μABC: a systematic microsecond molecular dynamics study of tetranucleotide sequence effects in B-DNA

. 2014 Oct 29 ; 42 (19) : 12272-83. [epub] 20140926

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid25260586

Grantová podpora
BB/L01386X/1 Biotechnology and Biological Sciences Research Council - United Kingdom
R-01 GM-081411 NIGMS NIH HHS - United States

We present the results of microsecond molecular dynamics simulations carried out by the ABC group of laboratories on a set of B-DNA oligomers containing the 136 distinct tetranucleotide base sequences. We demonstrate that the resulting trajectories have extensively sampled the conformational space accessible to B-DNA at room temperature. We confirm that base sequence effects depend strongly not only on the specific base pair step, but also on the specific base pairs that flank each step. Beyond sequence effects on average helical parameters and conformational fluctuations, we also identify tetranucleotide sequences that oscillate between several distinct conformational substates. By analyzing the conformation of the phosphodiester backbones, it is possible to understand for which sequences these substates will arise, and what impact they will have on specific helical parameters.

Bases Moléculaires et Structurales des Systèmes Infectieux CNRS UMR 5086 Université Lyon 1 IBCP 7 Passage du Vercors 69367 Lyon France

BioMaPS Institute and Deptartment of Chemistry and Chemical Biology Rutgers University 610 Taylor Road Piscataway NJ 08854 8087 USA

Department of Chemistry Indian Institute of Technology Hauz Khas New Delhi 110016 India

Department of Chemistry Wesleyan University Middletown CT 06459 USA

Department of Medicinal Chemistry University of Utah Skaggs 307 Salt Lake City UT 84112 USA

Department of Structural and Chemical Biology Mount Sinai School of Medicine New York NY 10029 USA

Departments of Chemistry and Physics Louisiana Tech University Ruston LA 71270 USA

Institute of Biophysics Academy of Sciences of the Czech Republic Kralovopolska 135 612 65 Brno Czech Republic

Institute of Biophysics Academy of Sciences of the Czech Republic Kralovopolska 135 612 65 Brno Czech Republic CEITEC Central European Institute of Technology Masaryk University Campus Bohunice Kamenice 5 625 00 Brno Czech Republic

Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic Flemingovo nam 2 166 10 Praha 6 Czech Republic

Joint BSC CRG IRB Program on Computational Biology Institute of Research in Biomedicine Parc Científic de Barcelona Josep Samitier 1 5 Barcelona 08028 Spain Barcelona Supercomputing Centre Jordi Girona 31 Edifici Torre Girona Barcelona 08034 Spain Departament de Bioquímica Facultat de Biología Avgda Diagonal 647 Barcelona 08028 Spain

School of Pharmacy and Centre for Biomolecular Sciences University of Nottingham NG7 2RD UK

Section de Mathématiques Swiss Federal Institute of Technology CH 1015 Lausanne Switzerland

Zobrazit více v PubMed

Wing R., Drew H., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R.E. Crystal structure analysis of a complete turn of B-DNA. Nature. 1980;287:755–758. PubMed

Drew H.R., Wing R.M., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R.E. Structure of a B-DNA dodecamer: conformation and dynamics. Proc. Natl Acad. Sci. U.S.A. 1981;78:2179–2183. PubMed PMC

Juo Z.S., Chiu T.K., Leiberman P.M., Baikalov I., Berk A.J., Dickerson R.E. How proteins recognize the TATA box. J. Mol. Biol. 1996;261:239–254. PubMed

Dickerson R.E., Chiu T.K. Helix bending as a factor in protein/DNA recognition. Biopolymers. 1997;44:361–403. PubMed

Paillard G., Lavery R. Analyzing protein-DNA recognition mechanisms. Structure. 2004;12:113–122. PubMed

Locasale J.W., Napoli A.A., Chen S., Berman H.M., Lawson C.L. Signatures of protein-DNA recognition in free DNA binding sites. J. Mol. Biol. 2009;386:1054–1065. PubMed PMC

Rohs R., West S.M., Sosinsky A., Liu P., Mann R.S., Honig B. The role of DNA shape in protein–DNA recognition. Nature. 2009;461:1248–1253. PubMed PMC

Strekowski L., Wilson B. Noncovalent interactions with DNA: an overview. Mutat. Res. 2007;623:3–13. PubMed

Rothemund P.W. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440:297–302. PubMed

Castro C.E., Kilchherr F., Kim D.N., Shiao E.L., Wauer T., Wortmann P., Bathe M., Dietz H. A primer to scaffolded DNA origami. Nat. Methods. 2011;8:221–229. PubMed

Gonzalez O., Petkevičiūtė D., Maddocks J.H. A sequence-dependent rigid-base model of DNA. J. Chem. Phys. 2013;138:055102. PubMed

Petkevičiūtė D., Pasi M., Gonzalez O., Maddocks J.H. cgDNA: a software package for the prediction of sequence-dependent coarse-grain free energies of B-form DNA. Nucleic Acids Res. 2014 doi:10.1093/nar/gku825. PubMed PMC

Berman H.M., Battistuz T., Bhat T.N., Bluhm W.F., Bourne P.E., Burkhardt K., Feng Z., Gilliland G.L., Iype L., Shri J., et al. The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr. 2002;58:899–907. PubMed

Dans P.D., Pérez A., Faustino I., Lavery R., Orozco M. Exploring polymorphisms in B-DNA helical conformations. Nucleic Acids Res. 2012;40:10668–10678. PubMed PMC

Pearlman D.A., Case D.A., Caldwell J.W., Ross W.S., Cheatham T.E., III, DeBolt S., Ferguson D., Seibel G., Kollman P. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 1995;91:1–41.

Case D.A., Cheatham T.E., Darden T., Gohlke H., Luo R., Merz K.M., Onufriev A., Simmerling C., Wang B., Woods R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005;26:1668–1688. PubMed PMC

Beveridge D.L., Barreiro G., Byun K.S., Case D.A., Cheatham T.E., Dixit S.B., Giudice E., Lankas F., Lavery R., Maddocks J.H., et al. Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides. I. Research design and results on d(CpG) steps. Biophys. J. 2004;87:3799–3813. PubMed PMC

Dixit S.B., Beveridge D.L., Case D.A., Cheatham T.E., Giudice E., Lankas F., Lavery R., Maddocks J.H., Osman R., Sklenar H., et al. Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides. II: sequence context effects on the dynamical structures of the 10 unique dinucleotide steps. Biophys. J. 2005;89:3721–3740. PubMed PMC

Pérez A., Luque F.J., Orozco M. Dynamics of B-DNA on the microsecond time scale. J. Am. Chem. Soc. 2007;129:14739–14745. PubMed

Pérez A., Lankas F., Luque F.J., Orozco M. Towards a molecular dynamics consensus view of B-DNA flexibility. Nucleic Acids Res. 2008;36:2379–2394. PubMed PMC

Orozco M., Noy A., Pérez A. Recent advances in the study of nucleic acid flexibility by molecular dynamics. Curr. Opin. Struct. Biol. 2008;18:185–193. PubMed

Dršata T., Pérez A., Orozco M., Morozov A.V., Sponer J., Lankaš F. Structure, stiffness and substates of the Dickerson-Drew dodecamer. J. Chem. Theory Comput. 2013;9:707–721. PubMed PMC

Pérez A., Luque F.J., Orozco M. Frontiers in molecular dynamics simulations of DNA. Acc. Chem. Res. 2012;45:196–205. PubMed

Lavery R., Zakrzewska K., Beveridge D., Bishop T.C., Case D.A., Cheatham T., Dixit S., Jayaram B., Lankas F., Laughton C., et al. A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA. Nucleic Acids Res. 2010;38:299–313. PubMed PMC

Lavery R., Moakher M., Maddocks J.H., Petkevičiūtė D., Zakrzewska K. Conformational analysis of nucleic acids revisited: Curves+ Nucleic Acids Res. 2009;37:5917–5929. PubMed PMC

Blanchet C., Pasi M., Zakrzewska K., Lavery R. CURVES+ web server for analyzing and visualizing the helical, backbone and groove parameters of nucleic acid structures. Nucleic Acids Res. 2011;39:W68–W73. PubMed PMC

Lavery R., Maddocks J.H., Pasi M., Zakrzewska K. Analyzing ion distributions around DNA. Nucleic Acids Res. 2014;42:8138–8149. PubMed PMC

Dans P.D., Faustino I., Battistini F., Zakrzewska K., Lavery R., Orozco M. Unraveling the sequence-dependent polymorphic behavior of d(CpG) steps in B-DNA. Nucleic Acids Res. 2014 doi:10.1093/nar/gku809. PubMed PMC

Cheatham T.E., III, Cieplak P., Kollman P.A. A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J. Biomol. Struct. Dyn. 1999;16:845–862. PubMed

Dang L.X. Mechanism and thermodynamics of ion selectivity in aqueous solutions of 18-crown-6 ether: a molecular dynamics study. J. Am. Chem. Soc. 1995;117:6954–6960.

Berendsen H.J.C., Grigera J.R., Straatsma T.P. The missing term in effective pair potentials. J. Phys. Chem. 1987;91:6269–6271.

Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593.

Berendsen H.J., Postma J.P.M., van Gunsteren W.F., DiNola A., Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690.

Ryckaert J.-P., Ciccotti G., Berendsen H.J. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341.

Harvey S.C., Tan R.K.-Z., Cheatham T.E. The flying ice cube: velocity rescaling in molecular dynamics leads to violation of energy equipartition. J. Comput. Chem. 1998;19:726–740.

Olson W.K., Bansal M., Burley S.K., Dickerson R.E., Gerstein M., Harvey S.C., Heinemann U., Lu X.J., Neidle S., Shakked Z., et al. A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 2001;313:229–237. PubMed

Dickerson R.E. Definitions and nomenclature of nucleic acid structure components. Nucleic Acids Res. 1989;17:1797–1803. PubMed PMC

Fisher N.I. Statistical Analysis of Circular Data. Cambridge, UK: Cambridge University Press; 1993.

Zar J.H. Biostatistical Analysis. Upper Saddle River, NJ: Prentice Hall; 1999.

Jammalamadaka S.R. Topics in Circular Statistics. River Edge, NJ: World Scientific; 2001.

Leger J.F., Robert J., Bourdieu L., Chatenay D., Marko J.F. RecA binding to a single double-stranded DNA molecule: a possible role of DNA conformational fluctuations. Proc. Natl Acad. Sci. U.S.A. 1998;95:12295–12299. PubMed PMC

Lankaš F., Gonzalez O., Heffler L.M., Stoll G., Moakher M., Maddocks J.H. On the parameterization of rigid base and basepair models of DNA from molecular dynamics simulations. Phys. Chem. Chem. Phys. 2009;11:10565–10588. PubMed

Yanagi K., Privé G.G., Dickerson R.E. Analysis of local helix geometry in three B-DNA decamers and eight dodecamers. J. Mol. Biol. 1991;217:201–214. PubMed

Mack D.R., Chiu T.K., Dickerson R.E. Intrinsic bending and deformability at the T-A step of CCTTTAAAGG: a comparative analysis of T-A and A-T steps within A-tracts. J. Mol. Biol. 2001;312:1037–1049. PubMed

Okonogi T.M., Alley S.C., Reese A.W., Hopkins P.B., Robinson B.H. Sequence-dependent dynamics of duplex DNA: the applicability of a dinucleotide model. Biophys. J. 2002;83:3446–3459. PubMed PMC

Maehigashi T., Hsiao C., Woods K.K., Moulaei T., Hud N.V., Williams L.D. B-DNA structure is intrinsically polymorphic: even at the level of base pair positions. Nucleic Acids Res. 2012;40:3714–3722. PubMed PMC

Hartmann B., Piazzola D., Lavery R. BI-BII transitions in B-DNA. Nucleic Acids Res. 1993;21:561–568. PubMed PMC

Djuranovic D., Hartmann B. DNA fine structure and dynamics in crystals and in solution: the impact of BI/BII backbone conformations. Biopolymers. 2004;73:356–368. PubMed

Heddi B., Foloppe N., Bouchemal N., Hantz E., Hartmann B. Quantification of DNA BI/BII backbone states in solution. Implications for DNA overall structure and recognition. J. Am. Chem. Soc. 2006;128:9170–9177. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...