DNA mutation motifs in the genes associated with inherited diseases

. 2017 ; 12 (8) : e0182377. [epub] 20170802

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28767725

Mutations in human genes can be responsible for inherited genetic disorders and cancer. Mutations can arise due to environmental factors or spontaneously. It has been shown that certain DNA sequences are more prone to mutate. These sites are termed hotspots and exhibit a higher mutation frequency than expected by chance. In contrast, DNA sequences with lower mutation frequencies than expected by chance are termed coldspots. Mutation hotspots are usually derived from a mutation spectrum, which reflects particular population where an effect of a common ancestor plays a role. To detect coldspots/hotspots unaffected by population bias, we analysed the presence of germline mutations obtained from HGMD database in the 5-nucleotide segments repeatedly occurring in genes associated with common inherited disorders, in particular, the PAH, LDLR, CFTR, F8, and F9 genes. Statistically significant sequences (mutational motifs) rarely associated with mutations (coldspots) and frequently associated with mutations (hotspots) exhibited characteristic sequence patterns, e.g. coldspots contained purine tract while hotspots showed alternating purine-pyrimidine bases, often with the presence of CpG dinucleotide. Using molecular dynamics simulations and free energy calculations, we analysed the global bending properties of two selected coldspots and two hotspots with a G/T mismatch. We observed that the coldspots were inherently more flexible than the hotspots. We assume that this property might be critical for effective mismatch repair as DNA with a mutation recognized by MutSα protein is noticeably bent.

Zobrazit více v PubMed

Baarends WM, van der Laan R, Grootegoed JA, DNA repair mechanisms and gametogenesis. Reproduction. 2001;121: 31–39. PubMed

Iyer RR, Pluciennik A, V B, Modrich PL, DNA mismatch repair: Functions and mechanisms. Chem Rev. 2006;106: 302–323. doi: 10.1021/cr0404794 PubMed DOI

Hanawalt PC, Spivak G, Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol. 2008;9: 958–970. doi: 10.1038/nrm2549 PubMed DOI

Touchon M, Arneodo A, d'Aubenton-Carafa Y, Thermes C, Transcription-coupled and splicing-coupled strand asymmetries in eukaryotic genomes. Nucleic Acids Res. 2004;32: 4969–4978. doi: 10.1093/nar/gkh823 PubMed DOI PMC

Touchon M, Nicolay S, Arneodo A, d'Aubenton-Carafa Y, Thermes C, Transcription-coupled TA and GC strand asymmetries in the human genome. Febs Lett. 2003;555: 579–582. PubMed

Brodie of Brodie EB, Nicolay S, Touchon M, Audit B, d'Aubenton-Carafa Y, Thermes C, et al., From DNA sequence analysis to modeling replication in the human genome. Phys Rev Lett. 2005;94. PubMed

Chen CL, Duquenne L, Audit B, Guilbaud G, Rappailles A, Baker A, et al., Replication-Associated Mutational Asymmetry in the Human Genome. Mol Biol Evol. 2011;28: 2327–2337. doi: 10.1093/molbev/msr056 PubMed DOI

Touchon M, Nicolay S, Audit B, Brodie Brodie EB, d'Aubenton-Carafa Y, Arneodo A, et al., Replication-associated strand asymmetries in mammalian genomes: Toward detection of replication origins. Proc Natl Acad Sci U S A. 2005;102: 9836–9841. doi: 10.1073/pnas.0500577102 PubMed DOI PMC

Cooper DN, Bacolla A, Ferec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM, On the Sequence-Directed Nature of Human Gene Mutation: The Role of Genomic Architecture and the Local DNA Sequence Environment in Mediating Gene Mutations Underlying Human Inherited Disease. Human Mut. 2011;32: 1075–1099. PubMed PMC

Rogozin IB, Pavlov YI, Theoretical analysis of mutation hotspots and their DNA sequence context specificity. Mutat Res-Rev Mutat Res. 2003;544: 65–85. PubMed

Youssoufian H, Kazazian HH, Phillips DG, Aronis S, Tsiftis G, Brown VA, et al., Recurrent Mutations in Hemophilia-a Give Evidence for CpG Mutation Hotspots. Nature. 1986;324: 380–382. doi: 10.1038/324380a0 PubMed DOI

Coulondre C, Miller JH, Farabaugh PJ, Gilbert W, Molecular-Basis of Base Substitution Hotspots in Escherichia-Coli. Nature. 1978;274: 775–780. PubMed

Cooper DN, Krawczak M (1993) Human Gene Mutation. Oxford: BIOS Scientific Publishers.

Neuberger MS, Harris RS, Di Noia J, Petersen-Mahrt SK, Immunity through DNA deamination. Trends Biochem Sci. 2003;28: 305–312. doi: 10.1016/S0968-0004(03)00111-7 PubMed DOI

Ollila J, Lappalainen I, Vihinen M, Sequence specificity in CpG mutation hotspots. FEBS Lett. 1996;396: 119–122. PubMed

Bird AP DNA Methylation and the Frequency of CpG in Animal DNA. Nucleic Acids Res. 1980;8: 1499–1504. PubMed PMC

Bird A, The Essentials of DNA Methylation. Cell. 1992;70: 5–8. PubMed

Kass SU, Landsberger N, Wolffe AP, DNA methylation directs a time dependent repression of transcription initiation. Curr Biol. 1997;7: 157–165. PubMed

Cooper DN, Mort M, Stenson PD, Ball EV, Chuzhanova NA, Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides. Hum Genomics. 2010;4: 406–410. doi: 10.1186/1479-7364-4-6-406 PubMed DOI PMC

Chuzhanova NA, Anassis EJ, Ball EV, Krawczak M, Cooper DN, Meta-analysis of indels causing human genetic disease: Mechanisms of mutagenesis and the role of local DNA sequence complexity. Human Mut. 2003;21: 28–44. PubMed

Krawczak M, Ball EV, Cooper DN, Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes. Am J Hum Genet. 1998;63: 474–488. doi: 10.1086/301965 PubMed DOI PMC

Modrich P, Mechanisms and Biological Effects of Mismatch Repair. Annu Rev Genet. 1991;25: 229–253. doi: 10.1146/annurev.ge.25.120191.001305 PubMed DOI

Lamers MH, Perrakis A, Enzlin JH, Winterwerp HHK, de Wind N, Sixma TK, The crystal structure of DNA mismatch repair protein MutS binding to a G center dot T mismatch. Nature. 2000;407: 711–717. doi: 10.1038/35037523 PubMed DOI

Obmolova G, Ban C, Hsieh P, Yang W, Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature. 2000;407: 703–710. doi: 10.1038/35037509 PubMed DOI

Wang H, Yang Y, Schofield MJ, Du CW, Fridman Y, Lee SD, et al., DNA bending and unbending by MutS govern mismatch recognition and specificity. Proc Natl Acad Sci U S A. 2003;100: 14822–14827. doi: 10.1073/pnas.2433654100 PubMed DOI PMC

Warren JJ, Pohlhaus TJ, Changela A, Iyer RR, Modrich PL, Beese LS, Structure of the human MutS alpha DNA lesion recognition complex. Mol Cell. 2007;26: 579–592. doi: 10.1016/j.molcel.2007.04.018 PubMed DOI

Gorman J, Chowdhury A, Surtees JA, Shimada J, Reichman DR, Alani E, et al., Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6. Mol Cell. 2007;28: 359–370. doi: 10.1016/j.molcel.2007.09.008 PubMed DOI PMC

Drsata T, Lankas F (2013) Theoretical models of DNA flexibility. Wiley Interdisciplinary Reviews-Computational Molecular Science. pp. 355–363.

Drsata T, Spackova N, Jurecka P, Zgarbova M, Sponer J, Lankas F, Mechanical properties of symmetric and asymmetric DNA A-tracts: implications for looping and nucleosome positioning. Nucleic Acids Res. 2014;42: 7383–7394. doi: 10.1093/nar/gku338 PubMed DOI PMC

Ruscio JZ, Onufriev A, A computational study of nucleosomal DNA flexibility. Biophys J. 2006;91: 4121–4132. doi: 10.1529/biophysj.106.082099 PubMed DOI PMC

Jiricny J, Postreplicative Mismatch Repair. Cold Spring Harbor Perspectives in Biology. 2013;5. PubMed PMC

Locher KP, Structure and mechanism of ABC transporters. Curr Opin Struct Biol 2004;14: 426–431. doi: 10.1016/j.sbi.2004.06.005 PubMed DOI

Sharma A, Doucette C, Biro FN, Hingorani MM, Slow Conformational Changes in MutS and DNA Direct Ordered Transitions between Mismatch Search, Recognition and Signaling of DNA Repair. J Mol Biol. 2013;425: 4192–4205. doi: 10.1016/j.jmb.2013.08.011 PubMed DOI PMC

Qiu RY, DeRocco VC, Harris C, Sharma A, Hingorani MM, Erie DA, et al., Large conformational changes in MutS during DNA scanning, mismatch recognition and repair signalling. Embo J. 2012;31: 2528–2540. doi: 10.1038/emboj.2012.95 PubMed DOI PMC

Hingorani MM, Mismatch binding, ADP-ATP exchange and intramolecular signaling during mismatch repair. DNA Repair. 2016;38: 24–31. doi: 10.1016/j.dnarep.2015.11.017 PubMed DOI PMC

Groothuizen FS, Winkler I, Cristovao M, Fish A, Winterwerp HHK, Reumer A, et al., MutS/MutL crystal structure reveals that the MutS sliding clamp loads MutL onto DNA. Elife. 2015;4. PubMed PMC

Brukner I, Sanchez R, Suck D, Pongor S, Sequence-Dependent Bending Propensity of DNA as Revealed by Dnase-I—Parameters for Trinucleotides. Embo J. 1995;14: 1812–1818. PubMed PMC

Gabrielian A, Pongor S, Correlation of intrinsic DNA curvature with DNA property periodicity. Febs Lett. 1996;393: 65–68. PubMed

Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, et al., AMBER 14. University of California: San Francisco: 2014.

Darve E, Rodríguez-Gómez D, Pohorille A, Adaptive Biasing Force Method for Scalar and Vector Free Energy Calculations. J Chem Phys. 2008;128: 144120 doi: 10.1063/1.2829861 PubMed DOI

Raiteri P, Laio A, Gervasio F, Micheletti C, Parrinello M, Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. J Phys Chem B. 2006;110: 3533–3539. doi: 10.1021/jp054359r PubMed DOI

van der Heijden T, van Vugt JJFA, Logie C, van Noort J, Sequence-based prediction of single nucleosome positioning and genome-wide nucleosome occupancy (vol 109, pg E2514, 2012). Proceedings of the National Academy of Sciences of the United States of America. 2013;110: 6240–6240. PubMed PMC

Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M, Comparison of Simple Potential Functions for Simulating Liquid Water. J Chem Phys. 1983;79: 926–935.

Joung IS, Cheatham TE, Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B. 2008;112: 9020–9041. doi: 10.1021/jp8001614 PubMed DOI PMC

Ivani I, Dans PD, Noy A, Perez A, Faustino I, Hospital A, et al., Parmbsc1: a refined force field for DNA simulations. Nat Methods. 2016;13: 55-+. doi: 10.1038/nmeth.3658 PubMed DOI PMC

Lelievre T, Rousset M, Stoltz G, Long-Time Convergence of an Adaptive Biasing Force Method. Nonlinearity. 2008;21: 1155–1181.

Kulhanek P, Stepan J, Fuxreiter M, Mones L, Strelcova Z, Petrek M, PMFLib—A Toolkit for Free Energy Calculations; https://lcc.ncbr.muni.cz/whitezone/development/pmflib/index.html. 2013.

Lu XJ, Olson WK, 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 2003;31: 5108–5121. doi: 10.1093/nar/gkg680 PubMed DOI PMC

Sharma M, Predeus AV, Mukherjee S, Feig M, DNA Bending Propensity in the Presence of Base Mismatches: Implications for DNA Repair. J Phys Chem B. 2013;117: 6194–6205. doi: 10.1021/jp403127a PubMed DOI PMC

Humphrey W, Dalke A, Schulten K, VMD—Visual Molecular Dynamics. J. Mol. Graph. Model. 1996;14: 33–38. PubMed

Crooks GE, Hon G, Chandonia JM, Brenner SE, WebLogo: A sequence logo generator. Genome Res. 2004;14: 1188–1190. doi: 10.1101/gr.849004 PubMed DOI PMC

Graur D, Li WH (2000) Fundamentals of molecular evolution Sunderland, MA: Sinauer Associates. Sunderland, MA.

Thoma F, Light and dark in chromatin repair: repair of UV-induced DNA lesions by photolyase and nucleotide excision repair. Embo Journal. 1999;18: 6585–6598. doi: 10.1093/emboj/18.23.6585 PubMed DOI PMC

Rogozin IB, Babenko VN, Milanesi L, P Y.I., Computational analysis of mutation spectra. Brief Bioinform. 2003;4: 210–227. PubMed

Buckova H, Noskova H, Borska R, Reblova K, Pinkova B, Zapletalova E, et al., Autosomal recessive congenital ichthyoses in the Czech Republic. Brit J Dermatol. 2016;174: 405–407. PubMed

Chien YH, Chiang SC, Huang A, Chou SP, Tseng SS, Huang YT, et al., Mutation spectrum in Taiwanese patients with phenylalanine hydroxylase deficiency and a founder effect for the R241C mutation. Human Mut. 2004;23: 206. PubMed

Chiu YH, Chang YC, Chang YH, Niu DM, Yang YL, Ye J, et al., Mutation spectrum of and founder effects affecting the PTS gene in East Asian populations. J Hum Gen. 2012;57: 145–152. PubMed

Streisin G, Okada Y, Emrich J, Newton J, Tsugita A, Terzaghi E, et al., Frameshift Mutations and Genetic Code. Cold Spring Harb Symp Quant Biol. 1966;31: 77–84. PubMed

Chen JQ, Wu Y, Yang HW, Bergelson J, Kreitman M, Tian DC, Variation in the Ratio of Nucleotide Substitution and Indel Rates across Genomes in Mammals and Bacteria. Mol Biol Evol. 2009;26: 1523–1531. doi: 10.1093/molbev/msp063 PubMed DOI

Gragg H, Harfe BD, Jinks-Robertson S, Base composition of mononucleotide runs affects DNA polymerase slippage and removal of frameshift intermediates by mismatch repair in Saccharomyces cerevisiae. Mol Cell Biol. 2002;22: 8756–8762. doi: 10.1128/MCB.22.24.8756-8762.2002 PubMed DOI PMC

Kroutil LC, Register K, Bebenek K, Kunkel TA, Exonucleolytic proofreading during replication of repetitive DNA. Biochemistry. 1996;35: 1046–1053. doi: 10.1021/bi952178h PubMed DOI

Tran HT, Keen JD, Kricker M, Resnick MA, Gordenin DA, Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol Cell Biol. 1997;17: 2859–2865. PubMed PMC

Grodecka L, Kramarek M, Lockerova P, Kovacova T, Ravcukova B, Richterova R, et al., No Major Effect of the CDH1 c.2440-6C > G Mutation on Splicing Detected in Last Exon-Specific Splicing Minigene Assay. Gene Chromosomes Cancer. 2014;53: 798–801. PubMed

Grodecka L, Lockerova P, Ravcukova B, Buratti E, Baralle FE, Dusek L, et al., Exon First Nucleotide Mutations in Splicing: Evaluation of In Silico Prediction Tools. Plos One. 2014;9. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Importance of base-pair opening for mismatch recognition

. 2020 Nov 18 ; 48 (20) : 11322-11334.

Bending of DNA duplexes with mutation motifs

. 2019 Aug 01 ; 26 (4) : 341-352.

Role of Inosine⁻Uracil Base Pairs in the Canonical RNA Duplexes

. 2018 Jun 28 ; 9 (7) : . [epub] 20180628

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...