DNA mutation motifs in the genes associated with inherited diseases
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28767725
PubMed Central
PMC5540541
DOI
10.1371/journal.pone.0182377
PII: PONE-D-17-11939
Knihovny.cz E-zdroje
- MeSH
- DNA chemie genetika MeSH
- faktor VIII genetika MeSH
- genetická predispozice k nemoci MeSH
- konformace nukleové kyseliny MeSH
- LDL-receptory genetika MeSH
- lidé MeSH
- molekulární modely MeSH
- nukleotidové motivy MeSH
- protein CFTR genetika MeSH
- simulace molekulární dynamiky MeSH
- zárodečné mutace * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CFTR protein, human MeSH Prohlížeč
- DNA MeSH
- F8 protein, human MeSH Prohlížeč
- faktor VIII MeSH
- LDL-receptory MeSH
- LDLR protein, human MeSH Prohlížeč
- protein CFTR MeSH
Mutations in human genes can be responsible for inherited genetic disorders and cancer. Mutations can arise due to environmental factors or spontaneously. It has been shown that certain DNA sequences are more prone to mutate. These sites are termed hotspots and exhibit a higher mutation frequency than expected by chance. In contrast, DNA sequences with lower mutation frequencies than expected by chance are termed coldspots. Mutation hotspots are usually derived from a mutation spectrum, which reflects particular population where an effect of a common ancestor plays a role. To detect coldspots/hotspots unaffected by population bias, we analysed the presence of germline mutations obtained from HGMD database in the 5-nucleotide segments repeatedly occurring in genes associated with common inherited disorders, in particular, the PAH, LDLR, CFTR, F8, and F9 genes. Statistically significant sequences (mutational motifs) rarely associated with mutations (coldspots) and frequently associated with mutations (hotspots) exhibited characteristic sequence patterns, e.g. coldspots contained purine tract while hotspots showed alternating purine-pyrimidine bases, often with the presence of CpG dinucleotide. Using molecular dynamics simulations and free energy calculations, we analysed the global bending properties of two selected coldspots and two hotspots with a G/T mismatch. We observed that the coldspots were inherently more flexible than the hotspots. We assume that this property might be critical for effective mismatch repair as DNA with a mutation recognized by MutSα protein is noticeably bent.
Zobrazit více v PubMed
Baarends WM, van der Laan R, Grootegoed JA, DNA repair mechanisms and gametogenesis. Reproduction. 2001;121: 31–39. PubMed
Iyer RR, Pluciennik A, V B, Modrich PL, DNA mismatch repair: Functions and mechanisms. Chem Rev. 2006;106: 302–323. doi: 10.1021/cr0404794 PubMed DOI
Hanawalt PC, Spivak G, Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol. 2008;9: 958–970. doi: 10.1038/nrm2549 PubMed DOI
Touchon M, Arneodo A, d'Aubenton-Carafa Y, Thermes C, Transcription-coupled and splicing-coupled strand asymmetries in eukaryotic genomes. Nucleic Acids Res. 2004;32: 4969–4978. doi: 10.1093/nar/gkh823 PubMed DOI PMC
Touchon M, Nicolay S, Arneodo A, d'Aubenton-Carafa Y, Thermes C, Transcription-coupled TA and GC strand asymmetries in the human genome. Febs Lett. 2003;555: 579–582. PubMed
Brodie of Brodie EB, Nicolay S, Touchon M, Audit B, d'Aubenton-Carafa Y, Thermes C, et al., From DNA sequence analysis to modeling replication in the human genome. Phys Rev Lett. 2005;94. PubMed
Chen CL, Duquenne L, Audit B, Guilbaud G, Rappailles A, Baker A, et al., Replication-Associated Mutational Asymmetry in the Human Genome. Mol Biol Evol. 2011;28: 2327–2337. doi: 10.1093/molbev/msr056 PubMed DOI
Touchon M, Nicolay S, Audit B, Brodie Brodie EB, d'Aubenton-Carafa Y, Arneodo A, et al., Replication-associated strand asymmetries in mammalian genomes: Toward detection of replication origins. Proc Natl Acad Sci U S A. 2005;102: 9836–9841. doi: 10.1073/pnas.0500577102 PubMed DOI PMC
Cooper DN, Bacolla A, Ferec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM, On the Sequence-Directed Nature of Human Gene Mutation: The Role of Genomic Architecture and the Local DNA Sequence Environment in Mediating Gene Mutations Underlying Human Inherited Disease. Human Mut. 2011;32: 1075–1099. PubMed PMC
Rogozin IB, Pavlov YI, Theoretical analysis of mutation hotspots and their DNA sequence context specificity. Mutat Res-Rev Mutat Res. 2003;544: 65–85. PubMed
Youssoufian H, Kazazian HH, Phillips DG, Aronis S, Tsiftis G, Brown VA, et al., Recurrent Mutations in Hemophilia-a Give Evidence for CpG Mutation Hotspots. Nature. 1986;324: 380–382. doi: 10.1038/324380a0 PubMed DOI
Coulondre C, Miller JH, Farabaugh PJ, Gilbert W, Molecular-Basis of Base Substitution Hotspots in Escherichia-Coli. Nature. 1978;274: 775–780. PubMed
Cooper DN, Krawczak M (1993) Human Gene Mutation. Oxford: BIOS Scientific Publishers.
Neuberger MS, Harris RS, Di Noia J, Petersen-Mahrt SK, Immunity through DNA deamination. Trends Biochem Sci. 2003;28: 305–312. doi: 10.1016/S0968-0004(03)00111-7 PubMed DOI
Ollila J, Lappalainen I, Vihinen M, Sequence specificity in CpG mutation hotspots. FEBS Lett. 1996;396: 119–122. PubMed
Bird AP DNA Methylation and the Frequency of CpG in Animal DNA. Nucleic Acids Res. 1980;8: 1499–1504. PubMed PMC
Bird A, The Essentials of DNA Methylation. Cell. 1992;70: 5–8. PubMed
Kass SU, Landsberger N, Wolffe AP, DNA methylation directs a time dependent repression of transcription initiation. Curr Biol. 1997;7: 157–165. PubMed
Cooper DN, Mort M, Stenson PD, Ball EV, Chuzhanova NA, Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides. Hum Genomics. 2010;4: 406–410. doi: 10.1186/1479-7364-4-6-406 PubMed DOI PMC
Chuzhanova NA, Anassis EJ, Ball EV, Krawczak M, Cooper DN, Meta-analysis of indels causing human genetic disease: Mechanisms of mutagenesis and the role of local DNA sequence complexity. Human Mut. 2003;21: 28–44. PubMed
Krawczak M, Ball EV, Cooper DN, Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet. 1998;63: 474–488. doi: 10.1086/301965 PubMed DOI PMC
Modrich P, Mechanisms and Biological Effects of Mismatch Repair. Annu Rev Genet. 1991;25: 229–253. doi: 10.1146/annurev.ge.25.120191.001305 PubMed DOI
Lamers MH, Perrakis A, Enzlin JH, Winterwerp HHK, de Wind N, Sixma TK, The crystal structure of DNA mismatch repair protein MutS binding to a G center dot T mismatch. Nature. 2000;407: 711–717. doi: 10.1038/35037523 PubMed DOI
Obmolova G, Ban C, Hsieh P, Yang W, Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature. 2000;407: 703–710. doi: 10.1038/35037509 PubMed DOI
Wang H, Yang Y, Schofield MJ, Du CW, Fridman Y, Lee SD, et al., DNA bending and unbending by MutS govern mismatch recognition and specificity. Proc Natl Acad Sci U S A. 2003;100: 14822–14827. doi: 10.1073/pnas.2433654100 PubMed DOI PMC
Warren JJ, Pohlhaus TJ, Changela A, Iyer RR, Modrich PL, Beese LS, Structure of the human MutS alpha DNA lesion recognition complex. Mol Cell. 2007;26: 579–592. doi: 10.1016/j.molcel.2007.04.018 PubMed DOI
Gorman J, Chowdhury A, Surtees JA, Shimada J, Reichman DR, Alani E, et al., Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6. Mol Cell. 2007;28: 359–370. doi: 10.1016/j.molcel.2007.09.008 PubMed DOI PMC
Drsata T, Lankas F (2013) Theoretical models of DNA flexibility. Wiley Interdisciplinary Reviews-Computational Molecular Science. pp. 355–363.
Drsata T, Spackova N, Jurecka P, Zgarbova M, Sponer J, Lankas F, Mechanical properties of symmetric and asymmetric DNA A-tracts: implications for looping and nucleosome positioning. Nucleic Acids Res. 2014;42: 7383–7394. doi: 10.1093/nar/gku338 PubMed DOI PMC
Ruscio JZ, Onufriev A, A computational study of nucleosomal DNA flexibility. Biophys J. 2006;91: 4121–4132. doi: 10.1529/biophysj.106.082099 PubMed DOI PMC
Jiricny J, Postreplicative Mismatch Repair. Cold Spring Harbor Perspectives in Biology. 2013;5. PubMed PMC
Locher KP, Structure and mechanism of ABC transporters. Curr Opin Struct Biol 2004;14: 426–431. doi: 10.1016/j.sbi.2004.06.005 PubMed DOI
Sharma A, Doucette C, Biro FN, Hingorani MM, Slow Conformational Changes in MutS and DNA Direct Ordered Transitions between Mismatch Search, Recognition and Signaling of DNA Repair. J Mol Biol. 2013;425: 4192–4205. doi: 10.1016/j.jmb.2013.08.011 PubMed DOI PMC
Qiu RY, DeRocco VC, Harris C, Sharma A, Hingorani MM, Erie DA, et al., Large conformational changes in MutS during DNA scanning, mismatch recognition and repair signalling. Embo J. 2012;31: 2528–2540. doi: 10.1038/emboj.2012.95 PubMed DOI PMC
Hingorani MM, Mismatch binding, ADP-ATP exchange and intramolecular signaling during mismatch repair. DNA Repair. 2016;38: 24–31. doi: 10.1016/j.dnarep.2015.11.017 PubMed DOI PMC
Groothuizen FS, Winkler I, Cristovao M, Fish A, Winterwerp HHK, Reumer A, et al., MutS/MutL crystal structure reveals that the MutS sliding clamp loads MutL onto DNA. Elife. 2015;4. PubMed PMC
Brukner I, Sanchez R, Suck D, Pongor S, Sequence-Dependent Bending Propensity of DNA as Revealed by Dnase-I—Parameters for Trinucleotides. Embo J. 1995;14: 1812–1818. PubMed PMC
Gabrielian A, Pongor S, Correlation of intrinsic DNA curvature with DNA property periodicity. Febs Lett. 1996;393: 65–68. PubMed
Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, et al., AMBER 14. University of California: San Francisco: 2014.
Darve E, Rodríguez-Gómez D, Pohorille A, Adaptive Biasing Force Method for Scalar and Vector Free Energy Calculations. J Chem Phys. 2008;128: 144120 doi: 10.1063/1.2829861 PubMed DOI
Raiteri P, Laio A, Gervasio F, Micheletti C, Parrinello M, Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. J Phys Chem B. 2006;110: 3533–3539. doi: 10.1021/jp054359r PubMed DOI
van der Heijden T, van Vugt JJFA, Logie C, van Noort J, Sequence-based prediction of single nucleosome positioning and genome-wide nucleosome occupancy (vol 109, pg E2514, 2012). Proceedings of the National Academy of Sciences of the United States of America. 2013;110: 6240–6240. PubMed PMC
Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M, Comparison of Simple Potential Functions for Simulating Liquid Water. J Chem Phys. 1983;79: 926–935.
Joung IS, Cheatham TE, Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B. 2008;112: 9020–9041. doi: 10.1021/jp8001614 PubMed DOI PMC
Ivani I, Dans PD, Noy A, Perez A, Faustino I, Hospital A, et al., Parmbsc1: a refined force field for DNA simulations. Nat Methods. 2016;13: 55-+. doi: 10.1038/nmeth.3658 PubMed DOI PMC
Lelievre T, Rousset M, Stoltz G, Long-Time Convergence of an Adaptive Biasing Force Method. Nonlinearity. 2008;21: 1155–1181.
Kulhanek P, Stepan J, Fuxreiter M, Mones L, Strelcova Z, Petrek M, PMFLib—A Toolkit for Free Energy Calculations; https://lcc.ncbr.muni.cz/whitezone/development/pmflib/index.html. 2013.
Lu XJ, Olson WK, 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 2003;31: 5108–5121. doi: 10.1093/nar/gkg680 PubMed DOI PMC
Sharma M, Predeus AV, Mukherjee S, Feig M, DNA Bending Propensity in the Presence of Base Mismatches: Implications for DNA Repair. J Phys Chem B. 2013;117: 6194–6205. doi: 10.1021/jp403127a PubMed DOI PMC
Humphrey W, Dalke A, Schulten K, VMD—Visual Molecular Dynamics. J. Mol. Graph. Model. 1996;14: 33–38. PubMed
Crooks GE, Hon G, Chandonia JM, Brenner SE, WebLogo: A sequence logo generator. Genome Res. 2004;14: 1188–1190. doi: 10.1101/gr.849004 PubMed DOI PMC
Graur D, Li WH (2000) Fundamentals of molecular evolution Sunderland, MA: Sinauer Associates. Sunderland, MA.
Thoma F, Light and dark in chromatin repair: repair of UV-induced DNA lesions by photolyase and nucleotide excision repair. Embo Journal. 1999;18: 6585–6598. doi: 10.1093/emboj/18.23.6585 PubMed DOI PMC
Rogozin IB, Babenko VN, Milanesi L, P Y.I., Computational analysis of mutation spectra. Brief Bioinform. 2003;4: 210–227. PubMed
Buckova H, Noskova H, Borska R, Reblova K, Pinkova B, Zapletalova E, et al., Autosomal recessive congenital ichthyoses in the Czech Republic. Brit J Dermatol. 2016;174: 405–407. PubMed
Chien YH, Chiang SC, Huang A, Chou SP, Tseng SS, Huang YT, et al., Mutation spectrum in Taiwanese patients with phenylalanine hydroxylase deficiency and a founder effect for the R241C mutation. Human Mut. 2004;23: 206. PubMed
Chiu YH, Chang YC, Chang YH, Niu DM, Yang YL, Ye J, et al., Mutation spectrum of and founder effects affecting the PTS gene in East Asian populations. J Hum Gen. 2012;57: 145–152. PubMed
Streisin G, Okada Y, Emrich J, Newton J, Tsugita A, Terzaghi E, et al., Frameshift Mutations and Genetic Code. Cold Spring Harb Symp Quant Biol. 1966;31: 77–84. PubMed
Chen JQ, Wu Y, Yang HW, Bergelson J, Kreitman M, Tian DC, Variation in the Ratio of Nucleotide Substitution and Indel Rates across Genomes in Mammals and Bacteria. Mol Biol Evol. 2009;26: 1523–1531. doi: 10.1093/molbev/msp063 PubMed DOI
Gragg H, Harfe BD, Jinks-Robertson S, Base composition of mononucleotide runs affects DNA polymerase slippage and removal of frameshift intermediates by mismatch repair in Saccharomyces cerevisiae. Mol Cell Biol. 2002;22: 8756–8762. doi: 10.1128/MCB.22.24.8756-8762.2002 PubMed DOI PMC
Kroutil LC, Register K, Bebenek K, Kunkel TA, Exonucleolytic proofreading during replication of repetitive DNA. Biochemistry. 1996;35: 1046–1053. doi: 10.1021/bi952178h PubMed DOI
Tran HT, Keen JD, Kricker M, Resnick MA, Gordenin DA, Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol Cell Biol. 1997;17: 2859–2865. PubMed PMC
Grodecka L, Kramarek M, Lockerova P, Kovacova T, Ravcukova B, Richterova R, et al., No Major Effect of the CDH1 c.2440-6C > G Mutation on Splicing Detected in Last Exon-Specific Splicing Minigene Assay. Gene Chromosomes Cancer. 2014;53: 798–801. PubMed
Grodecka L, Lockerova P, Ravcukova B, Buratti E, Baralle FE, Dusek L, et al., Exon First Nucleotide Mutations in Splicing: Evaluation of In Silico Prediction Tools. Plos One. 2014;9. PubMed PMC
Importance of base-pair opening for mismatch recognition
Bending of DNA duplexes with mutation motifs
Role of Inosine⁻Uracil Base Pairs in the Canonical RNA Duplexes