Importance of base-pair opening for mismatch recognition

. 2020 Nov 18 ; 48 (20) : 11322-11334.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33080020

Mismatch repair is a highly conserved cellular pathway responsible for repairing mismatched dsDNA. Errors are detected by the MutS enzyme, which most likely senses altered mechanical property of damaged dsDNA rather than a specific molecular pattern. While the curved shape of dsDNA in crystallographic MutS/DNA structures suggests the role of DNA bending, the theoretical support is not fully convincing. Here, we present a computational study focused on a base-pair opening into the minor groove, a specific base-pair motion observed upon interaction with MutS. Propensities for the opening were evaluated in terms of two base-pair parameters: Opening and Shear. We tested all possible base pairs in anti/anti, anti/syn and syn/anti orientations and found clear discrimination between mismatches and canonical base-pairs only for the opening into the minor groove. Besides, the discrimination gap was also confirmed in hotspot and coldspot sequences, indicating that the opening could play a more significant role in the mismatch recognition than previously recognized. Our findings can be helpful for a better understanding of sequence-dependent mutability. Further, detailed structural characterization of mismatches can serve for designing anti-cancer drugs targeting mismatched base pairs.

Zobrazit více v PubMed

Baarends W.M., van der Laan R., Grootegoed J.A.. DNA repair mechanisms and gametogenesis. Reproduction. 2001; 121:31–39. PubMed

Fuss J.O., Cooper P.K.. DNA repair: dynamic defenders against cancer and aging. PLoS Biol. 2006; 4:e203. PubMed PMC

Ruzicka M., Kulhanek P., Radova L., Cechova A., Spackova N., Fajkusova L., Reblova K.. DNA mutation motifs in the genes associated with inherited diseases. Plos One. 2017; 12:e0182377. PubMed PMC

Ruzicka M., Soucek R., Kulhanek P., Radova L., Fajkusova L., Reblova K.. Bending of DNA duplexes with mutation motifs. DNA Res. 2019; 26:341–352. PubMed PMC

Granzhan A., Kotera N., Teulade-Fichou M.-P.. Finding needles in a basestack: recognition of mismatched base pairs in DNA by small molecules. Chem. Soc. Rev. 2014; 43:3630–3665. PubMed

Yuan Y., Zhao Y., Chen L., Wu J., Chen G., Li S., Zou J., Chen R., Wang J., Jiang F. et al. .. Selective tumor cell death induced by irradiated riboflavin through recognizing DNA G–T mismatch. Nucleic Acids Res. 2017; 45:8676–8683. PubMed PMC

Boyle K.M., Barton J.K.. A family of rhodium complexes with selective toxicity toward mismatch repair-deficient cancers. J. Am. Chem. Soc. 2018; 140:5612–5624. PubMed PMC

Boyle K.M., Nano A., Day C., Barton J.K.. Cellular target of a rhodium metalloinsertor is the DNA base pair mismatch. Chem. – Eur. J. 2019; 25:3014–3019. PubMed

Warren J.J., Pohlhaus T.J., Changela A., Iyer R.R., Modrich P.L., Beese L.S.. Structure of the human muts alpha DNA lesion recognition complex. Mol. Cell. 2007; 26:579–592. PubMed

Lamers M.H., Perrakis A., Enzlin J.H., Winterwerp H.H.K., de Wind N., Sixma T.K.. The crystal structure of DNA mismatch repair protein MutS binding to a G·T mismatch. Nature. 2000; 407:711–717. PubMed

Lamers M.H., Winterwerp H.H.K., Sixma T.K.. The alternating ATPase domains of MutS control DNA mismatch repair. EMBO J. 2003; 22:746–756. PubMed PMC

Natrajan G., Lamers M.H., Enzlin J.H., Winterwerp H.H.K., Perrakis A., Sixma T.K.. Structures of Escherichia coli DNA mismatch repair enzyme MutS in complex with different mismatches: a common recognition mode for diverse substrates. Nucleic Acids Res. 2003; 31:4814–4821. PubMed PMC

Lamers M.H., Gerogijevic D., Lebbink J.H., Winterwerp H.H.K., Agianian B., de Wind N., Sixma T.K.. ATP increases the affinity between MutS ATPase Domains - Implications for ATP hydrolysis and conformational changes. J. Biol. Chem. 2004; 279:43879–43885. PubMed

Lebbink J.H.G., Georgijevic D., Natrajan G., Fish A., Winterwerp H.H.K., Sixma T.K., de Wind N.. Dual role of muts glutamate 38 in DNA mismatch discrimination and in the authorization of repair. EMBO J. 2006; 25:409–419. PubMed PMC

Lebbink J.H.G., Fish A., Reumer A., Natrajan G., Winterwerp H.H.K., Sixma T.K.. Magnesium coordination controls the molecular switch function of DNA mismatch repair protein MutS. J. Biol. Chem. 2010; 285:13131–13141. PubMed PMC

Groothuizen F.S., Fish A., Petoukhov M.V., Reumer A., Manelyte L., Winterwerp H.H.K., Marinus M.G., Lebbink J.H.G., Svergun D.I., Friedhoff P. et al. .. Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation. Nucleic Acids Res. 2013; 41:8166–8181. PubMed PMC

Liu Y., Prasad R., Beard W.A., Kedar P.S., Hou E.W., Shock D.D., Wilson S.H.. Coordination of steps in Single-nucleotide base excision repair mediated by Apurinic/Apyrimidinic Endonuclease 1 and DNA polymerase β. J. Biol. Chem. 2007; 282:13532–13541. PubMed PMC

Wallace S.S. Base excision repair: a critical player in many games. DNA Repair. 2014; 19:14–26. PubMed PMC

Edifizi D., Schumacher B.. Genome instability in development and aging: insights from nucleotide excision repair in humans, mice, and worms. Biomolecules. 2015; 5:1855–1869. PubMed PMC

Fujii S., Kono H., Takenaka S., Go N., Sarai A.. Sequence-dependent DNA deformability studied using molecular dynamics simulations. Nucleic Acids Res. 2007; 35:6063–6074. PubMed PMC

Schaaper R. Base selection, proofreading, and mismatch repair during DNA-Replication. J. Biol. Chem. 1993; 268:23762–23765. PubMed

Jiricny J. Postreplicative mismatch repair. Cold Spring Harb. Perspect. Biol. 2013; 5:a012633. PubMed PMC

Peltomäki P. DNA mismatch repair and cancer. Mutat. Res. Mutat. Res. 2001; 488:77–85. PubMed

Wang H., Yang Y., Schofield M.J., Du C., Fridman Y., Lee S.D., Larson E.D., Drummond J.T., Alani E., Hsieh P. et al. .. DNA bending and unbending by MutS govern mismatch recognition and specificity. Proc. Natl. Acad. Sci. U.S.A. 2003; 100:14822–14827. PubMed PMC

Iyer R.R., Pluciennik A., Burdett V., Modrich P.L.. DNA mismatch repair: functions and mechanisms. Chem. Rev. 2006; 106:302–323. PubMed

Curuksu J., Zakrzewska K., Zacharias M.. Magnitude and direction of DNA bending induced by screw-axis orientation: influence of sequence, mismatches and abasic sites. Nucleic Acids Res. 2008; 36:2268–2283. PubMed PMC

Curuksu J., Zacharias M., Lavery R., Zakrzewska K.. Local and global effects of strong DNA bending induced during molecular dynamics simulations. Nucleic Acids Res. 2009; 37:3766–3773. PubMed PMC

Sharma M., Predeus A.V., Mukherjee S., Feig M.. DNA bending propensity in the presence of base Mismatches: Implications for DNA repair. J. Phys. Chem. B. 2013; 117:6194–6205. PubMed PMC

Imhof P., Zahran M.. The effect of a G:T mispair on the dynamics of DNA. Plos One. 2013; 8:e53305. PubMed PMC

Kingsland A., Maibaum L.. DNA base pair mismatches induce structural changes and alter the Free-Energy landscape of base flip. J. Phys. Chem. B. 2018; 122:12251–12259. PubMed

Lindahl V., Villa A., Hess B.. Sequence dependency of canonical base pair opening in the DNA double helix. PLOS Comput. Biol. 2017; 13:e1005463. PubMed PMC

Lu X.-J., Olson W.K.. 3DNA: A software package for the analysis, rebuilding and visualization of Three-Dimensional nucleic acid structures. Nucleic Acids Res. 2003; 31:5108–5121. PubMed PMC

Lu X.-J., Olson W.K.. 3DNA: A versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nat. Protoc. 2008; 3:1213–1227. PubMed PMC

Macke T.J., Case D.A.. Leontis N.B., SantaLucia J.. Modeling Unusual Nucleic Acid Structures. Molecular Modeling of Nucleic Acids. 1998; 682:Washington: Amer Chemical Soc; 379–393.

Rossetti G., Dans P.D., Gomez-Pinto I., Ivani I., Gonzalez C., Orozco M.. The structural impact of DNA mismatches. Nucleic Acids Res. 2015; 43:4309–4321. PubMed PMC

Case D.A., Babin V., Berryman J.T., Betz R.M., Cai Q., Cerutti D.S., Cheatham T.E. III, Darden T.A., Duke R.E., Gohlke H. et al. .. AMBER 16. 2016; San Francisco: University of California.

Salomon-Ferrer R., Götz A.W., Poole D., Le Grand S., Walker R.C.. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh ewald. J. Chem. Theory Comput. 2013; 9:3878–3888. PubMed

Ivani I., Dans P.D., Noy A., Perez A., Faustino I., Hospital A., Walther J., Andrio P., Goni R., Balaceanu A. et al. .. Parmbsc1: a refined force field for DNA simulations. Nat. Methods. 2016; 13:55–58. PubMed PMC

Zgarbova M., Sponer J., Otyepka M., Cheatham T.E., Galindo-Murillo R., Jurecka P.. Refinement of the sugar-phosphate backbone torsion beta for AMBER force fields improves the description of Z- and B-DNA. J. Chem. Theory Comput. 2015; 11:5723–5736. PubMed

Foloppe N., Jr A.D.M.. All-Atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 2000; 21:86–104.

MacKerell A.D., Banavali N.K.. All-Atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. J. Comput. Chem. 2000; 21:105–120.

Hart K., Foloppe N., Baker C.M., Denning E.J., Nilsson L., MacKerell A.D.. Optimization of the CHARMM additive force field for DNA: improved treatment of the BI/BII conformational equilibrium. J. Chem. Theory Comput. 2012; 8:348–362. PubMed PMC

Dans P.D., Danilāne L., Ivani I., Dršata T., Lankaš F., Hospital A., Walther J., Pujagut R.I., Battistini F., Gelpí J.L. et al. .. Long-timescale dynamics of the Drew–Dickerson dodecamer. Nucleic Acids Res. 2016; 44:4052–4066. PubMed PMC

Galindo-Murillo R., Robertson J.C., Zgarbova M., Sponer J., Otyepka M., Jurecka P., Cheatham T.E.. Assessing the current state of amber force field modifications for DNA. J. Chem. Theory Comput. 2016; 12:4114–4127. PubMed PMC

Dans P.D., Ivani I., Hospital A., Portella G., Gonzalez C., Orozco M.. How accurate are accurate Force-Fields for B-DNA. Nucleic Acids Res. 2017; 45:4217–4230. PubMed PMC

Kruse H., Banas P., Sponer J.. Investigations of stacked DNA Base-Pair Steps: Highly accurate stacking interaction energies, energy decomposition, and Many-Body stacking effects. J. Chem. Theory Comput. 2019; 15:95–115. PubMed

Minhas V., Sun T., Mirzoev A., Korolev N., Lyubartsev A.P., Nordenskiöld L.. Modeling DNA flexibility: comparison of force fields from atomistic to multiscale levels. J. Phys. Chem. B. 2020; 124:38–49. PubMed

Jorgensen W., Chandrasekhar J., Madura J., Impey R., Klein M.. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983; 79:935.

Joung I.S., Cheatham T.E.. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008; 112:9020–9041. PubMed PMC

Kulhánek P., Bouchal T., Durník I., Štěpán J., Fuxreiter M., Mones L., Petřek M., Střelcová Z.. PMFLib - A Toolkit for Free Energy Calculations. 2018; Brno: Masaryk University.

Comer J., Gumbart J.C., Hénin J., Lelièvre T., Pohorille A., Chipot C.. The adaptive biasing force Method: Everything you always wanted to know but were afraid to ask. J. Phys. Chem. B. 2015; 119:1129–1151. PubMed PMC

Darve E., Rodríguez-Gómez D., Pohorille A.. Adaptive biasing force method for scalar and vector free energy calculations. J. Chem. Phys. 2008; 128:144120. PubMed

Raiteri P., Laio A., Gervasio F., Micheletti C., Parrinello M.. Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. J. Phys. Chem. B. 2006; 110:3533–3539. PubMed

Minoukadeh K., Chipot C., Lelièvre T.. Potential of mean force calculations: a multiple-walker adaptive biasing force approach. J. Chem. Theory Comput. 2010; 6:1008–1017.

Stecher T., Bernstein N., Csányi G.. Free energy surface reconstruction from umbrella samples using gaussian process regression. J. Chem. Theory Comput. 2014; 10:4079–4097. PubMed

Mones L., Bernstein N., Csányi G.. Exploration, sampling, and reconstruction of free energy surfaces with gaussian process regression. J. Chem. Theory Comput. 2016; 12:5100–5110. PubMed

Rasmussen C.E., Williams C.K.I.. Model selection and adaptation of hyperparameters. Gaussian Processes for Machine Learning. 2006; MIT Press; Adaptive Computation and Machine Learning.

Shirts M.R., Chodera J.D.. Statistically optimal analysis of samples from multiple equilibrium states. J. Chem. Phys. 2008; 129:124105. PubMed PMC

Flyvbjerg H., Petersen H.G.. Error estimates on averages of correlated data. J. Chem. Phys. 1989; 91:461–466.

Okui R. Asymptotically unbiased estimation of autocovariances and autocorrelations with long panel data. Econom. Theory. 2010; 26:1263–1304.

Chipot C., Pohorille A.. Free Energy Calculations. 2007; Berlin: Theory and Applications in Chemistry and Biology Springer.

Roe D.R., Cheatham T.E.. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013; 9:3084–3095. PubMed

Kulhánek P., Štěpán J., Oľha J., Růžička M., Illík V.. CATs - Conversion and Analysis Tools. 2016; Brno: Masaryk University.

DeLano W.L. The PyMOL Molecular Graphics System. 2002; CA, USA: DeLano Scientific, Palo Alto.

Olson W.K., Bansal M., Burley S.K., Dickerson R.E., Gerstein M., Harvey S.C., Heinemann U., Lu X.-J., Neidle S., Shakked Z. et al. .. A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 2001; 313:229–237. PubMed

Lavery R., Moakher M., Maddocks J.H., Petkeviciute D., Zakrzewska K.. Conformational analysis of nucleic acids Revisited: Curves+. Nucleic Acids Res. 2009; 37:5917–5929. PubMed PMC

Lu X.-J., Olson W.K.. Characterization of base pair geometry. Comput. Crystallogr. Newsl. 2016; 7:6–9.

Várnai P., Lavery R.. Base flipping in DNA: pathways and energetics studied with molecular dynamic simulations. J. Am. Chem. Soc. 2002; 124:7272–7273. PubMed

Kramer B., Kramer W., Fritz H.-J.. Different Base/Base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of E. coli. Cell. 1984; 38:879–887. PubMed

Dohet C., Wagner R., Radman M.. Repair of defined single base-pair mismatches in Escherichia-coli. Proc. Natl. Acad. Sci. U.S.A. 1985; 82:503–505. PubMed PMC

Brown J., Brown T., Fox K.R.. Affinity of Mismatch-Binding protein MutS for heteroduplexes containing different mismatches. Biochem. J. 2001; 354:627–633. PubMed PMC

Gorman J., Wang F., Redding S., Plys A.J., Fazio T., Wind S., Alani E.E., Greene E.C.. Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair. Proc. Natl. Acad. Sci. U.S.A. 2012; 109:E3074–E3083. PubMed PMC

Hura G.L., Tsai C.-L., Claridge S.A., Mendillo M.L., Smith J.M., Williams G.J., Mastroianni A.J., Alivisatos A.P., Putnam C.D., Kolodner R.D. et al. .. DNA conformations in mismatch repair probed in solution by X-ray scattering from gold nanocrystals. Proc. Natl. Acad. Sci. U.S.A. 2013; 110:17308–17313. PubMed PMC

Lavery R., Sklenar H.. Defining the structure of irregular nucleic-acids - conventions and principles. J. Biomol. Struct. Dyn. 1989; 6:655–667. PubMed

Lankaš F., Šponer J., Langowski J., Cheatham T.E.. DNA deformability at the base pair level. J. Am. Chem. Soc. 2004; 126:4124–4125. PubMed

Spackova N., Reblova K.. Role of Inosine-Uracil base pairs in the canonical RNA duplexes. Genes. 2018; 9:324. PubMed PMC

Peguero-Tejada A., van der Vaart A.. Biasing simulations of DNA base pair parameters with application to propellor twisting in AT/AT, AA/TT, and AC/GT steps and their uracil analogs. J. Chem. Inf. Model. 2017; 57:85–92. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

c-kit2 G-quadruplex stabilized via a covalent probe: exploring G-quartet asymmetry

. 2021 Sep 07 ; 49 (15) : 8947-8960.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...