Virtual Reality for Patient Education about Hypertension: A Randomized Pilot Study

. 2023 Nov 29 ; 10 (12) : . [epub] 20231129

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38132649

Grantová podpora
IGS2021 Educational and Research Institute AGEL, o.p.s.

BACKGROUND: Hypertension challenges arise in part from poor adherence due to inadequate patient education. VR offers immersive learning to improve hypertension knowledge. OBJECTIVE: To compare VR education with traditional verbal education to improve hypertension knowledge. METHODS: In this randomised trial, 182 patients with hypertension were assigned to receive either traditional physician-led education (n = 88) or VR education (n = 94) with equivalent content. The VR group experienced a 3D video using Oculus Quest 2 headsets. Knowledge was assessed post-intervention using a 29-item questionnaire. The primary outcome was the objective score. Subjective satisfaction and responder characteristics were secondary outcomes. RESULTS: Median objective scores were significantly higher for VR (14, IQR 3) versus traditional education (10, IQR 5), p < 0.001, indicating superior hypertension knowledge acquisition with VR. Subjective satisfaction was high in both groups. Participants were categorized into low (first quartile) and medium-high (second to fourth quartiles) responders based on their scores. Low responders had a significantly higher prevalence of older women than medium-high responders (57% vs. 40% female, p = 0.024; 68 vs. 65 years), p = 0.036). CONCLUSIONS: VR outperforms traditional education. Tailoring to groups such as older women can optimise learning.

Zobrazit více v PubMed

Kearney P.M., Whelton M., Reynolds K., Muntner P., Whelton P.K., He J. Global burden of hypertension: Analysis of worldwide data. Lancet. 2005;365:217–223. doi: 10.1016/S0140-6736(05)17741-1. PubMed DOI

Kearney P.M., Whelton M., Reynolds K., Whelton P.K., He J. Worldwide prevalence of hypertension: A systematic review. J. Hypertens. 2004;22:11. doi: 10.1097/00004872-200401000-00003. PubMed DOI

Collins M.K., Ding V.Y., Ball R.L., Dolce D.L., Henderson J.M., Halpern C.H. Novel application of virtual reality in patient engagement for deep brain stimulation: A pilot study. Brain Stimul. Basic Transl. Clin. Res. Neuromodul. 2018;11:935–937. doi: 10.1016/j.brs.2018.03.012. PubMed DOI

Castellanos J.M., Yefimov A., Dang P.N. 360-Degree Virtual Reality Consultation for the Structural Heart Disease Patient. Struct. Heart. 2020;4:230–235. doi: 10.1080/24748706.2020.1748776. DOI

Louis R., Cagigas J., Brant-Zawadzki M., Ricks M. Impact of Neurosurgical Consultation With 360-Degree Virtual Reality Technology on Patient Engagement and Satisfaction. Neurosurg. Pract. 2020;1:okaa004. doi: 10.1093/neuopn/okaa004. DOI

Perin A., Galbiati T.F., Ayadi R., Gambatesa E., Orena E.F., Riker N.I., Silberberg H., Sgubin D., Meling T.R., DiMeco F. Informed consent through 3D virtual reality: A randomized clinical trial. Acta Neurochir. 2021;163:301–308. doi: 10.1007/s00701-020-04303-y. PubMed DOI

Radianti J., Majchrzak T.A., Fromm J., Wohlgenannt I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ. 2020;147:103778. doi: 10.1016/j.compedu.2019.103778. DOI

Barteit S., Lanfermann L., Bärnighausen T., Neuhann F., Beiersmann C. Augmented, mixed, and virtual reality-based head-mounted devices for medical education: Systematic review. JMIR Serious Games. 2021;9:e29080. doi: 10.2196/29080. PubMed DOI PMC

Pandrangi V.C., Gaston B., Appelbaum N.P., Albuquerque F.C., Levy M.M., Larson R.A. The Application of Virtual Reality in Patient Education. Ann. Vasc. Surg. 2019;59:184–189. doi: 10.1016/j.avsg.2019.01.015. PubMed DOI

van der Kruk S.R., Zielinski R., MacDougall H., Hughes-Barton D., Gunn K.M. Virtual reality as a patient education tool in healthcare: A scoping review. Patient Educ. Couns. 2022;105:1928–1942. doi: 10.1016/j.pec.2022.02.005. PubMed DOI

van der Linde-van den Bor M., Slond F., Liesdek O.C.D., Suyker W.J., Weldam S.W.M. The use of virtual reality in patient education related to medical somatic treatment: A scoping review. Patient Educ. Couns. 2022;105:1828–1841. doi: 10.1016/j.pec.2021.12.015. PubMed DOI

Tait A.R., Connally L., Doshi A., Johnson A., Skrzpek A., Grimes M., Becher A., Choi J.E., Weber M. Development and evaluation of an augmented reality education program for pediatric research. J. Clin. Transl. Res. 2020;5:96–101. PubMed PMC

Wake N., Rosenkrantz A.B., Huang R., Park K.U., Wysock J.S., Taneja S.S., Huang W.C., Sodickson D.K., Chandarana H. Patient-specific 3D printed and augmented reality kidney and prostate cancer models: Impact on patient education. 3D Print. Med. 2019;5:4. doi: 10.1186/s41205-019-0041-3. PubMed DOI PMC

Iordache D.D., Pribeanu C., Balog A. Influence of specific AR capabilities on the learning effectiveness and efficiency. Stud. Inform. Control. 2012;21:233–240. doi: 10.24846/v21i3y201201. DOI

Di Serio Á., Ibáñez M.B., Kloos C.D. Impact of an augmented reality system on students’ motivation for a visual art course. Comput. Educ. 2013;68:586–596. doi: 10.1016/j.compedu.2012.03.002. DOI

Dunleavy M., Dede C., Mitchell R. Affordances and Limitations of Immersive Participatory Augmented Reality Simulations for Teaching and Learning. J. Sci. Educ. Technol. 2008;18:7–22. doi: 10.1007/s10956-008-9119-1. DOI

Küçük S., Kapakin S., Göktaş Y. Learning anatomy via mobile augmented reality: Effects on achievement and cognitive load. Anat. Sci. Educ. 2016;9:411–421. doi: 10.1002/ase.1603. PubMed DOI

Wilson T.D. Role of Image and Cognitive Load in Anatomical Multimedia. In: Chan L.K., Pawlina W., editors. Teaching Anatomy: A Practical Guide. Springer; Cham, Switzerland: 2020. pp. 301–311. DOI

Zhu E., Hadadgar A., Masiello I., Zary N. Augmented reality in healthcare education: An integrative review. PeerJ. 2014;2:e469. doi: 10.7717/peerj.469. PubMed DOI PMC

Kamphuis C., Barsom E., Schijven M., Christoph N. Augmented reality in medical education? Perspect. Med. Educ. 2014;3:300–311. doi: 10.1007/S40037-013-0107-7. PubMed DOI PMC

Smith A.F., Mishra K. Interaction between anaesthetists, their patients, and the anaesthesia team. Br. J. Anaesth. 2010;105:60–68. doi: 10.1093/bja/aeq132. PubMed DOI

Ha J.F., Longnecker N. Doctor-patient communication: A review. Ochsner J. 2010;10:38–43. PubMed PMC

Balsam P., Borodzicz S., Malesa K., Puchta D., Tymińska A., Ozierański K., Kołtowski L., Peller M., Grabowski M., Filipiak K.J., et al. OCULUS study: Virtual reality-based education in daily clinical practice. Cardiol. J. 2019;26:260–264. doi: 10.5603/CJ.a2017.0154. PubMed DOI PMC

Chang S.-L., Kuo M.-J., Lin Y.-J., Chen S.-A., Yang Y.-Y., Cheng H.-M., Yang L.-Y., Kao S.-Y., Lee F.-Y. Virtual reality informative aids increase residents’ atrial fibrillation ablation procedures-related knowledge and patients’ satisfaction. J. Chin. Med. Assoc. 2021;84:25–32. doi: 10.1097/JCMA.0000000000000464. PubMed DOI

de Rooij I.J.M., van de Port I.G.L., Meijer J.W.G. Effect of Virtual Reality Training on Balance and Gait Ability in Patients with Stroke: Systematic Review and Meta-Analysis. Phys. Ther. 2016;96:1905–1918. doi: 10.2522/ptj.20160054. PubMed DOI

Gao J., Liu S., Zhang S., Wang Y., Liang Z., Feng Q., Hu M., Zhang Q. Pilot Study of a Virtual Reality Educational Intervention for Radiotherapy Patients Prior to Initiating Treatment. J. Cancer Educ. 2022;37:578–585. doi: 10.1007/s13187-020-01848-5. PubMed DOI

Han S.H., Park J.W., Choi S.I., Kim J.Y., Lee H., Yoo H.J., Ryu J.H. Effect of Immersive Virtual Reality Education Before Chest Radiography on Anxiety and Distress Among Pediatric Patients: A Randomized Clinical Trial. JAMA Pediatr. 2019;173:1026–1031. doi: 10.1001/jamapediatrics.2019.3000. PubMed DOI PMC

Tait A.R., Voepel-Lewis T., Zikmund-Fisher B.J., Fagerlin A. Presenting research risks and benefits to parents: Does format matter? Anesth. Analg. 2010;111:718–723. doi: 10.1213/ANE.0b013e3181e8570a. PubMed DOI PMC

Ruggeri M., Lasalvia A., Bonetto C. A new generation of pragmatic trials of psychosocial interventions is needed. Epidemiol. Psychiatr. Sci. 2013;22:111–117. doi: 10.1017/S2045796013000127. PubMed DOI PMC

Schulz K.F., Grimes D.A. Sample size slippages in randomised trials: Exclusions and the lost and wayward. Lancet. 2002;359:781–785. doi: 10.1016/S0140-6736(02)07882-0. PubMed DOI

Charles P., Giraudeau B., Dechartres A., Baron G., Ravaud P. Reporting of sample size calculation in randomised controlled trials: Review. BMJ. 2009;338:b1732. doi: 10.1136/bmj.b1732. PubMed DOI PMC

Laver K.E., Lange B., George S., Deutsch J.E., Saposnik G., Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2017;11:CD008349. doi: 10.1002/14651858.CD008349.pub4. PubMed DOI PMC

Madary M., Metzinger T.K. Real virtuality: A code of ethical conduct. Recommendations for good scientific practice and the consumers of VR-technology. Front. Robot. AI. 2016;3:3. doi: 10.3389/frobt.2016.00003. DOI

Barsom E.Z., Graafland M., Schijven M.P. Systematic review on the effectiveness of augmented reality applications in medical training. Surg. Endosc. 2016;30:4174–4183. doi: 10.1007/s00464-016-4800-6. PubMed DOI PMC

Kyaw B.M., Saxena N., Posadzki P., Vseteckova J., Nikolaou C.K., George P.P., Divakar U., Masiello I., Kononowicz A.A., Zary N., et al. Virtual Reality for Health Professions Education: Systematic Review and Meta-Analysis by the Digital Health Education Collaboration. J. Med. Internet Res. 2019;21:e12959. doi: 10.2196/12959. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...