Deep Visual Proteomics maps proteotoxicity in a genetic liver disease

. 2025 Jun ; 642 (8067) : 484-491. [epub] 20250416

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40240610

Grantová podpora
L40 TR001095 NCATS NIH HHS - United States

Odkazy

PubMed 40240610
PubMed Central PMC12158776
DOI 10.1038/s41586-025-08885-4
PII: 10.1038/s41586-025-08885-4
Knihovny.cz E-zdroje

Protein misfolding diseases, including α1-antitrypsin deficiency (AATD), pose substantial health challenges, with their cellular progression still poorly understood1-3. We use spatial proteomics by mass spectrometry and machine learning to map AATD in human liver tissue. Combining Deep Visual Proteomics (DVP) with single-cell analysis4,5, we probe intact patient biopsies to resolve molecular events during hepatocyte stress in pseudotime across fibrosis stages. We achieve proteome depth of up to 4,300 proteins from one-third of a single cell in formalin-fixed, paraffin-embedded tissue. This dataset reveals a potentially clinically actionable peroxisomal upregulation that precedes the canonical unfolded protein response. Our single-cell proteomics data show α1-antitrypsin accumulation is largely cell-intrinsic, with minimal stress propagation between hepatocytes. We integrated proteomic data with artificial intelligence-guided image-based phenotyping across several disease stages, revealing a late-stage hepatocyte phenotype characterized by globular protein aggregates and distinct proteomic signatures, notably including elevated TNFSF10 (also known as TRAIL) amounts. This phenotype may represent a critical disease progression stage. Our study offers new insights into AATD pathogenesis and introduces a powerful methodology for high-resolution, in situ proteomic analysis of complex tissues. This approach holds potential to unravel molecular mechanisms in various protein misfolding disorders, setting a new standard for understanding disease progression at the single-cell level in human tissue.

Zobrazit více v PubMed

Greene, C. M. et al. α1-Antitrypsin deficiency. PubMed

Strnad, P., McElvaney, N. G. & Lomas, D. A. Alpha1-antitrypsin deficiency. PubMed

Hipp, M. S., Park, S.-H. & Hartl, F. U. Proteostasis impairment in protein-misfolding and -aggregation diseases. PubMed

Mund, A. et al. Deep Visual Proteomics defines single-cell identity and heterogeneity. PubMed PMC

Rosenberger, F. A. et al. Spatial single-cell mass spectrometry defines zonation of the hepatocyte proteome. PubMed PMC

Petrosius, V. et al. Evaluating the capabilities of the Astral mass analyzer for single-cell proteomics. Preprint at

Guzman, U. H. et al. Ultra-fast label-free quantification and comprehensive proteome coverage with narrow-window data-independent acquisition. PubMed PMC

Guo, T., Steen, J. A. & Mann, M. Mass-spectrometry-based proteomics: from single cells to clinical applications. PubMed

Nordmann, T. M. et al. Spatial proteomics identifies JAKi as treatment for a lethal skin disease. PubMed PMC

Chiti, F. & Dobson, C. M. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. PubMed

Selkoe, D. J. & Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. PubMed PMC

Goedert, M., Jakes, R. & Spillantini, M. G. The synucleinopathies: twenty years on. PubMed PMC

Lomas, D. A., Evans, D. L., Finch, J. T. & Carrell, R. W. The mechanism of Z alpha 1-antitrypsin accumulation in the liver. PubMed

Brantly, M., Nukiwa, T. & Crystal, R. G. Molecular basis of alpha-1-antitrypsin deficiency. PubMed

Clark, V. C. et al. Clinical and histologic features of adults with alpha-1 antitrypsin deficiency in a non-cirrhotic cohort. PubMed

Lindblad, D., Blomenkamp, K. & Teckman, J. Alpha-1-antitrypsin mutant Z protein content in individual hepatocytes correlates with cell death in a mouse model. PubMed

Rudnick, D. A. et al. Analyses of hepatocellular proliferation in a mouse model of alpha-1-antitrypsin deficiency. PubMed

Chambers, J. E. et al. Z-α1-antitrypsin polymers impose molecular filtration in the endoplasmic reticulum after undergoing phase transition to a solid state. PubMed PMC

Segeritz, C.-P. et al. hiPSC hepatocyte model demonstrates the role of unfolded protein response and inflammatory networks in α1-antitrypsin deficiency. PubMed PMC

Fromme, M., Schneider, C. V., Trautwein, C., Brunetti-Pierri, N. & Strnad, P. Alpha-1 antitrypsin deficiency: a re-surfacing adult liver disorder. PubMed

Zhang, Y. et al. LMAN1-MCFD2 complex is a cargo receptor for the ER-Golgi transport of α1-antitrypsin. PubMed PMC

Schmidt, B. Z. & Perlmutter, D. H. Grp78, Grp94, and Grp170 interact with alpha1-antitrypsin mutants that are retained in the endoplasmic reticulum. PubMed

Werder, R. B. et al. Adenine base editing reduces misfolded protein accumulation and toxicity in alpha-1 antitrypsin deficient patient iPSC-hepatocytes. PubMed PMC

Spivak, I. et al. Alpha‐1 antitrypsin inclusions sequester GRP78 in a bile acid–inducible manner. PubMed PMC

Niu, L. et al. Noninvasive proteomic biomarkers for alcohol-related liver disease. PubMed PMC

Cho, S.-H. et al. Lgals3bp suppresses colon inflammation and tumorigenesis through the downregulation of TAK1-NF-κB signaling. PubMed PMC

Khodayari, N. et al. Characterization of hepatic inflammatory changes in a C57BL/6J mouse model of alpha1-antitrypsin deficiency. PubMed

Porat-Shliom, N. Compartmentalization, cooperation, and communication: the 3Cs of hepatocyte zonation. PubMed PMC

Piccolo, P. et al. Down‐regulation of hepatocyte nuclear factor‐4α and defective zonation in livers expressing mutant Z α1‐antitrypsin. PubMed

Crowther, D. C. et al. Practical genetics: alpha-1-antitrypsin deficiency and the serpinopathies. PubMed

Liu, Z. et al. A ConvNet for the 2020s. Preprint at https://arxiv.org/abs/2201.03545v2 (2022).

Yang, C. et al. Increased expression of epidermal growth factor-like domain-containing protein 7 is predictive of poor prognosis in patients with hepatocellular carcinoma. PubMed

Carlson, J. A. et al. Accumulation of PiZ alpha 1-antitrypsin causes liver damage in transgenic mice. PubMed PMC

Yusa, K. et al. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. PubMed PMC

Hidvegi, T., Schmidt, B. Z., Hale, P. & Perlmutter, D. H. Accumulation of mutant alpha1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NFkappaB, and BAP31 but not the unfolded protein response. PubMed

Rosenberger, F. A., Thielert, M. & Mann, M. Making single-cell proteomics biologically relevant. PubMed

Coscia, F. et al. A streamlined mass spectrometry–based proteomics workflow for large-scale FFPE tissue analysis. PubMed

Fan, R. Integrative spatial protein profiling with multi-omics. PubMed

Henrich, M. T. et al. Determinants of seeding and spreading of α-synuclein pathology in the brain. PubMed PMC

Bassil, F. et al. Amyloid-beta (Aβ) plaques promote seeding and spreading of alpha-synuclein and tau in a mouse model of Lewy body disorders with Aβ pathology. PubMed PMC

Schneider, C. V. et al. Liver Phenotypes of European Adults Heterozygous or Homozygous for Pi∗Z Variant of AAT (Pi∗MZ vs Pi∗ZZ genotype) and Noncarriers. PubMed

Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. PubMed

Wolf, T. et al. HuggingFace’s transformers: state-of-the-art natural language processing. Preprint at https://arxiv.org/abs/1910.03771v5 (2020).

McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426v3 (2020).

Pedregosa, F. et al. Scikit-learn: machine learning in Python.

Schmacke, N. A. et al. SPARCS, a platform for genome-scale CRISPR screening for spatial cellular phenotypes. Preprint at

Thielert, M., Weiss, C. A. M., Mann, M. & Rosenberger, F. A. in

Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. PubMed PMC

Ammar, C., Schessner, J. P., Willems, S., Michaelis, A. C. & Mann, M. Accurate label-free quantification by directLFQ to compare unlimited numbers of proteomes. PubMed PMC

Elizarraras, J. M. et al. WebGestalt 2024: faster gene set analysis and new support for metabolomics and multi-omics. PubMed PMC

Szklarczyk, D. et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. PubMed PMC

Uhlén, M. et al. The human secretome. PubMed

Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. PubMed PMC

Sarkans, U. et al. The BioStudies database—one stop shop for all data supporting a life sciences study. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...