Bending of DNA duplexes with mutation motifs
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
31230075
PubMed Central
PMC6704406
DOI
10.1093/dnares/dsz013
PII: 5522131
Knihovny.cz E-zdroje
- Klíčová slova
- DNA bending, Muts protein, free energy calculations, hotspots–coldspots, mutations,
- MeSH
- CpG ostrůvky MeSH
- DNA chemie genetika MeSH
- lidé MeSH
- mutace * MeSH
- nukleotidové motivy * MeSH
- simulace molekulární dynamiky * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
Mutations can be induced by environmental factors but also arise spontaneously during DNA replication or due to deamination of methylated cytosines at CpG dinucleotides. Sites where mutations occur with higher frequency than would be expected by chance are termed hotspots while sites that contain mutations rarely are termed coldspots. Mutations are permanently scanned and repaired by repair systems. Among them, the mismatch repair targets base pair mismatches, which are discriminated from canonical base pairs by probing altered elasticity of DNA. Using biased molecular dynamics simulations, we investigated the elasticity of coldspots and hotspots motifs detected in human genes associated with inherited disorders, and also of motifs with Czech population hotspots and de novo mutations. Main attention was paid to mutations leading to G/T and A+/C pairs. We observed that hotspots without CpG/CpHpG sequences are less flexible than coldspots, which indicates that flexible sequences are more effectively repaired. In contrary, hotspots with CpG/CpHpG sequences exhibited increased flexibility as coldspots. Their mutability is more likely related to spontaneous deamination of methylated cytosines leading to C > T mutations, which are primarily targeted by base excision repair. We corroborated conclusions based on computer simulations by measuring melting curves of hotspots and coldspots containing G/T mismatch.
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
Centre of Molecular Biology and Gene Therapy University Hospital Brno Brno Czech Republic
Department of Condensed Matter Physics Faculty of Science Masaryk University Brno Czech Republic
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Roach J.C., Glusman G., Smit A.F.A., et al.2010, Analysis of genetic inheritance in a family quartet by whole-genome sequencing, Science, 328, 636–9. PubMed PMC
Lynch M. 2010, Rate, molecular spectrum, and consequences of human mutation, Proc. Natl. Acad. Sci. USA, 107, 961–8. PubMed PMC
Nabel C.S., Manning S.A., Kohli R.M.. 2012, The curious chemical biology of cytosine: deamination, methylation, and oxidation as modulators of genomic potential, ACS Chem. Biol., 7, 20–30. PubMed PMC
Lewis C.A., Crayle J., Zhou S.T., Swanstrom R., Wolfenden R.. 2016, Cytosine deamination and the precipitous decline of spontaneous mutation during Earth’s history, Proc. Natl. Acad. Sci. USA, 113, 8194–9. PubMed PMC
Koag M.C., Nam K., Lee S.. 2014, The spontaneous replication error and the mismatch discrimination mechanisms of human DNA polymerase beta, Nucleic Acids Res., 42, 11233–45. PubMed PMC
Iyer R.R., Pluciennik A., Burdett V., Modrich P.L.. 2006, DNA mismatch repair: functions and mechanisms, Chem. Rev., 106, 302–23. PubMed
Rogozin I.B., Pavlov Y.I.. 2003, Theoretical analysis of mutation hotspots and their DNA sequence context specificity, Mut. Res., 544, 65–85. PubMed
Cooper D.N., Bacolla A., Ferec C., Vasquez K.M., Kehrer-Sawatzki H., Chen J.M.. 2011, On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease, Hum. Mutat., 32, 1075–99. PubMed PMC
Youssoufian H., Kazazian H.H., Phillips D.G., Aronis S., Tsiftis G., Brown V.A., Antonarakis S.E.. 1986, Recurrent mutations in hemophilia-a give evidence for Cpg mutation hotspots, Nature, 324, 380–2. PubMed
Walsh C.P., Xu G.L.. 2006, Cytosine methylation and DNA repair, Curr. Top. Microbiol. Immunol., 301, 283–315. PubMed
Jacobs A.L., Schar P.. 2012, DNA glycosylases: in DNA repair and beyond, Chromosoma, 121, 1–20. PubMed PMC
Cooper D.N., Krawczak M.. 1993, Human gene mutation. BIOS Scientific Publishers: Oxford.
Neuberger M.S., Harris R.S., Di Noia J., Petersen-Mahrt S.K.. 2003, Immunity through DNA deamination, Trends Biochem. Sci., 28, 305–12. PubMed
Ollila J., Lappalainen I., Vihinen M.. 1996, Sequence specificity in CpG mutation hotspots, FEBS Lett., 396, 119–22. PubMed
Bird A.P. 1980, DNA methylation and the frequency of Cpg in animal DNA, Nucleic Acids Res., 8, 1499–504. PubMed PMC
Hodgkinson A., Eyre-Walker A.. 2011, Variation in the mutation rate across mammalian genomes, Nat. Rev. Genet., 12, 756–66. PubMed
Cooper D.N., Mort M., Stenson P.D., Ball E.V., Chuzhanova N.A.. 2010, Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides, Hum. Genomics, 4, 406–10. PubMed PMC
Chuzhanova N.A., Anassis E.J., Ball E.V., Krawczak M., Cooper D.N.. 2003, Meta-analysis of indels causing human genetic disease: mechanisms of mutagenesis and the role of local DNA sequence complexity, Hum. Mutat., 21, 28–44. PubMed
Modrich P. 1991, Mechanisms and biological effects of mismatch repair, Annu. Rev. Genet., 25, 229–53. PubMed
Cho M., Han M.S., Ban C.. 2008, Detection of mismatched DNAs via the binding affinity of MutS using a gold nanoparticle-based competitive colorimetric method, Chem. Commun., 4573–5. PubMed
Brown J., Brown T., Fox K.R.. 2001, Affinity of mismatch-binding protein MutS for heteroduplexes containing different mismatches, Biochem. J., 354, 627–33. PubMed PMC
Gorman J., Chowdhury A., Surtees J.A., Shimada J., Reichman D.R., Alani E., Greene E.C.. 2007, Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6, Mol. Cell, 28, 359–70. PubMed PMC
Qiu R., DeRocco V.C., Harris C., Sharma A., Hingorani M.M., Erie D.A., Weninger K.R.. 2012, Large conformational changes in MutS during DNA scanning, mismatch recognition and repair signalling, EMBO J., 31, 2528–40. PubMed PMC
Jeong C., Cho W.-K., Song K.-M., et al.2011, MutS switches between two fundamentally distinct clamps during mismatch repair, Nat. Struct. Mol. Biol., 18, 379–U174. PubMed PMC
Groothuizen F.S., Winkler I., Cristovao M., et al.2015, MutS/MutL crystal structure reveals that the MutS sliding clamp loads MutL onto DNA, Elife, 4, e06744. PubMed PMC
Hingorani M.M. 2016, Mismatch binding, ADP-ATP exchange and intramolecular signaling during mismatch repair, DNA Repair (Amst.), 38, 24–31. PubMed PMC
Lamers M.H., Perrakis A., Enzlin J.H., Winterwerp H.H.K., de Wind N., Sixma T.K.. 2000, The crystal structure of DNA mismatch repair protein MutS binding to a G center dot T mismatch, Nature, 407, 711–7. PubMed
Obmolova G., Ban C., Hsieh P., Yang W.. 2000, Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA, Nature, 407, 703–10. PubMed
Wang H., Yang Y., Schofield M.J., et al.2003, DNA bending and unbending by MutS govern mismatch recognition and specificity, Proc. Natl. Acad. Sci. USA, 100, 14822–7. PubMed PMC
Warren J.J., Pohlhaus T.J., Changela A., Iyer R.R., Modrich P.L., Beese L.S.. 2007, Structure of the human MutS alpha DNA lesion recognition complex, Mol. Cell, 26, 579–92. PubMed
Perez A., Lankas F., Luque F.J., Orozco M.. 2008, Towards a molecular dynamics consensus view of B-DNA flexibility, Nucleic Acids Res., 36, 2379–94. PubMed PMC
Kriegel F., Matek C., Drsata T., et al.2018, The temperature dependence of the helical twist of DNA, Nucleic Acids Res., 46, 7998–8009. PubMed PMC
Drsata T., Spackova N., Jurecka P., Zgarbova M., Sponer J., Lankas F.. 2014, Mechanical properties of symmetric and asymmetric DNA A-tracts: implications for looping and nucleosome positioning, Nucleic Acids Res., 42, 7383–94. PubMed PMC
Hospital A., Faustino I., Collepardo-Guevara R., Gonzalez C., Gelpi J.L., Orozco M.. 2013, NAFlex: a web server for the study of nucleic acid flexibility, Nucleic Acids Res., 41, W47–W55. PubMed PMC
Sharma M., Predeus A.V., Mukherjee S., Feig M.. 2013, DNA bending propensity in the presence of base mismatches: implications for DNA repair, J. Phys. Chem. B, 117, 6194–205. PubMed PMC
Curuksu J., Zacharias M., Lavery R., Zakrzewska K.. 2009, Local and global effects of strong DNA bending induced during molecular dynamics simulations, Nucleic Acids Res., 37, 3766–73. PubMed PMC
Curuksu J., Zakrzewska K., Zacharias M.. 2008, Magnitude and direction of DNA bending induced by screw-axis orientation: influence of sequence, mismatches and abasic sites, Nucleic Acids Res., 36, 2268–83. PubMed PMC
Rossetti G., Dans P.D., Gomez-Pinto I., Ivani I., Gonzalez C., Orozco M.. 2015, The structural impact of DNA mismatches, Nucleic Acids Res., 43, 4309–21. PubMed PMC
Ruzicka M., Kulhanek P., Radova L., et al. 2017, DNA mutation motifs in the genes associated with inherited diseases, PLos One, 12, e0182377. PubMed PMC
Buckova H., Noskova H., Borska R., et al.2016, Autosomal recessive congenital ichthyoses in the Czech Republic, Br. J. Dermatol., 174, 405–7. PubMed
Chien Y.H., Chiang S.C., Huang A., et al.2004, Mutation spectrum in Taiwanese patients with phenylalanine hydroxylase deficiency and a founder effect for the R241C mutation, Hum. Mutat., 23, 206. PubMed
Chiu Y.H., Chang Y.C., Chang Y.H., et al.2012, Mutation spectrum of and founder effects affecting the PTS gene in East Asian populations, J. Hum. Genet., 57, 145–52. PubMed
Darve E., Rodríguez-Gómez D., Pohorille A.. 2008, Adaptive biasing force method for scalar and vector free energy calculations, J. Chem. Phys., 128, 144120. PubMed
Keller I., Bensasson D., Nichols R.A.. 2007, Transition-transversion bias is not universal: a counter example from grasshopper pseudogenes, Plos Genet., 3, 185–91. PubMed PMC
Case D.A., Babin V., Berryman J.T., et al.2014, AMBER 14, University of California: San Francisco.
Jorgensen W., Chandrasekhar J., Madura J., Impey R., Klein M.. 1983, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79, 926–35.
Joung I.S., Cheatham T.E.. 2008, Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations, J. Phys. Chem. B, 112, 9020–41. PubMed PMC
Ivani I., Dans P.D., Noy A., et al.2016, Parmbsc1: a refined force field for DNA simulations, Nat. Methods, 13, 55–8. PubMed PMC
Zhou H.Q., Hintze B.J., Kimsey I.J., et al.2015, New insights into Hoogsteen base pairs in DNA duplexes from a structure-based survey, Nucleic Acids Res., 43, 3420–33. PubMed PMC
Johnson S.J., Beese L.S.. 2004, Structures of mismatch replication errors observed in a DNA polymerase, Cell, 116, 803–16. PubMed
Skelly J.V., Edwards K.J., Jenkins T.C., Neidle S.. 1993, Crystal-structure of an oligonucleotide duplex containing G.G base-pairs - influence of mispairing on DNA backbone conformation, Proc. Natl. Acad. Sci. USA, 90, 804–8. PubMed PMC
Raiteri P., Laio A., Gervasio F., Micheletti C., Parrinello M.. 2006, Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics, J. Phys. Chem. B, 110, 3533–9. PubMed
Kulhanek P., Bouchal T., Durnik I., et al.2018, PMFLib - a toolkit for free energy calculations. https://pmflib.ncbr.muni.cz
Humphrey W., Dalke A., Schulten K.. 1996, VMD - visual molecular dynamics, J. Mol. Graph., 14, 33–8. PubMed
Blanchet C., Pasi M., Zakrzewska K., Lavery R.. 2011, CURVES plus web server for analyzing and visualizing the helical, backbone and groove parameters of nucleic acid structures, Nucleic Acids Res., 39, W68–W73. PubMed PMC
Lu X.J., Olson W.K.. 2003, 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures, Nucleic Acids Res., 31, 5108–21. PubMed PMC
Štěpán J., Kulhánek P., Lenčo M., Střelcová Z., Křenek A., Koča J.. 2013, Nemesis - a molecular modeling package, J. Cheminformatics, 5, P12–P12.
Sherer E.C., Harris S.A., Soliva R., Orozco M., Laughton C.A.. 1999, Molecular dynamics studies of DNA A-tract structure and flexibility, J. Am. Chem. Soc., 121, 5981–91.
Isaacs R.J., Rayens W.S., Spielmann H.P.. 2002, Structural differences in the NOE-derived structure of G-T mismatched DNA relative to normal DNA are correlated with differences in C-13 relaxation-based internal dynamics, J. Mol. Biol., 319, 191–207. PubMed
La Rosa G., Zacharias M.. 2016, Global deformation facilitates flipping of damaged 8-oxo-guanine and guanine in DNA, Nucleic Acids Res., 44, 9591–9. PubMed PMC
Lebbink J.H.G., Fish A., Reumer A., Natrajan G., Winterwerp H.H.K., Sixma T.K.. 2010, Magnesium coordination controls the molecular switch function of DNA mismatch repair protein MutS, J. Biol. Chem., 285, 13131–41. PubMed PMC
Natrajan G., Lamers M.H., Enzlin J.H., Winterwerp H.H.K., Perrakis A., Sixma T.K.. 2003, Structures of Escherichia coli DNA mismatch repair enzyme MutS in complex with different mismatches: a common recognition mode for diverse substrates, Nucleic Acids Res., 31, 4814–21. PubMed PMC
Fujii S., Kono H., Takenaka S., Go N., Sarai A.. 2007, Sequence-dependent DNA deformability studied using molecular dynamics simulations, Nucleic Acids Res., 35, 6063–74. PubMed PMC
Lankas F. 2004, DNA sequence-dependent deformability - insights from computer simulations, Biopolymers, 73, 327–39, PubMed
Olson W.K., Gorin A.A., Lu X.J., Hock L.M., Zhurkin V.B.. 1998, DNA sequence-dependent deformability deduced from protein-DNA crystal complexes, Proc. Natl. Acad. Sci. USA, 95, 11163–8. PubMed PMC
Stehlikova K., Skalova D., Zidkova J., et al.2014, Autosomal recessive limb-girdle muscular dystrophies in the Czech Republic, BMC Neurol., 14. PubMed PMC
Tichy L., Freiberger T., Zapletalova P., Soska V., Ravcukova B., Fajkusova L.. 2012, The molecular basis of familial hypercholesterolemia in the Czech Republic: spectrum of LDLR mutations and genotype-phenotype correlations, Atherosclerosis, 223, 401–8. PubMed
Reblova K., Hruba Z., Prochazkova D., Pazdirkova R., Pouchla S., Fajkusova L.. 2013, Hyperphenylalaninemia in the Czech Republic: genotype-phenotype correlations and in silico analysis of novel missense mutations, Clin. Chim. Acta, 419, 1–10. PubMed
Gojova L., Jansova E., Kulm M., Pouchla S., Kozak L.. 2008, Genotyping microarray as a novel approach for the detection of ATP7B gene mutations in patients with Wilson disease, Clin. Genet., 73, 441–52. PubMed
Skalova D., Zidkova J., Vohanka S., et al. 2013, CLCN1 Mutations in Czech patients with myotonia congenita, in silico analysis of novel and known mutations in the human dimeric skeletal muscle chloride channel, Plos One, 8, e82549. PubMed PMC
Grodecka L., Hujova P., Kramarek M., et al.2017, Systematic analysis of splicing defects in selected primary immunodeficiencies-related genes, Clin. Immunol., 180, 33–44. PubMed
Pigg M., Bygum A., Gånemo A., et al.2016, Spectrum of autosomal recessive congenital ichthyosis in scandinavia: clinical characteristics and novel and recurrent mutations in 132 patients, Acta Derm. Venerol., 96, 932–7. PubMed
Murayama K., Tanaka Y., Toda T., Kashida H., Asanuma H.. 2013, Highly stable duplex formation by artificial nucleic acids acyclic threoninol nucleic acid (aTNA) and serinol nucleic acid (SNA) with acyclic scaffolds, Chem. Eur. J., 19, 14151–8. PubMed
Perez A., Noy A., Lankas F., Luque F.J., Orozco M.. 2004, The relative flexibility of B-DNA and A-RNA duplexes: database analysis, Nucleic Acids Res., 32, 6144–51. PubMed PMC
Faustino I., Perez A., Orozco M.. 2010, Toward a consensus view of duplex RNA flexibility, Biophys. J., 99, 1876–85. PubMed PMC
Importance of base-pair opening for mismatch recognition