Role of Inosine⁻Uracil Base Pairs in the Canonical RNA Duplexes

. 2018 Jun 28 ; 9 (7) : . [epub] 20180628

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29958383

Adenosine to inosine (A⁻I) editing is the most common modification of double-stranded RNA (dsRNA). This change is mediated by adenosine deaminases acting on RNA (ADARs) enzymes with a preference of U>A>C>G for 5′ neighbor and G>C=A>U or G>C>U=A for 3′ neighbor. A⁻I editing occurs most frequently in the non-coding regions containing repetitive elements such as ALUs. It leads to disruption of RNA duplex structure, which prevents induction of innate immune response. We employed standard and biased molecular dynamics (MD) simulations to analyze the behavior of RNA duplexes with single and tandem inosine⁻uracil (I⁻U) base pairs in different sequence context. Our analysis showed that the I⁻U pairs induce changes in base pair and base pair step parameters and have different dynamics when compared with standard canonical base pairs. In particular, the first I⁻U pair from tandem I⁻U/I⁻U systems exhibited increased dynamics depending on its neighboring 5′ base. We discovered that UII sequence, which is frequently edited, has lower flexibility compared with other sequences (AII, GII, CII), hence it only modestly disrupts dsRNA. This might indicate that the UAA motifs in ALUs do not have to be sufficiently effective in preventing immune signaling.

Zobrazit více v PubMed

Bass B.L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 2002;71:817–846. doi: 10.1146/annurev.biochem.71.110601.135501. PubMed DOI PMC

Nishikura K. Functions and regulation of RNA Editing by ADAR Deaminases. Annu. Rev. Biochem. 2010;79:321–349. doi: 10.1146/annurev-biochem-060208-105251. PubMed DOI PMC

Valente L., Nishikura K. ADAR gene family and A-to-I RNA editing: Diverse roles in posttranscriptional gene regulation. Prog. Nucleic Acid Res. Mol. Biol. 2005;79:299–338. doi: 10.1016/S0079-6603(04)80006-6. PubMed DOI

Kim U., Garner T.L., Sanford T., Speicher D., Murray J.M., Nishikura K. Purification and characterization of double-stranded-RNA adenosine-deaminase from bovine nuclear extracts. J. Biol. Chem. 1994;269:13480–13489. PubMed

Melcher T., Maas S., Herb A., Sprengel R., Seeburg P.H., Higuchi M. A mammalian RNA editing enzyme. Nature. 1996;379:460–464. doi: 10.1038/379460a0. PubMed DOI

Oconnell M.A., Krause S., Higuchi M., Hsuan J.J., Totty N.F., Jenny A., Keller W. Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine-deaminase. Mol. Cell. Biol. 1995;15:1389–1397. doi: 10.1128/MCB.15.3.1389. PubMed DOI PMC

Eggington J.M., Greene T., Bass B.L. Predicting sites of ADAR editing in double-stranded RNA. Nat. Commun. 2011;2:319. doi: 10.1038/ncomms1324. PubMed DOI PMC

Matthews M.M., Thomas J.M., Zheng Y.X., Tran K., Phelps K.J., Scott A.I., Havel J., Fisher A.J., Beal P.A. Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nat. Struct. Mol. Biol. 2016;23:426–433. doi: 10.1038/nsmb.3203. PubMed DOI PMC

Alseth I., Dalhus B., Bjoras M. Inosine in DNA and RNA. Curr. Opin. Genet. Dev. 2014;26:116–123. doi: 10.1016/j.gde.2014.07.008. PubMed DOI

Zinshteyn B., Nishikura K. Adenosine-to-inosine RNA editing. Wiley Interdiscip. Rev. Syst. Biol. Med. 2009;1:202–209. doi: 10.1002/wsbm.10. PubMed DOI PMC

Bahn J.H., Lee J.H., Li G., Greer C., Peng G.D., Xiao X.S. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res. 2012;22:142–150. doi: 10.1101/gr.124107.111. PubMed DOI PMC

Eisenberg E., Li J.B., Levanon E.Y. Sequence based identification of RNA editing sites. RNA Biol. 2010;7:248–252. doi: 10.4161/rna.7.2.11565. PubMed DOI

Daniel C., Lagergren J., Ohman M. RNA editing of non-coding RNA and its role in gene regulation. Biochimie. 2015;117:22–27. doi: 10.1016/j.biochi.2015.05.020. PubMed DOI

Hartner J.C., Walkley C.R., Lu J., Orkin S.H. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 2009;10:109–115. doi: 10.1038/ni.1680. PubMed DOI PMC

Mannion N.M., Greenwood S.M., Young R., Cox S., Brindle J., Read D., Nellaker C., Vesely C., Ponting C.P., McLaughlin P.J., et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 2014;9:1482–1494. doi: 10.1016/j.celrep.2014.10.041. PubMed DOI PMC

Vitali P., Scadden A.D.J. Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis. Nat. Struct. Mol. Biol. 2010;17:1043–1050. doi: 10.1038/nsmb.1864. PubMed DOI PMC

Serra M.J., Smolter P.E., Westhof E. Pronounced instability of tandem IU base pairs in RNA. Nucleic Acids Res. 2004;32:1824–1828. doi: 10.1093/nar/gkh501. PubMed DOI PMC

Lassig C., Hopfner K.P. Discrimination of cytosolic self and non-self RNA by RIG-I-like receptors. J. Biol. Chem. 2017;292:9000–9009. doi: 10.1074/jbc.R117.788398. PubMed DOI PMC

Pan B.C., Mitra S.N., Sun L.Q., Hart D., Sundaralingam M. Crystal structure of an RNA octamer duplex r(CCCIUGGG)2 incorporating tandem I center dot U wobbles. Nucleic Acids Res. 1998;26:5699–5706. doi: 10.1093/nar/26.24.5699. PubMed DOI PMC

Stombaugh J., Zirbel C.L., Westhof E., Leontis N.B. Frequency and isostericity of RNA base pairs. Nucleic Acids Res. 2009;37:2294–2312. doi: 10.1093/nar/gkp011. PubMed DOI PMC

Wright D.J., Rice J.L., Yanker D.M., Znosko B.M. Nearest neighbor parameters for inosine center dot uridine pairs in RNA duplexes. Biochemistry. 2007;46:4625–4634. doi: 10.1021/bi0616910. PubMed DOI

Lehmann K.A., Bass B.L. The importance of internal loops within RNA substrates of ADAR1. J. Mol. Biol. 1999;291:1–13. doi: 10.1006/jmbi.1999.2914. PubMed DOI

Dans P.D., Danilane L., Ivani I., Drasata T., Lankas F., Hospital A., Walther J., Pujagut R.I., Battistini F., Gelpi J.L., et al. Long-timescale dynamics of the Drew-Dickerson dodecamer. Nucleic Acids Res. 2016;44:4052–4066. doi: 10.1093/nar/gkw264. PubMed DOI PMC

Drsata T., Spackova N., Jurecka P., Zgarbova M., Sponer J., Lankas F. Mechanical properties of symmetric and asymmetric DNA A-tracts: Implications for looping and nucleosome positioning. Nucleic Acids Res. 2014;42:7383–7394. doi: 10.1093/nar/gku338. PubMed DOI PMC

Faustino I., Perez A., Orozco M. Toward a consensus view of duplex RNA flexibility. Biophys. J. 2010;99:1876–1885. doi: 10.1016/j.bpj.2010.06.061. PubMed DOI PMC

Liebl K., Drsata T., Lankas F., Lipfert J., Zacharias M. Explaining the striking difference in twist-stretch coupling between DNA and RNA: A comparative molecular dynamics analysis. Nucleic Acids Res. 2015;43:10143–10156. doi: 10.1093/nar/gkv1028. PubMed DOI PMC

Perez A., Noy A., Lankas F., Luque F.J., Orozco M. The relative flexibility of B-DNA and A-RNA duplexes: Database analysis. Nucleic Acids Res. 2004;32:6144–6151. doi: 10.1093/nar/gkh954. PubMed DOI PMC

Reblova K., Sponer J., Lankas F. Structure and mechanical properties of the ribosomal L1 stalk three-way junction. Nucleic Acids Res. 2012;40:6290–6303. doi: 10.1093/nar/gks258. PubMed DOI PMC

Ruzicka M., Kulhanek P., Radova L., Cechova A., Spackova N., Fajkusova L., Reblova K. DNA mutation motifs in the genes associated with inherited diseases. PLoS ONE. 2017;12:e0182377. doi: 10.1371/journal.pone.0182377. PubMed DOI PMC

Darve E., Rodríguez-Gómez D., Pohorille A. Adaptive biasing force method for scalar and vector free energy calculations. J. Chem. Phys. 2008;128:144120. doi: 10.1063/1.2829861. PubMed DOI

Raiteri P., Laio A., Gervasio F., Micheletti C., Parrinello M. Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. J. Phys. Chem. B. 2006;110:3533–3539. doi: 10.1021/jp054359r. PubMed DOI

Henin J., Chipot C. Overcoming free energy barriers using unconstrained molecular dynamics simulations. J. Chem. Phys. 2004;121:2904–2914. doi: 10.1063/1.1773132. PubMed DOI

Case D.A., Babin V., Berryman J.T., Betz R.M., Cai Q., Cerutti D.S., Cheatham T.E., III, Darden T.A., Duke R.E., Gohlke H., et al. Amber 14. University of California; San Francisco, CA, USA: 2014.

Zgarbova M., Otyepka M., Sponer J., Mladek A., Banas P., Cheatham T.E., Jurecka P. Refinement of the Cornell et al. Nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput. 2011;7:2886–2902. doi: 10.1021/ct200162x. PubMed DOI PMC

Aduri R., Psciuk B.T., Saro P., Taniga H., Schlegel H.B., SantaLucia J. AMBER force field parameters for the naturally occurring modified nucleosides in RNA. J. Chem. Theory Comput. 2007;3:1464–1475. doi: 10.1021/ct600329w. PubMed DOI

Joung I.S., Cheatham T.E. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008;112:9020–9041. doi: 10.1021/jp8001614. PubMed DOI PMC

Lavery R., Zakrzewska K., Beveridge D., Bishop T.C., Case D.A., Cheatham T., Dixit S., Jayaram B., Lankas F., Laughton C., et al. A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA. Nucleic Acids Res. 2010;38:299–313. doi: 10.1093/nar/gkp834. PubMed DOI PMC

Pasi M., Maddocks J.H., Beveridge D., Bishop T.C., Case D.A., Cheatham T.C., Dans P.D., Jayaram B., Lankas F., Laughton C., et al. μABC: A systematic microsecond molecular dynamics study of tetranucleotide sequence effects in B-DNA. Nucleic Acids Res. 2014;42:12272–12283. doi: 10.1093/nar/gku855. PubMed DOI PMC

Blanchet C., Pasi M., Zakrzewska K., Lavery R. CURVES plus web server for analyzing and visualizing the helical, backbone and groove parameters of nucleic acid structures. Nucleic Acids Res. 2011;39:W68–W73. doi: 10.1093/nar/gkr316. PubMed DOI PMC

Sherer E.C., Harris S.A., Soliva R., Orozco M., Laughton C.A. Molecular dynamics studies of DNA A-tract structure and flexibility. J. Am. Chem. Soc. 1999;121:5981–5991. doi: 10.1021/ja983715z. DOI

Lu X.J., Shakked Z., Olson W.K. A-form conformational motifs in ligand-bound DNA structures. J. Mol. Biol. 2000;300:819–840. doi: 10.1006/jmbi.2000.3690. PubMed DOI

Kulhánek P., Bouchal T., Durník I., Štěpán J., Fuxreiter M., Mones L., Petřek M., Střelcová Z. PMFLib-A toolkit for free energy calculations. [(accessed on 11 June 2018)];2018 Available online: https://pmflib.ncbr.muni.cz.

Humphrey W., Dalke A., Schulten K. VMD-visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Wood P.A., Allen F.H., Pidcock E. Hydrogen-bond directionality at the donor H atom-analysis of interaction energies and database statistics. Crystengcomm. 2009;11:1563–1571. doi: 10.1039/b902330e. DOI

Roundtree I.A., Evans M.E., Pan T., He C. Dynamic RNA Modifications in gene expression regulation. Cell. 2017;169:1187–1200. doi: 10.1016/j.cell.2017.05.045. PubMed DOI PMC

Jiang Y.Y., Li F.D., Wu J.H., Shi Y.Y., Gong Q.G. Structural insights into substrate selectivity of ribosomal RNA methyltransferase RlmCD. PLoS ONE. 2017;12:e0185226. doi: 10.1371/journal.pone.0185226. PubMed DOI PMC

Jolley E.A., Lewis M., Znosko B.M. A computational model for predicting experimental RNA nearest-neighbor free energy rankings: Inosine center dot uridine pairs. Chem. Phys. Lett. 2015;639:157–160. doi: 10.1016/j.cplett.2015.09.005. PubMed DOI PMC

Durbin A.F., Wang C., Marcotrigiano J., Gehrke L. RNAs containing modified nucleotides fail to trigger RIG-I conformational changes for innate immune signaling. Mbio. 2016;7:e00833-16. doi: 10.1128/mBio.00833-16. PubMed DOI PMC

Xing J.C., Zhang Y.H., Han K., Salem A.H., Sen S.K., Huff C.D., Zhou Q., Kirkness E.F., Levy S., Batzer M.A., et al. Mobile elements create structural variation: Analysis of a complete human genome. Genome Res. 2009;19:1516–1526. doi: 10.1101/gr.091827.109. PubMed DOI PMC

Payer L.M., Steranka J.P., Yang W.R., Kryatova M., Medabalimi S., Ardeljan D., Liu C.H., Boeke J.D., Avramopoulos D., Burns K.H. Structural variants caused by Alu insertions are associated with risks for many human diseases. Proc. Natl. Acad. Sci. USA. 2017;114:E3984–E3992. doi: 10.1073/pnas.1704117114. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Interplays of different types of epitranscriptomic mRNA modifications

. 2021 Oct 15 ; 18 (sup1) : 19-30. [epub] 20210823

Importance of base-pair opening for mismatch recognition

. 2020 Nov 18 ; 48 (20) : 11322-11334.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace