CLCN1 mutations in Czech patients with myotonia congenita, in silico analysis of novel and known mutations in the human dimeric skeletal muscle chloride channel
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24349310
PubMed Central
PMC3859631
DOI
10.1371/journal.pone.0082549
PII: PONE-D-13-34690
Knihovny.cz E-zdroje
- MeSH
- chloridové kanály chemie genetika metabolismus MeSH
- dospělí MeSH
- fenotyp MeSH
- konformace proteinů MeSH
- kosterní svaly metabolismus MeSH
- lidé MeSH
- missense mutace MeSH
- mladiství MeSH
- mladý dospělý MeSH
- molekulární modely MeSH
- multimerizace proteinu MeSH
- mutace * MeSH
- myotonia congenita diagnóza genetika MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- chloridové kanály MeSH
- CLC-1 channel MeSH Prohlížeč
Myotonia congenita (MC) is a genetic disease caused by mutations in the skeletal muscle chloride channel gene (CLCN1) encoding the skeletal muscle chloride channel (ClC-1). Mutations of CLCN1 result in either autosomal dominant MC (Thomsen disease) or autosomal recessive MC (Becker disease). The ClC-1 protein is a homodimer with a separate ion pore within each monomer. Mutations causing recessive myotonia most likely affect properties of only the mutant monomer in the heterodimer, leaving the wild type monomer unaffected, while mutations causing dominant myotonia affect properties of both subunits in the heterodimer. Our study addresses two points: 1) molecular genetic diagnostics of MC by analysis of the CLCN1 gene and 2) structural analysis of mutations in the homology model of the human dimeric ClC-1 protein. In the first part, 34 different types of CLCN1 mutations were identified in 51 MC probands (14 mutations were new). In the second part, on the basis of the homology model we identified the amino acids which forming the dimer interface and those which form the Cl(-) ion pathway. In the literature, we searched for mutations of these amino acids for which functional analyses were performed to assess the correlation between localisation of a mutation and occurrence of a dominant-negative effect (corresponding to dominant MC). This revealed that both types of mutations, with and without a dominant-negative effect, are localised at the dimer interface while solely mutations without a dominant-negative effect occur inside the chloride channel. This work is complemented by structural analysis of the homology model which provides elucidation of the effects of mutations, including a description of impacts of newly detected missense mutations.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Child Neurology University Hospital Brno Brno Czech Republic
Department of Neurology University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Lorenz C, Meyer-Kleine C, Steinmeyer K, Koch MC, Jentsch TJ (1994) Genomic organization of the human muscle chloride channel CIC-1 and analysis of novel mutations leading to Becker-type myotonia. Hum Mol Genet 3: 941-946. doi:10.1093/hmg/3.6.941. PubMed: 7951242. PubMed DOI
Lehmann-Horn F, Rüdel R (1996) Molecular pathophysiology of voltage-gated ion channels. Rev Physiol Biochem Pharmacol 128: 195-268. PubMed: 8791722. PubMed
Pusch M (2002) Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum Mutat 19: 423-434. doi:10.1002/humu.10063. PubMed: 11933197. PubMed DOI
Middleton RE, Pheasant DJ, Miller C (1994) Purification, reconstitution, and subunit composition of a voltage-gated chloride channel from Torpedo electroplax. Biochemistry 33: 13189-13198. doi:10.1021/bi00249a005. PubMed: 7947726. PubMed DOI
Middleton RE, Pheasant DJ, Miller C (1996) Homodimeric architecture of a ClC-type chloride ion channel. Nature 383: 337-340. doi:10.1038/383337a0. PubMed: 8848046. PubMed DOI
Ludewig U, Pusch M, Jentsch TJ (1996) Two physically distinct pores in the dimeric ClC-0 chloride channel. Nature 383: 340-343. doi:10.1038/383340a0. PubMed: 8848047. PubMed DOI
Saviane C, Conti F, Pusch M (1999) The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia. J Gen Physiol 113: 457-468. doi:10.1085/jgp.113.3.457. PubMed: 10051520. PubMed DOI PMC
Kubisch C, Schmidt-Rose T, Fontaine B, Bretag AH, Jentsch TJ (1998) ClC-1 chloride channel mutations in myotonia congenita: variable penetrance of mutations shifting the voltage dependence. Hum Mol Genet 7: 1753-1760. doi:10.1093/hmg/7.11.1753. PubMed: 9736777. PubMed DOI
Wollnik B, Kubisch C, Steinmeyer K, Pusch M (1997) Identification of functionally important regions of the muscular chloride channel CIC-1 by analysis of recessive and dominant myotonic mutations. Hum Mol Genet 6: 805-811. doi:10.1093/hmg/6.5.805. PubMed: 9158157. PubMed DOI
Weinreich F, Jentsch TJ (2001) Pores formed by single subunits in mixed dimers of different CLC chloride channels. J Biol Chem 276: 2347-2353. doi:10.1074/jbc.M005733200. PubMed: 11035003. PubMed DOI
Aromataris EC, Rychkov GY, Bennetts B, Hughes BP, Bretag AH et al. (2001) Fast and slow gating of CLC-1: differential effects of 2-(4-chlorophenoxy) propionic acid and dominant negative mutations. Mol Pharmacol 60: 200-208. PubMed: 11408615. PubMed
Duffield M, Rychkov G, Bretag A, Roberts M (2003) Involvement of helices at the dimer interface in ClC-1 common gating. J Gen Physiol 121: 149-161. doi:10.1085/jgp.20028741. PubMed: 12566541. PubMed DOI PMC
Lossin C, George AL Jr (2008) Myotonia congenita. Adv Genet 63: 25-55. PubMed: 19185184. PubMed
Zhang J, Bendahhou S, Sanguinetti MC, Ptácek LJ (2000) Functional consequences of chloride channel gene (CLCN1) mutations causing myotonia congenita. Neurology 54: 937-942. doi:10.1212/WNL.54.4.937. PubMed: 10690989. PubMed DOI
Mindell JA, Maduke M, Miller C, Grigorieff N (2001) Projection structure of a ClC-type chloride channel at 6.5 A resolution. Nature 409: 219-223. doi:10.1038/35051631. PubMed: 11196649. PubMed DOI
Wu FF, Ryan A, Devaney J, Warnstedt M, Korade-Mirnics Z et al. (2002) Novel CLCN1 mutations with unique clinical and electrophysiological consequences. Brain 125: 2392-2407. doi:10.1093/brain/awf246. PubMed: 12390967. PubMed DOI
Ma L, Rychkov GY, Hughes BP, Bretag AH (2008) Analysis of carboxyl tail function in the skeletal muscle Cl- channel hClC-1. Biochem J 413: 61-69. doi:10.1042/BJ20071489. PubMed: 18321245. PubMed DOI
Ma L, Rychkov GY, Bretag AH (2009) Functional study of cytoplasmic loops of human skeletal muscle chloride channel, hClC-1. Int J Biochem Cell Biol 41: 1402-1409. doi:10.1016/j.biocel.2008.12.006. PubMed: 19135547. PubMed DOI
Cederholm JM, Rychkov GY, Bagley CJ, Bretag AH (2010) Inter-subunit communication and fast gate integrity are important for common gating in hClC-1. Int J Biochem Cell Biol 42: 1182-1188. doi:10.1016/j.biocel.2010.04.004. PubMed: 20398785. PubMed DOI
Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415: 287-294. doi:10.1038/415287a. PubMed: 11796999. PubMed DOI
Feng L, Campbell EB, Hsiung Y, MacKinnon R (2010) Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle. Science 330: 635-641. doi:10.1126/science.1195230. PubMed: 20929736. PubMed DOI PMC
Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5: 725-738. doi:10.1038/nprot.2010.5. PubMed: 20360767. PubMed DOI PMC
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33-38. doi:10.1016/0263-7855(96)00018-5. PubMed: 8744570. PubMed DOI
Berka K, Hanak O, Sehnal D, Banas P, Navratilova V, et al. (2012) MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels. Nucleic Acids Res 40: W222-W227. PubMed PMC
Réblová K, Hrubá Z, Procházková D, Pazdírková R, Pouchlá S et al. (2013) Hyperphenylalaninemia in the Czech Republic: Genotype-phenotype correlations and in silico analysis of novel missense mutations. Clin Chim Acta 419: 1-10. doi:10.1016/j.cca.2013.01.006. PubMed: 23357515. PubMed DOI
Chothia C (1976) The Nature of the Accessible and Buried Surfaces in Proteins. J Mol Biol 105: 1-12. doi:10.1016/0022-2836(76)90191-1. PubMed: 994183. PubMed DOI
Zamyatnin AA (1972) Protein Volume in Solution. Prog Biophys Mol Biol 24: 107-123. doi:10.1016/0079-6107(72)90005-3. PubMed: 4566650. PubMed DOI
Bordo D, Argos P (1991) Suggestions for "safe" residue substitutions in site-directed mutagenesis. J Mol Biol 217: 721-729. doi:10.1016/0022-2836(91)90528-E. PubMed: 2005621. PubMed DOI
Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185: 862-864. doi:10.1126/science.185.4154.862. PubMed: 4843792. PubMed DOI
Ulzi G, Lecchi M, Sansone V, Redaelli E, Corti E et al. (2012) Myotonia congenita: novel mutations in CLCN1 gene and functional characterizations in Italian patients. J Neurol Sci 318: 65-71. doi:10.1016/j.jns.2012.03.024. PubMed: 22521272. PubMed DOI
Gao F, Ma FC, Yuan ZF, Yang CW, Li HF et al. (2010) Novel chloride channel gene mutations in two unrelated Chinese families with myotonia congenita. Neurol India 58: 743-746. doi:10.4103/0028-3886.72163. PubMed: 21045501. PubMed DOI
Colding-Jørgensen E, DunØ OM, Schwartz M, Vissing J (2003) Decrement of compound muscle action potential is related to mutation type in myotonia congenita. Muscle Nerve 27: 449-455. doi:10.1002/mus.10347. PubMed: 12661046. PubMed DOI
Lehmann-Horn F, Mailänder V, Heine R, George AL (1995) Myotonia levior is a chloride channel disorder. Hum Mol Genet 4: 1397-1402. doi:10.1093/hmg/4.8.1397. PubMed: 7581380. PubMed DOI
Pusch M, Steinmeyer K, Koch MC, Jentsch TJ (1995) Mutations in dominant human myotonia congenita drastically alter the voltage dependence of the CIC-1 chloride channel. Neuron 15: 1455-1463. doi:10.1016/0896-6273(95)90023-3. PubMed: 8845168. PubMed DOI
Koty PP, Pegoraro E, Hobson G, Marks HG, Turel A et al. (1996) Myotonia and the muscle chloride channel: dominant mutations show variable penetrance and founder effect. Neurology 47: 963-968. doi:10.1212/WNL.47.4.963. PubMed: 8857727. PubMed DOI
Meyer-Kleine C, Steinmeyer K, Ricker K, Jentsch TJ, Koch MC (1995) Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia. Am J Hum Genet 57: 1325-1334. PubMed: 8533761. PubMed PMC
Dutzler R, Campbell EB, MacKinnon R (2003) Gating the selectivity filter in ClC chloride channels. Science 300: 108-112. doi:10.1126/science.1082708. PubMed: 12649487. PubMed DOI
Accardi A, Pusch M (2000) Fast and slow gating relaxations in the muscle chloride channel CLC-1. J Gen Physiol 116: 433-444. doi:10.1085/jgp.116.3.433. PubMed: 10962018. PubMed DOI PMC
Fialho D, Schorge S, Pucovska U, Davies NP, Labrum R et al. (2007) Chloride channel myotonia: exon 8 hot-spot for dominant-negative interactions. Brain 130: 3265-3274. doi:10.1093/brain/awm248. PubMed: 17932099. PubMed DOI
Mazón MJ, Barros F, De la Peña P, Quesada JF, Escudero A et al. (2012) Screening for mutations in Spanish families with myotonia. Functional analysis of novel mutations in CLCN1 gene. Neuromuscul Disord 22: 231-243. doi:10.1016/j.nmd.2011.10.013. PubMed: 22094069. PubMed DOI
Burgunder JM, Huifang S, Beguin P, Baur R, Eng CS et al. (2008) Novel chloride channel mutations leading to mild myotonia among Chinese. Neuromuscul Disord 18: 633-640. doi:10.1016/j.nmd.2008.05.007. PubMed: 18579381. PubMed DOI
George AL Jr, Sloan-Brown K, Fenichel GM, Mitchell GA, Spiegel R et al. (1994) Nonsense and missense mutations of the muscle chloride channel gene in patients with myotonia congenita. Hum Mol Genet 3: 2071-2072. PubMed: 7874130. PubMed
Steinmeyer K, Lorenz C, Pusch M, Koch MC, Jentsch TJ (1994) Multimeric structure of ClC-1 chloride channel revealed by mutations in dominant myotonia congenita (Thomsen). EMBO J 13: 737-743. PubMed: 8112288. PubMed PMC
Fahlke C, Beck CL, George AL Jr (1997) A mutation in autosomal dominant myotonia congenita affects pore properties of the muscle chloride channel. Proc Natl Acad Sci U S A 94: 2729-2734. doi:10.1073/pnas.94.6.2729. PubMed: 9122265. PubMed DOI PMC
Richman DP, Yu Y, Lee TT, Tseng PY, Yu WP et al. (2012) Dominantly inherited myotonia congenita resulting from a mutation that increases open probability of the muscle chloride channel CLC-1. Neuromolecular Med 14: 328-337. doi:10.1007/s12017-012-8190-1. PubMed: 22790975. PubMed DOI PMC
Javadpour MM, Eilers M, Groesbeek M, Smith SO (1999) Helix packing in polytopic membrane proteins: Role of glycine in transmembrane helix association. Biophys J 77: 1609-1618. doi:10.1016/S0006-3495(99)77009-8. PubMed: 10465772. PubMed DOI PMC
Ivanova EA, Dadali EL, Fedotov VP, Kurbatov SA, Rudenskaya GE, et al. (2012) The spectrum of CLCN1 gene mutations in patients with nondystrophic Thomsen's and Becker's myotonias. Russ J Genet + 48: 952-961 PubMed
Sun C, Tranebjaerg L, Torbergsen T, Holmgren G, Van Ghelue M (2001) Spectrum of CLCN1 mutations in patients with myotonia congenita in Northern Scandinavia. Eur J Hum Genet 9: 903-909. doi:10.1038/sj.ejhg.5200736. PubMed: 11840191. PubMed DOI
Trip J, Drost G, Verbove DJ, van der Kooi AJ, Kuks JBM et al. (2008) In tandem analysis of CLCN1 and SCN4A greatly enhances mutation detection in families with non-dystrophic myotonia. Eur J Hum Genet 16: 921-929. doi:10.1038/ejhg.2008.39. PubMed: 18337730. PubMed DOI
Brugnoni R, Kapetis D, Imbrici P, Pessia M, Canioni E et al. (2013) A large cohort of myotonia congenita probands: novel mutations and a high-frequency mutation region in exons 4 and 5 of the CLCN1 gene. J Hum Genet 58: 581-587. doi:10.1038/jhg.2013.58. PubMed: 23739125. PubMed DOI
Bending of DNA duplexes with mutation motifs
Inherited ichthyoses: molecular causes of the disease in Czech patients
Computational study of missense mutations in phenylalanine hydroxylase