(2):fcad076. 10.1093/braincomms/fcad076. PubMed PMC
Weise CM, Bachmann T, Schroeter ML, Saur D. When less is more: structural correlates of core executive functions in young adults – A VBM and cortical thickness study. Neuroimage. 2019;189:896–903. 10.1016/j.neuroimage.2019.01.070. PubMed
Dahnke R, Yotter RA, Gaser C. Cortical thickness and central surface estimation. Neuroimage. 2013;65:336–48. 10.1016/j.neuroimage.2012.09.050. PubMed
Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage. 2009;44(1):83–98. 10.1016/j.neuroimage.2008.03.061. PubMed
Xu L, Groth KM, Pearlson G, Schretlen DJ, Calhoun VD. Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Hum Brain Mapp. 2009;30(3):711–24. 10.1002/hbm.20540. PubMed PMC
Gupta CN, Turner JA, Calhoun VD. Source-based morphometry: a decade of covarying structural brain patterns. Brain Struct Funct. 2019;224(9):3031–44. 10.1007/s00429-019-01969-8. PubMed
Bryant K, Rogers Flattery C, Schurz M. The Role of the Temporal Lobe in Human Social Cognition. 2021. p. 104-133. 10.1017/9781108671187.009.
Olson IR, McCoy D, Klobusicky E, Ross LA. Social cognition and the anterior temporal lobes: a review and theoretical framework. Soc Cogn Affect Neurosci. 2013;8(2):123–33. 10.1093/scan/nss119. PubMed PMC
Bonnet L, Comte A, Tatu L, Millot J louis, Moulin T, Medeiros de Bustos E. The role of the amygdala in the perception of positive emotions: an “intensity detector”. Front Behav Neurosci. 2015;9. Accessed 19 June 2023. https://www.frontiersin.org/articles/10.3389/fnbeh.2015.00178. PubMed DOI PMC
Gothard KM. Multidimensional processing in the amygdala. Nat Rev Neurosci. 2020;21(10):565–75. 10.1038/s41583-020-0350-y. PubMed PMC
Lopatina OL, Komleva YK, Gorina YV, Higashida H, Salmina AB. Neurobiological aspects of face recognition: the role of oxytocin. Front Behav Neurosci. 2018;12. Accessed 19 June 2023. https://www.frontiersin.org/articles/10.3389/fnbeh.2018.00195. PubMed DOI PMC
Wang S, Yu R, Tyszka JM, et al. The human amygdala parametrically encodes the intensity of specific facial emotions and their categorical ambiguity. Nat Commun. 2017;8(1):14821. 10.1038/ncomms14821. PubMed PMC
Cristofori I, Cohen-Zimerman S, Grafman J. Executive functions. Handbook Clin Neurol. 2019;163:197–219. 10.1016/B978-0-12-804281-6.00011-2. PubMed
Friedman NP, Robbins TW. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacol. 2022;47(1):72–89. 10.1038/s41386-021-01132-0. PubMed PMC
Barrasso-Catanzaro C, Eslinger PJ. Neurobiological bases of executive function and social-emotional development: typical and atypical brain changes. Fam Relat. 2016;65(1):108–19. 10.1111/fare.12175.
Barraclough DJ, Conroy ML, Lee D. Prefrontal cortex and decision making in a mixed-strategy game. Nat Neurosci. 2004;7(4):404–10. 10.1038/nn1209. PubMed
Suzuki S, Harasawa N, Ueno K, et al. Learning to simulate others’ decisions. Neuron. 2012;74(6):1125–37. 10.1016/j.neuron.2012.04.030. PubMed
Weissman DH, Perkins AS, Woldorff MG. Cognitive control in social situations: a role for the dorsolateral prefrontal cortex. Neuroimage. 2008;40(2):955–62. 10.1016/j.neuroimage.2007.12.021. PubMed PMC
Healey ML, Grossman M. Cognitive and affective perspective-taking: evidence for shared and dissociable anatomical substrates. Front Neurol. 2018;9. Accessed 20 June 2023. https://www.frontiersin.org/articles/10.3389/fneur.2018.00491. PubMed DOI PMC
Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter CS. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci. 2012;12(2):241–68. 10.3758/s13415-011-0083-5. PubMed PMC
Craig ADB. How do you feel–now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10(1):59–70. 10.1038/nrn2555. PubMed
Palmer CE, Tsakiris M. Going at the heart of social cognition: is there a role for interoception in self-other distinction? Curr Opin Psychol. 2018;24:21–6. 10.1016/j.copsyc.2018.04.008. PubMed
Uddin LQ, Nomi JS, Hébert-Seropian B, Ghaziri J, Boucher O. Structure and function of the human insula. J Clin Neurophysiol. 2017;34(4):300–6. 10.1097/WNP.0000000000000377. PubMed PMC
Lamm C, Singer T. The role of anterior insular cortex in social emotions. Brain Struct Funct. 2010;214(5):579–91. 10.1007/s00429-010-0251-3. PubMed
Critchley H, Seth A. Will studies of macaque insula reveal the neural mechanisms of self-awareness? Neuron. 2012;74(3):423–6. 10.1016/j.neuron.2012.04.012. PubMed
Evrard HC, Forro T, Logothetis NK. Von economo neurons in the anterior insula of the macaque monkey. Neuron. 2012;74(3):482–9. 10.1016/j.neuron.2012.03.003. PubMed
Keysers C, Gazzola V. Hebbian learning and predictive mirror neurons for actions, sensations and emotions. Philos Trans Royal Soc B Biol Sci. 2014;369(1644):20130175. 10.1098/rstb.2013.0175. PubMed PMC
Singer T, Critchley HD, Preuschoff K. A common role of insula in feelings, empathy and uncertainty. Trends Cogn Sci. 2009;13(8):334–40. 10.1016/j.tics.2009.05.001. PubMed
Molnar-Szakacs I, Uddin LQ. Anterior insula as a gatekeeper of executive control. Neurosci Biobehav Rev. 2022;139: 104736. 10.1016/j.neubiorev.2022.104736. PubMed
Hüper L, Steinacker P, Polyakova M, et al. Neurofilaments and progranulin are related to atrophy in frontotemporal lobar degeneration – A transdiagnostic study cross-validating atrophy and fluid biomarkers. Alzheimers Dementia. 2024;20(7):4461–75. 10.1002/alz.13863. PubMed PMC
Bora E, Walterfang M, Velakoulis D. Theory of mind in behavioural-variant frontotemporal dementia and Alzheimer’s disease: a meta-analysis. J Neurol Neurosurg Psychiatry. 2015;86(7):714–9. 10.1136/jnnp-2014-309445. PubMed
Hutton C, Draganski B, Ashburner J, Weiskopf N. A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage. 2009;48(2–8):371–80. 10.1016/j.neuroimage.2009.06.043. PubMed PMC
Palaniyappan L, Liddle PF. Differential effects of surface area, gyrification and cortical thickness on voxel based morphometric deficits in schizophrenia. Neuroimage. 2012;60(1):693–9. 10.1016/j.neuroimage.2011.12.058. PubMed