Explaining the striking difference in twist-stretch coupling between DNA and RNA: A comparative molecular dynamics analysis
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
26464435
PubMed Central
PMC4666353
DOI
10.1093/nar/gkv1028
PII: gkv1028
Knihovny.cz E-zdroje
- MeSH
- biomechanika MeSH
- DNA chemie MeSH
- dvouvláknová RNA chemie MeSH
- konformace nukleové kyseliny MeSH
- párování bází MeSH
- simulace molekulární dynamiky MeSH
- točivý moment MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- DNA MeSH
- dvouvláknová RNA MeSH
Double stranded helical DNA and RNA are flexible molecules that can undergo global conformational fluctuations. Their bending, twisting and stretching deformabilities are of similar magnitude. However, recent single-molecule experiments revealed a striking qualitative difference indicating an opposite sign for the twist-stretch couplings of dsDNA and dsRNA [Lipfert et al. 2014. Proc. Natl. Acad. Sci. U.S.A. 111, 15408] that is not explained by existing models. Employing unconstrained Molecular Dynamics (MD) simulations we are able to reproduce the qualitatively different twist-stretch coupling for dsDNA and dsRNA in semi-quantitative agreement with experiment. Similar results are also found in simulations that include an external torque to induce over- or unwinding of DNA and RNA. Detailed analysis of the helical deformations coupled to twist indicate that the interplay of helical rise, base pair inclination and displacement from the helix axis upon twist changes are responsible for the different twist-stretch correlations. Overwinding of RNA results in more compact conformations with a narrower major groove and consequently reduced helical extension. Overwinding of DNA decreases the size of the minor groove and the resulting positive base pair inclination leads to a slender and more extended helical structure.
Zobrazit více v PubMed
Rohs R., Jin X., West S.M., Joshi R., Honig B., Mann R.S. Origins of specificity in protein-DNA recognition. Annu. Rev. Biochem. 2010;79:233–269. PubMed PMC
Alexander R.W., Eargle J., Luthey-Schulten Z. Experimental and computational determination of tRNA dynamics. FEBS Lett. 2010;584:376–386. PubMed
Lee G., Bratkowski M.A., Ding F., Ke A., Ha T. Elastic coupling between RNA degradation and unwinding by an exoribonuclease. Science. 2012;336:1726–1729. PubMed PMC
Pinheiro A.V., Han D., Shih W.M., Yan H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 2011;6:763–772. PubMed PMC
Marko J.F., Siggia E.D. Bending and twisting elasticity of DNA. Macromolecules. 1994;27:881–998.
Bustamante C., Bryant Z., Smith SB. Ten years of tension: Single-molecule DNA mechanics. Nature. 2003;421:423–427. PubMed
Pérez A., Noy A., Lankas F., Luque F.J., Orozco M. The relative flexibility of B-DNA and A-RNA duplexes: database analysis. Nucleic Acids Res. 2004;32:6144–61451. PubMed PMC
Wereszczynski J., Andricioaei I. On structural transitions, thermodynamic equilibrium, and the phase diagram of DNA and RNA duplexes under torque and tension. Proc. Natl. Acad. Sci. U.S.A. 2006;103:16200–16205. PubMed PMC
Becker N., Everaers R. From rigid base pairs to semiflexible polymers: Coarse-graining DNA. Phys. Rev. E. 2007;76:021923. PubMed
Drsata T., Lankas F. Theoretical Models of DNA Flexibility. WIREs Comput. Mol. Sci. 2013;3:355–363.
Strick T.R., Allemand J.F., Bensimon D., Bensimon A., Croquette V. The elasticity of a single supercoiled DNA molecule. Science. 1996;271:1835–1837. PubMed
Moroz J.D., Nelson P. Torsional directed walks, entropic elasticity, and DNA twist stiffness. Proc. Natl. Acad. Sci. U.S.A. 1997;94:14418–14422. PubMed PMC
Allemand J.F., Bensimon D., Lavery R., Croquette V. Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc. Natl. Acad. Sci. U.S.A. 1998;95:14152–14157. PubMed PMC
Bonin M., Zhu R., Klaue Y., Oberstrass J., Oesterschulze E., Nellen W. Analysis of RNA flexibility by scanning force spectroscopy. Nucleic Acids Res. 2002;30:e81. PubMed PMC
Gore J, Bryant Z., Nöllmann M., Le M.U., Cozzarelli N.R., Bustamante C. DNA overwinds when stretched. Nature. 2006;442:836–839. PubMed
Marko J.F. Torque and dynamics of linking number relaxation in stretched supercoiled DNA. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2007;76:021926. PubMed
Sheinin M.Y., Wang M.D. Twist-stretch coupling and phase transition during DNA supercoiling. Phys. Chem. Chem. Phys. 2009;11:4800–4803. PubMed PMC
Lipfert J., Kerssemakers J.W., Jager T., Dekker N.H. Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments. Nat. Methods. 2010;7:977–980. PubMed
Sheinin M.Y., Forth S., Marko J.F., Wang M.D. Underwound DNA under tension: Structure, elasticity, and sequence-dependent behaviors. Phys. Rev. Lett. 2011;107:108102. PubMed PMC
Lipfert J., Wiggin M., Kerssemakers J.W., Pedaci F., Dekker N.H. Freely orbiting magnetic tweezers to directly monitor changes in the twist of nucleic acids. Nat. Commun. 2011;2:439–441. PubMed PMC
Bryant Z., Oberstrass F.C., Basu A. Recent developments in single-molecule DNA mechanics. Curr. Opin. Struct. Biol. 2012;22:304–312. PubMed PMC
Fujimoto B.S., Brewood G.P., Schurr J.M. Torsional rigidities of weakly strained DNAs. Biophys J. 2006;91:4166–4179. PubMed PMC
Bustamante C., Marko J.F., Siggia E.D., Smith S. Entropic elasticity of lambda-phage DNA. Science. 1994;265:1599–1600. PubMed
Smith S.B., Finzi L., Bustamante C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science. 1992;258:1122–1126. PubMed
Abels J.A., Moreno-Herrero F., van der Heijden T., Dekker C., Dekker N.H. Single-molecule measurements of the persistence length of double-stranded RNA. Biophys. J. 2005;88:2737–2744. PubMed PMC
Herrero-Galan E., Fuentes-Perez M.E., Carrasco C., Valpuesta J.M., Carrascosa J.L., Moreno-Herrero F., Arias-Gonzalez J.R. Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. J. Am. Chem. Soc. 2013;135:122–131. PubMed
Lipfert J., Skinner G.M., Keegstra J.M., Hensgens T., Jager T., Dulin D., Köber M., Yu Z., Donkers S.P., Chou F.C., Das R., Dekker N.H. Double-stranded RNA under force and torque: Similarities to and striking differences from double-stranded DNA. Proc. Natl. Acad. Sci. U.S.A. 2014;111:15408–15413. PubMed PMC
Fujimoto B.S., Schurr J.M. Dependence of the torsional rigidity of DNA on base composition. Nature. 1990;344:175–177. PubMed
Bryant Z., Stone M.D., Gore J., Smith S.B., Cozzarelli N.R., Bustamante C. Structural transitions and elasticity from torque measurements on DNA. Nature. 2003;424:338–341. PubMed
Smith S.B.,Cui,Y., Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996;271:795–799. PubMed
Baumann C.G., Smith S.B., Bloomfield V.A., Bustamante C. Ionic effects on the elasticity of single DNA molecules. Proc. Natl. Acad. Sci. U.S.A. 1997;94:6185–6190. PubMed PMC
Bloomfield V.A., Crothers V.A., Tinoco I. Nucleic Acids: Structures, Properties, and Functions. Sausalito: University Science Books; 2000.
Lionnet T., Joubaud S., Lavery R., Bensimon D., Croquette V. Wringing out DNA. Phys. Rev. Lett. 2006;96:178102. PubMed
Lionnet T, Lankas F. Sequence-dependent twist-stretch coupling in DNA. Biophys J. 2007;92:30–32. PubMed PMC
Kamien R.D., Lubensky T.C., Nelson P., Ohern C.S. Direct determination of DNA twist-stretch coupling. Europhys. Lett. 1997;38:237–242.
Marko J.F. Stretching must twist DNA. Europhys. Lett. 1997;38:183–188.
Moroz J.D., Nelson P. Entropic elasticity of twist-storing polymers. Macromolecules. 1998;31:6333–6347.
Olsen K., Bohr J. The geometrical origin of the strain-twist coupling in double helices. AIP Adv. 2011;1:012108.
Kosikov K.M., Gorin A.A., Zhurkin V.B., Olson W.K. DNA stretching and compression: Large-scale simulations of double helical structures. J. Mol. Biol. 1999;289:1301–1326. PubMed
Chou F.C., Lipfert J., Das R. Blind predictions of DNA and RNA tweezers experiments with force and torque. PLoS Comput. Biol. 2014;10:e1003756. PubMed PMC
Durickovic B., Goriely A., Maddocks J.H. Twist and stretch of helices explained via the Kirchhoff-Love rod model of elastic filaments. Phys. Rev. Lett. 2013;111:108103. PubMed
Perez A., Luque F.J., Orozco M. Frontiers in molecular dynamics simulations of DNA. Acc. Chem. Res. 2012;45:196–205. PubMed
Sponer J., Bana P., Jureca P., Zgarbova M., Kuhrova P., Havrila M., Krepl M., Stadlbauer R., Otyepka M. Molecular dynamics simulations of nucleic acids. From tetranucleotides to the ribosome. J. Phys. Chem. Lett. 2014;5:1771–1782. PubMed
Dršata T., Pérez A., Orozco M., Morozov A.V., Sponer J., Lankaš F. Structure, Stiffness and Substates of the Dickerson-Drew Dodecamer. J. Chem. Theory Comput. 2013;9:707–721. PubMed PMC
Lankas F. Modelling Nucleic Acid Structure and Flexibility: From Atomic to Mesoscopic Scale. In: Schlick T, editor. Innovations in Biomolecular Modeling and Simulations. Vol. 2. London: Royal Society of Chemistry; 2012. pp. 3–32.
Drsata T., Zgarbova M., Spackova N., Jurecka P., Sponer J., Lankas F. Mechanical model of DNA allostery. J. Phys. Chem. Lett. 2014;5:3831–3835. PubMed
Dixit S.B., Beveridge D.L., Case D.A., Cheatham T.E. 3rd, Giudice E., Lankas F., Lavery R., Maddocks J.H., Osman R., Sklenar H., et al. Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides. II: sequence context effects on the dynamical structures of the 10 unique dinucleotide steps. Biophys J. 2005;89:3721–3740. PubMed PMC
Lavery R., Zakrzewska K., Beveridge D., Bishop T.C., Case D.A., Cheatham T. 3rd, Dixit S., Jayaram B., Lankas F., Laughton C., et al. A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA. Nucleic Acids Res. 2010;38:299–313. PubMed PMC
Pasi M., Maddocks J.H., Beveridge D., Bishop T.C., Case D.A., Cheatham T. 3rd, Dans P.D., Jayaram B., Lankas F., Laughton C., et al. μABC: a systematic microsecond molecular dynamics study of tetranucleotide sequence effects in B-DNA. Nucleic Acids Res. 2014;42:12272–12283. PubMed PMC
Lankas F., Sponer J., Hobza P., Langowski J. Sequence-dependent elastic properties of DNA. J. Mol. Biol. 2000;299:695–709. PubMed
Kara M., Zacharias M. Theoretical studies of nucleic acid folding. WIREs Comput. Mol. Sci. 2013;4:116–126.
Lankas F., Sponer J., Langowski J., Cheetham T.E. DNA base pair step deformabilities inferred from molecular dynamics simulations. Biophys. J. 2003;85:2872–2883. PubMed PMC
Case D.A., Darden T.A., Cheatham T.E., Simmerling C.L., Wang J., Duke R.E., Luo R., Walker R.C., Zhang W., Merz K.M., et al. Amber12. San Francisco: University of California; 2012.
Jorgensen W.L., Chandrasekhar J., Madura J. D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935.
Pérez A., Marchán I., Svozil D., Sponer J., Cheatham T.E., et al. Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys. J. 2007;92:3817–3829. PubMed PMC
Zgarbová M., Otyepka M., Sponer J., Mládek A., Banáš P., Cheatham T.E. 3rd, Jurečka P. Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J. Chem. Theory Comput. 2011;7:2886–2902. PubMed PMC
Zgarbová M., Luque F.J., Sponer J., Cheatham T.E., 3rd, Otyepka M., Jurečka P. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. J. Chem. Theory Comput. 2013;9:2339–2354. PubMed PMC
Kannan S., Kohlhoff K., Zacharias M. B-DNA Under Stress: Over and Un-twisting of DNA during Molecular Dynamics Simulations. Biophys. J. 2006;25:2956–2965. PubMed PMC
Lavery R., Moakher M., Maddocks J.H., Petkeviciute D., Zakrzewska K. Conformational analysis of nucleic acids revisited: Curves+ Nucleic Acids Res. 2009;37:5917–5929. PubMed PMC
Lu X.-J., Olson W.K. 3DNA: A Software package for the Analysis, Rebuilding and Visualization of Three-Dimensional Nucleic Acid Structures. Nucleic Acids Res. 2003;31:5108–5121. PubMed PMC
Lavery R., Zakrzewska K., Sklenar H. JUMNA (junction minimization of nucleic acids) Comput. Phys. Comm. 1995;91:135–158.
Zacharias M. Comparison of molecular dynamics and harmonic mode calculations on RNA. Biopolymers. 2000;54:547–560. PubMed
Temperature-dependent elasticity of DNA, RNA, and hybrid double helices
RNA kink-turns are highly anisotropic with respect to lateral displacement of the flanking stems
Role of Inosine⁻Uracil Base Pairs in the Canonical RNA Duplexes
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview