Role of Inosine⁻Uracil Base Pairs in the Canonical RNA Duplexes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29958383
PubMed Central
PMC6070904
DOI
10.3390/genes9070324
PII: genes9070324
Knihovny.cz E-zdroje
- Klíčová slova
- I-U base pairs, adenosine to inosine editing, dsRNA, molecular dynamics simulations,
- Publikační typ
- časopisecké články MeSH
Adenosine to inosine (A⁻I) editing is the most common modification of double-stranded RNA (dsRNA). This change is mediated by adenosine deaminases acting on RNA (ADARs) enzymes with a preference of U>A>C>G for 5′ neighbor and G>C=A>U or G>C>U=A for 3′ neighbor. A⁻I editing occurs most frequently in the non-coding regions containing repetitive elements such as ALUs. It leads to disruption of RNA duplex structure, which prevents induction of innate immune response. We employed standard and biased molecular dynamics (MD) simulations to analyze the behavior of RNA duplexes with single and tandem inosine⁻uracil (I⁻U) base pairs in different sequence context. Our analysis showed that the I⁻U pairs induce changes in base pair and base pair step parameters and have different dynamics when compared with standard canonical base pairs. In particular, the first I⁻U pair from tandem I⁻U/I⁻U systems exhibited increased dynamics depending on its neighboring 5′ base. We discovered that UII sequence, which is frequently edited, has lower flexibility compared with other sequences (AII, GII, CII), hence it only modestly disrupts dsRNA. This might indicate that the UAA motifs in ALUs do not have to be sufficiently effective in preventing immune signaling.
Zobrazit více v PubMed
Bass B.L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 2002;71:817–846. doi: 10.1146/annurev.biochem.71.110601.135501. PubMed DOI PMC
Nishikura K. Functions and regulation of RNA Editing by ADAR Deaminases. Annu. Rev. Biochem. 2010;79:321–349. doi: 10.1146/annurev-biochem-060208-105251. PubMed DOI PMC
Valente L., Nishikura K. ADAR gene family and A-to-I RNA editing: Diverse roles in posttranscriptional gene regulation. Prog. Nucleic Acid Res. Mol. Biol. 2005;79:299–338. doi: 10.1016/S0079-6603(04)80006-6. PubMed DOI
Kim U., Garner T.L., Sanford T., Speicher D., Murray J.M., Nishikura K. Purification and characterization of double-stranded-RNA adenosine-deaminase from bovine nuclear extracts. J. Biol. Chem. 1994;269:13480–13489. PubMed
Melcher T., Maas S., Herb A., Sprengel R., Seeburg P.H., Higuchi M. A mammalian RNA editing enzyme. Nature. 1996;379:460–464. doi: 10.1038/379460a0. PubMed DOI
Oconnell M.A., Krause S., Higuchi M., Hsuan J.J., Totty N.F., Jenny A., Keller W. Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine-deaminase. Mol. Cell. Biol. 1995;15:1389–1397. doi: 10.1128/MCB.15.3.1389. PubMed DOI PMC
Eggington J.M., Greene T., Bass B.L. Predicting sites of ADAR editing in double-stranded RNA. Nat. Commun. 2011;2:319. doi: 10.1038/ncomms1324. PubMed DOI PMC
Matthews M.M., Thomas J.M., Zheng Y.X., Tran K., Phelps K.J., Scott A.I., Havel J., Fisher A.J., Beal P.A. Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nat. Struct. Mol. Biol. 2016;23:426–433. doi: 10.1038/nsmb.3203. PubMed DOI PMC
Alseth I., Dalhus B., Bjoras M. Inosine in DNA and RNA. Curr. Opin. Genet. Dev. 2014;26:116–123. doi: 10.1016/j.gde.2014.07.008. PubMed DOI
Zinshteyn B., Nishikura K. Adenosine-to-inosine RNA editing. Wiley Interdiscip. Rev. Syst. Biol. Med. 2009;1:202–209. doi: 10.1002/wsbm.10. PubMed DOI PMC
Bahn J.H., Lee J.H., Li G., Greer C., Peng G.D., Xiao X.S. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res. 2012;22:142–150. doi: 10.1101/gr.124107.111. PubMed DOI PMC
Eisenberg E., Li J.B., Levanon E.Y. Sequence based identification of RNA editing sites. RNA Biol. 2010;7:248–252. doi: 10.4161/rna.7.2.11565. PubMed DOI
Daniel C., Lagergren J., Ohman M. RNA editing of non-coding RNA and its role in gene regulation. Biochimie. 2015;117:22–27. doi: 10.1016/j.biochi.2015.05.020. PubMed DOI
Hartner J.C., Walkley C.R., Lu J., Orkin S.H. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 2009;10:109–115. doi: 10.1038/ni.1680. PubMed DOI PMC
Mannion N.M., Greenwood S.M., Young R., Cox S., Brindle J., Read D., Nellaker C., Vesely C., Ponting C.P., McLaughlin P.J., et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 2014;9:1482–1494. doi: 10.1016/j.celrep.2014.10.041. PubMed DOI PMC
Vitali P., Scadden A.D.J. Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis. Nat. Struct. Mol. Biol. 2010;17:1043–1050. doi: 10.1038/nsmb.1864. PubMed DOI PMC
Serra M.J., Smolter P.E., Westhof E. Pronounced instability of tandem IU base pairs in RNA. Nucleic Acids Res. 2004;32:1824–1828. doi: 10.1093/nar/gkh501. PubMed DOI PMC
Lassig C., Hopfner K.P. Discrimination of cytosolic self and non-self RNA by RIG-I-like receptors. J. Biol. Chem. 2017;292:9000–9009. doi: 10.1074/jbc.R117.788398. PubMed DOI PMC
Pan B.C., Mitra S.N., Sun L.Q., Hart D., Sundaralingam M. Crystal structure of an RNA octamer duplex r(CCCIUGGG)2 incorporating tandem I center dot U wobbles. Nucleic Acids Res. 1998;26:5699–5706. doi: 10.1093/nar/26.24.5699. PubMed DOI PMC
Stombaugh J., Zirbel C.L., Westhof E., Leontis N.B. Frequency and isostericity of RNA base pairs. Nucleic Acids Res. 2009;37:2294–2312. doi: 10.1093/nar/gkp011. PubMed DOI PMC
Wright D.J., Rice J.L., Yanker D.M., Znosko B.M. Nearest neighbor parameters for inosine center dot uridine pairs in RNA duplexes. Biochemistry. 2007;46:4625–4634. doi: 10.1021/bi0616910. PubMed DOI
Lehmann K.A., Bass B.L. The importance of internal loops within RNA substrates of ADAR1. J. Mol. Biol. 1999;291:1–13. doi: 10.1006/jmbi.1999.2914. PubMed DOI
Dans P.D., Danilane L., Ivani I., Drasata T., Lankas F., Hospital A., Walther J., Pujagut R.I., Battistini F., Gelpi J.L., et al. Long-timescale dynamics of the Drew-Dickerson dodecamer. Nucleic Acids Res. 2016;44:4052–4066. doi: 10.1093/nar/gkw264. PubMed DOI PMC
Drsata T., Spackova N., Jurecka P., Zgarbova M., Sponer J., Lankas F. Mechanical properties of symmetric and asymmetric DNA A-tracts: Implications for looping and nucleosome positioning. Nucleic Acids Res. 2014;42:7383–7394. doi: 10.1093/nar/gku338. PubMed DOI PMC
Faustino I., Perez A., Orozco M. Toward a consensus view of duplex RNA flexibility. Biophys. J. 2010;99:1876–1885. doi: 10.1016/j.bpj.2010.06.061. PubMed DOI PMC
Liebl K., Drsata T., Lankas F., Lipfert J., Zacharias M. Explaining the striking difference in twist-stretch coupling between DNA and RNA: A comparative molecular dynamics analysis. Nucleic Acids Res. 2015;43:10143–10156. doi: 10.1093/nar/gkv1028. PubMed DOI PMC
Perez A., Noy A., Lankas F., Luque F.J., Orozco M. The relative flexibility of B-DNA and A-RNA duplexes: Database analysis. Nucleic Acids Res. 2004;32:6144–6151. doi: 10.1093/nar/gkh954. PubMed DOI PMC
Reblova K., Sponer J., Lankas F. Structure and mechanical properties of the ribosomal L1 stalk three-way junction. Nucleic Acids Res. 2012;40:6290–6303. doi: 10.1093/nar/gks258. PubMed DOI PMC
Ruzicka M., Kulhanek P., Radova L., Cechova A., Spackova N., Fajkusova L., Reblova K. DNA mutation motifs in the genes associated with inherited diseases. PLoS ONE. 2017;12:e0182377. doi: 10.1371/journal.pone.0182377. PubMed DOI PMC
Darve E., Rodríguez-Gómez D., Pohorille A. Adaptive biasing force method for scalar and vector free energy calculations. J. Chem. Phys. 2008;128:144120. doi: 10.1063/1.2829861. PubMed DOI
Raiteri P., Laio A., Gervasio F., Micheletti C., Parrinello M. Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. J. Phys. Chem. B. 2006;110:3533–3539. doi: 10.1021/jp054359r. PubMed DOI
Henin J., Chipot C. Overcoming free energy barriers using unconstrained molecular dynamics simulations. J. Chem. Phys. 2004;121:2904–2914. doi: 10.1063/1.1773132. PubMed DOI
Case D.A., Babin V., Berryman J.T., Betz R.M., Cai Q., Cerutti D.S., Cheatham T.E., III, Darden T.A., Duke R.E., Gohlke H., et al. Amber 14. University of California; San Francisco, CA, USA: 2014.
Zgarbova M., Otyepka M., Sponer J., Mladek A., Banas P., Cheatham T.E., Jurecka P. Refinement of the Cornell et al. Nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput. 2011;7:2886–2902. doi: 10.1021/ct200162x. PubMed DOI PMC
Aduri R., Psciuk B.T., Saro P., Taniga H., Schlegel H.B., SantaLucia J. AMBER force field parameters for the naturally occurring modified nucleosides in RNA. J. Chem. Theory Comput. 2007;3:1464–1475. doi: 10.1021/ct600329w. PubMed DOI
Joung I.S., Cheatham T.E. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008;112:9020–9041. doi: 10.1021/jp8001614. PubMed DOI PMC
Lavery R., Zakrzewska K., Beveridge D., Bishop T.C., Case D.A., Cheatham T., Dixit S., Jayaram B., Lankas F., Laughton C., et al. A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA. Nucleic Acids Res. 2010;38:299–313. doi: 10.1093/nar/gkp834. PubMed DOI PMC
Pasi M., Maddocks J.H., Beveridge D., Bishop T.C., Case D.A., Cheatham T.C., Dans P.D., Jayaram B., Lankas F., Laughton C., et al. μABC: A systematic microsecond molecular dynamics study of tetranucleotide sequence effects in B-DNA. Nucleic Acids Res. 2014;42:12272–12283. doi: 10.1093/nar/gku855. PubMed DOI PMC
Blanchet C., Pasi M., Zakrzewska K., Lavery R. CURVES plus web server for analyzing and visualizing the helical, backbone and groove parameters of nucleic acid structures. Nucleic Acids Res. 2011;39:W68–W73. doi: 10.1093/nar/gkr316. PubMed DOI PMC
Sherer E.C., Harris S.A., Soliva R., Orozco M., Laughton C.A. Molecular dynamics studies of DNA A-tract structure and flexibility. J. Am. Chem. Soc. 1999;121:5981–5991. doi: 10.1021/ja983715z. DOI
Lu X.J., Shakked Z., Olson W.K. A-form conformational motifs in ligand-bound DNA structures. J. Mol. Biol. 2000;300:819–840. doi: 10.1006/jmbi.2000.3690. PubMed DOI
Kulhánek P., Bouchal T., Durník I., Štěpán J., Fuxreiter M., Mones L., Petřek M., Střelcová Z. PMFLib-A toolkit for free energy calculations. [(accessed on 11 June 2018)];2018 Available online: https://pmflib.ncbr.muni.cz.
Humphrey W., Dalke A., Schulten K. VMD-visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Wood P.A., Allen F.H., Pidcock E. Hydrogen-bond directionality at the donor H atom-analysis of interaction energies and database statistics. Crystengcomm. 2009;11:1563–1571. doi: 10.1039/b902330e. DOI
Roundtree I.A., Evans M.E., Pan T., He C. Dynamic RNA Modifications in gene expression regulation. Cell. 2017;169:1187–1200. doi: 10.1016/j.cell.2017.05.045. PubMed DOI PMC
Jiang Y.Y., Li F.D., Wu J.H., Shi Y.Y., Gong Q.G. Structural insights into substrate selectivity of ribosomal RNA methyltransferase RlmCD. PLoS ONE. 2017;12:e0185226. doi: 10.1371/journal.pone.0185226. PubMed DOI PMC
Jolley E.A., Lewis M., Znosko B.M. A computational model for predicting experimental RNA nearest-neighbor free energy rankings: Inosine center dot uridine pairs. Chem. Phys. Lett. 2015;639:157–160. doi: 10.1016/j.cplett.2015.09.005. PubMed DOI PMC
Durbin A.F., Wang C., Marcotrigiano J., Gehrke L. RNAs containing modified nucleotides fail to trigger RIG-I conformational changes for innate immune signaling. Mbio. 2016;7:e00833-16. doi: 10.1128/mBio.00833-16. PubMed DOI PMC
Xing J.C., Zhang Y.H., Han K., Salem A.H., Sen S.K., Huff C.D., Zhou Q., Kirkness E.F., Levy S., Batzer M.A., et al. Mobile elements create structural variation: Analysis of a complete human genome. Genome Res. 2009;19:1516–1526. doi: 10.1101/gr.091827.109. PubMed DOI PMC
Payer L.M., Steranka J.P., Yang W.R., Kryatova M., Medabalimi S., Ardeljan D., Liu C.H., Boeke J.D., Avramopoulos D., Burns K.H. Structural variants caused by Alu insertions are associated with risks for many human diseases. Proc. Natl. Acad. Sci. USA. 2017;114:E3984–E3992. doi: 10.1073/pnas.1704117114. PubMed DOI PMC
Interplays of different types of epitranscriptomic mRNA modifications
Importance of base-pair opening for mismatch recognition