Temperature-Dependent Twist of Double-Stranded RNA Probed by Magnetic Tweezer Experiments and Molecular Dynamics Simulations

. 2024 Jan 25 ; 128 (3) : 664-675. [epub] 20240110

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38197365

RNA plays critical roles in the transmission and regulation of genetic information and is increasingly used in biomedical and biotechnological applications. Functional RNAs contain extended double-stranded regions, and the structure of double-stranded RNA (dsRNA) has been revealed at high resolution. However, the dependence of the properties of the RNA double helix on environmental effects, notably temperature, is still poorly understood. Here, we use single-molecule magnetic tweezer measurements to determine the dependence of the dsRNA twist on temperature. We find that dsRNA unwinds with increasing temperature, even more than DNA, with ΔTwRNA = -14.4 ± 0.7°/(°C·kbp), compared to ΔTwDNA = -11.0 ± 1.2°/(°C·kbp). All-atom molecular dynamics (MD) simulations using a range of nucleic acid force fields, ion parameters, and water models correctly predict that dsRNA unwinds with rising temperature but significantly underestimate the magnitude of the effect. These MD data, together with additional MD simulations involving DNA and DNA-RNA hybrid duplexes, reveal a linear correlation between the twist temperature decrease and the helical rise, in line with DNA but at variance with RNA experimental data. We speculate that this discrepancy might be caused by some unknown bias in the RNA force fields tested or by as yet undiscovered transient alternative structures in the RNA duplex. Our results provide a baseline to model more complex RNA assemblies and to test and develop new parametrizations for RNA simulations. They may also inspire physical models of the temperature-dependent dsRNA structure.

Zobrazit více v PubMed

Holbrook S. R. Structural principles from large RNAs. Annu. Rev. Biophys. 2008, 37, 445–464. 10.1146/annurev.biophys.36.040306.132755. PubMed DOI

Knipe D. M.; Howley P. M.. Fields Virology; Wolters Kluwer Health, 2015.

Ahmad S.; Mu X.; Yang F.; Greenwald E.; Park J. W.; Jacob E.; Zhang C. Z.; Hur S. Breaching self-tolerance to Alu duplex RNA underlies MDA5-mediated inflammation. Cell 2018, 172, 797–810.e713. 10.1016/j.cell.2017.12.016. PubMed DOI PMC

Kim S.; Lee K.; Choi Y. S.; Ku J.; Kim H.; Kharbash R.; Yoon J.; Lee Y. S.; Kim J.-H.; Lee Y. J.; et al. Mitochondrial double-stranded RNAs govern the stress response in chondrocytes to promote osteoarthritis development. Cell Rep. 2022, 40, 11117810.1016/j.celrep.2022.111178. PubMed DOI

Seeman N. C. DNA in a material world. Nature 2003, 421, 427–431. 10.1038/nature01406. PubMed DOI

Grabow W. W.; Jaeger L. RNA self-assembly and RNA nanotechnology. Acc. Chem. Res. 2014, 47, 1871–1880. 10.1021/ar500076k. PubMed DOI

Nakashima H.; Fukuchi S.; Nishikawa J. Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures. J. Biochem. 2003, 133, 507–513. 10.1093/jb/mvg067. PubMed DOI

Kortmann J.; Narberhaus F. Bacterial RNA thermometers: molecular zippers and switches. Nat. Rev. Microbiol. 2012, 10, 255–265. 10.1038/nrmicro2730. PubMed DOI

Knapp B. D.; Huang K. C. The effects of temperature on cellular physiology. Annu. Rev. Biophys. 2022, 51, 499–526. 10.1146/annurev-biophys-112221-074832. PubMed DOI

Becskei A.; Rahaman S. The life and death of RNA across temperatures. Comput. Struct. Biotechnol. J. 2022, 20, 4325–4336. 10.1016/j.csbj.2022.08.008. PubMed DOI PMC

Bisht K.; te Velthuis A. J. W.; Yount J. Decoding the role of temperature in RNA virus infections. Mbio 2022, 13, 1–13. 10.1128/mbio.02021-22. PubMed DOI PMC

Zhang K.; Zhu X.; Jia F.; Auyeung E.; Mirkin C. A. Temperature-activated nucleic acid nanostructures. J. Am. Chem. Soc. 2013, 135, 14102–14105. 10.1021/ja408465t. PubMed DOI PMC

Geggier S.; Kotlyar A.; Vologodskii A. Temperature dependence of DNA persistence length. Nucleic Acids Res. 2011, 39, 1419–1426. 10.1093/nar/gkq932. PubMed DOI PMC

Driessen R. P. C.; Sitters G.; Laurens N.; Moolenaar G. F.; Wuite G. J. L.; Goosen N.; Dame R. T. Effect of temperature on the intrinsic flexibility of DNA and its interaction with architectural proteins. Biochemistry 2014, 53, 6430–6438. 10.1021/bi500344j. PubMed DOI PMC

Brunet A.; Salome L.; Rousseau P.; Destainville N.; Manghi M.; Tardin C. How does temperature impact the conformation of single DNA molecules below melting temperature?. Nucleic Acids Res. 2018, 46, 2074–2081. 10.1093/nar/gkx1285. PubMed DOI PMC

Delrow J. J.; Heath P. J.; Schurr J. M. On the origin of the temperature dependence of the supercoiling free energy. Biophys. J. 1997, 73, 2688–2701. 10.1016/S0006-3495(97)78297-3. PubMed DOI PMC

Schurr J. M. Temperature-dependence of the bending elastic constant of DNA and extension of the two-state model. Tests and new insights. Biophys. Chem. 2019, 251, 10614610.1016/j.bpc.2019.106146. PubMed DOI

Schurr J. M. Effects of sequence changes on the torsion elastic constant and persistence length of DNA. Applications of the two-state model. J. Phys. Chem. B 2019, 123, 7343–7353. 10.1021/acs.jpcb.9b05139. PubMed DOI

Schurr J. M. A quantitative model of cooperative two-state equilibrium in DNA: experimental tests, insights, and predictions. Q. Rev. Biophys. 2021, 54, e5. PubMed

Meyer S.; Jost D.; Theodorakopoulos N.; Peyrard M.; Lavery R.; Everaers R. Temperature dependence of the DNA double helix at the nanoscale: Structure, elasticity, and fluctuations. Biophys. J. 2013, 105, 1904–1914. 10.1016/j.bpj.2013.09.004. PubMed DOI PMC

Kriegel F.; Matek C.; Drsata T.; Kulenkampff K.; Tschirpke S.; Zacharias M.; Lankas F.; Lipfert J. The temperature dependence of the helical twist of DNA. Nucleic Acids Res. 2018, 46, 7998–8009. 10.1093/nar/gky599. PubMed DOI PMC

Dohnalova H.; Drsata T.; Sponer J.; Zacharias M.; Lipfert J.; Lankas F. Compensatory Mechanisms in Temperature Dependence of DNA Double Helical Structure: Bending and Elongation. J. Chem. Theory Comput. 2020, 16, 2857–2863. 10.1021/acs.jctc.0c00037. PubMed DOI

Cruz-León S.; Vanderlinden W.; Müller P.; Forster T.; Staudt G.; Lin Y. Y.; Lipfert J.; Schwierz N. Twisting DNA by salt. Nucleic Acids Res. 2022, 50, 5726–5738. 10.1093/nar/gkac445. PubMed DOI PMC

Ostrofet E.; Papini F. S.; Dulin D. Correction-free force calibration for magnetic tweezers experiments. Sci. Rep. 2018, 8, 15920.10.1038/s41598-018-34360-4. PubMed DOI PMC

Lipfert J.; Hao X.; Dekker N. H. Quantitative modeling and optimization of magnetic tweezers. Biophys. J. 2009, 96, 5040–5049. 10.1016/j.bpj.2009.03.055. PubMed DOI PMC

Seifert M.; van Nies P.; Papini F. S.; Arnold J. J.; Poranen M. M.; Cameron C. E.; Depken M.; Dulin D. Temperature controlled high-throughput magnetic tweezers show striking difference in activation energies of replicating viral RNA-dependent RNA polymerases. Nucleic Acids Res. 2020, 48, 5591–5602. 10.1093/nar/gkaa233. PubMed DOI PMC

Papini F. S.; Seifert M.; Dulin D. High-yield fabrication of DNA and RNA constructs for single molecule force and torque spectroscopy experiments. Nucleic Acids Res. 2019, 47, e14410.1093/nar/gkz851. PubMed DOI PMC

Quack S.; Dulin D.. Surface functionalization, nucleic acid tether characterization, and force calibration of a magnetic tweezers assay. In Single molecule analysis, Heller I., Dulin D., Peterman E. J., Eds.; Methods in molecular biology, Humana, 2024. PubMed

Dulin D.An introduction to magnetic tweezers. In Single molecule analysis, Heller I., Dulin D., Peterman E. J., Eds.; Methods in molecular biology, Humana, 2024. PubMed

Lipfert J.; Skinner G. M.; Keegstra J. M.; Hensgens T.; Jager T.; Dulin D.; Köber M.; Yu Z.; Donkers S. P.; Chou F. C.; Das R.; Dekker N. H.; et al. Double-stranded RNA under force and torque: Similarities to and striking differences from double-stranded DNA. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 15408–15413. 10.1073/pnas.1407197111. PubMed DOI PMC

Mathew-Fenn R. S.; Das R.; Harbury P. A. Remeasuring the double helix. Science 2008, 322, 446–449. 10.1126/science.1158881. PubMed DOI PMC

Tian F. J.; Zhang C.; Zhou E.; Dong H. L.; Tan Z. J.; Zhang X. H.; Dai L. Universality in RNA and DNA deformations induced by salt, temperature change, stretching force, and protein binding. Proc. Natl. Acad. Sci. U.S.A. 2023, 120, e221842512010.1073/pnas.2218425120. PubMed DOI PMC

Ivani I.; Dans P. D.; Noy A.; Perez A.; Faustino I.; Hospital A.; Walther J.; Andrio P.; Goni R.; Balaceanu A.; et al. Parmbsc1: a refined force field for DNA simulations. Nat. Methods 2016, 13, 55–58. 10.1038/nmeth.3658. PubMed DOI PMC

Zgarbova M.; Sponer J.; Otyepka M.; Cheatham T. E. III; Galindo-Murillo R.; Jurecka P. Refinement of the sugar-phosphate backbone torsion beta for Amber force fields improves the description of Z- and B-DNA. J. Chem. Theory Comput. 2015, 11, 5723–5736. 10.1021/acs.jctc.5b00716. PubMed DOI

Zgarbova M.; Otyepka M.; Sponer J.; Mladek A.; Banas P.; Cheatham T. E. III; Jurecka P. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput. 2011, 7, 2886–2902. 10.1021/ct200162x. PubMed DOI PMC

Banas P.; Hollas D.; Zgarbova M.; Jurecka P.; Orozco M.; Cheatham T. E. III; Sponer J.; Otyepka M. Performance of molecular mechanics force fields for RNA simulations: stability of UUCG and GNRA hairpins. J. Chem. Theory Comput. 2010, 6, 3836–3849. 10.1021/ct100481h. PubMed DOI PMC

Tan D.; Piana S.; Dirks R. M.; Shaw D. E. RNA force field with accuracy comparable to state-of-the-art protein force fields. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, E1346–E1355. 10.1073/pnas.1713027115. PubMed DOI PMC

Dang L. X. Mechanism and thermodynamics of ion selectivity in aqueous solutions of 18-crown-6 ether: a molecular dynamics study. J. Am. Chem. Soc. 1995, 117, 6954–6960. 10.1021/ja00131a018. DOI

Joung I. S.; Cheatham T. E. III Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 2008, 112, 9020–9041. 10.1021/jp8001614. PubMed DOI PMC

MacKerell A. D.; Bashford D.; Bellott M.; Dunbrack R. L.; Evanseck J. D.; Field M. J.; Fischer S.; Gao J.; Guo H.; Ha S.; et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102 (18), 3586–3616. 10.1021/jp973084f. PubMed DOI

Piana S.; Donchev A. G.; Robustelli P.; Shaw D. E. Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J. Phys. Chem. B 2015, 119, 5113–5123. 10.1021/jp508971m. PubMed DOI

Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79 (2), 926–935. 10.1063/1.445869. DOI

Sponer J.; Bussi G.; Krepl M.; Banas P.; Bottaro S.; Cunha R. A.; Gil-Ley A.; Pinamonti G.; Poblete S.; Jurecka P.; et al. RNA structural dynamics as captured by molecular simulations: A comprehensive overview. Chem. Rev. 2018, 118, 4177–4338. 10.1021/acs.chemrev.7b00427. PubMed DOI PMC

Kuhrova P.; Mlynsky V.; Otyepka M.; Sponer J.; Banas P. Sensitivity of the RNA structure to ion conditions as probed by molecular dynamics simulations of common canonical RNA duplexes. J. Chem. Inf. Model. 2023, 63, 2133–2146. 10.1021/acs.jcim.2c01438. PubMed DOI PMC

Patro L. P. P.; Kumar A.; Kolimi N.; Rathinavelan T. 3D-NuS: A web server for automated modeling and visualization of non-canonical 3-dimensional nucleic acid structures. J. Mol. Biol. 2017, 429, 2438–2448. 10.1016/j.jmb.2017.06.013. PubMed DOI

Lu X.-J.; Olson W. K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 2003, 31, 5108–5121. 10.1093/nar/gkg680. PubMed DOI PMC

Lavery R.; Moakher M.; Maddocks J. H.; Petkeviciute D.; Zakrzewska K. Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Res. 2009, 37, 5917–5929. 10.1093/nar/gkp608. PubMed DOI PMC

Strick T. R.; Allemand J.-F.; Bensimon D.; Bensimon A.; Croquette V. The elasticity of a single supercoiled DNA molecule. Science 1996, 271 (1835–1837), 1835.10.1126/science.271.5257.1835. PubMed DOI

te Velthuis A. J. W.; Kerssemakers J. W. J.; Lipfert J.; Dekker N. H. Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data. Biophys. J. 2010, 99, 1292–1302. 10.1016/j.bpj.2010.06.008. PubMed DOI PMC

Lansdorp B. M.; Saleh O. A. Power spectrum and Allan variance methods for calibrating single-molecule video-tracking instruments. Rev. Sci. Instrum. 2012, 83, 02511510.1063/1.3687431. PubMed DOI PMC

Herrero-Galan E.; Fuentes-Perez M. E.; Carrasco C.; Valpuesta J. M.; Carrascosa J. L.; Moreno-Herrero F.; Arias-Gonzalez J. R. Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. J. Am. Chem. Soc. 2013, 135, 122–131. 10.1021/ja3054755. PubMed DOI

Bustamante C.; Marko J. F.; Siggia E. D.; Smith S. Entropic elasticity of lambda-phage DNA. Science 1994, 265, 1599–1600. 10.1126/science.8079175. PubMed DOI

Marko J. F.; Siggia E. D. Stretching DNA. Macromolecules 1995, 28, 8759–8770. 10.1021/ma00130a008. DOI

Abels J. A.; Moreno-Herrero F.; van der Heijden T.; Dekker C.; Dekker N. H. Single-molecule measurements of the persistence length of double-stranded RNA. Biophys. J. 2005, 88, 2737–2744. 10.1529/biophysj.104.052811. PubMed DOI PMC

Zettl T.; Mathew R. S.; Seifert S.; Doniach S.; Harbury P. A.; Lipfert J. Absolute Intramolecular Distance Measurements with Angstrom-Resolution Using Anomalous Small-Angle X-ray Scattering. Nano Lett. 2016, 16, 5353–5357. 10.1021/acs.nanolett.6b01160. PubMed DOI

Zhang C.; Fu H.; Yang Y.; Zhou E.; Tan Z.; You H.; Zhang X. The mechanical properties of RNA-DNA hybrid duplex stretched by magnetic tweezers. Biophys. J. 2019, 116, 196–204. 10.1016/j.bpj.2018.12.005. PubMed DOI PMC

Morozova T. I.; García N. A.; Barrat J. L. Temperature dependence of thermodynamic, dynamical, and dielectric properties of water models. J. Chem. Phys. 2022, 156, 12610110.1063/5.0079003. PubMed DOI

Perez A.; Marchan I.; Svozil D.; Sponer J.; Cheatham T. E.; Laughton C. A.; Orozco M. Refinenement of the AMBER force field for nucleic acids: Improving the description of alpha/gamma conformers. Biophys. J. 2007, 92 (11), 3817–3829. 10.1529/biophysj.106.097782. PubMed DOI PMC

Galindo-Murillo R.; Robertson J. C.; Zgarbova M.; Sponer J.; Otyepka M.; Jurecka P.; Cheatham T. E. III Assessing the current state of Amber force field modifications for DNA. J. Chem. Theory Comput. 2016, 12, 4114–4127. 10.1021/acs.jctc.6b00186. PubMed DOI PMC

Dans P. D.; Ivani I.; Hospital A.; Portella G.; Gonzalez C.; Orozco M. How accurate are accurate force-fields for B-DNA?. Nucleic Acids Res. 2017, 45, 4217–4230. PubMed PMC

Dohnalova H.; Lankas F. Deciphering the mechanical properties of B-DNA duplex. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1575.

Liebl K.; Drsata T.; Lankas F.; Lipfert J.; Zacharias M. Explaining the striking difference in twist-stretch coupling between DNA and RNA: A comparative molecular dynamics analysis. Nucleic Acids Res. 2015, 43, 10143–10156. PubMed PMC

Marin-Gonzalez A.; Vihena J. G.; Perez R.; Moreno-Herrero F. Understanding the mechanical response of double-stranded DNA and RNA under constant stretching force using all-atom molecular dynamics. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 7049–7054. PubMed PMC

Phelps C.; Lee W.; Jose D.; von Hippel P. H.; Marcus A. H. Single-molecule FRET and linear dichroism studies of DNA breathing and helicase binding at replication fork junctions. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 17320–17325. 10.1073/pnas.1314862110. PubMed DOI PMC

Nikolova E. N.; Kim E.; Wise A. A.; O’Brien P. J.; Andricioaei I.; Al-Hashimi H. M. Transient Hoogsteen base pairs in canonical duplex DNA. Nature 2011, 470, 498–502. 10.1038/nature09775. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace