The influence of the combination of carboxylate and phosphinate pendant arms in 1,4,7-triazacyclononane-based chelators on their 68Ga labelling properties

. 2015 Jul 21 ; 20 (7) : 13112-26. [epub] 20150721

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26197305

In order to compare the coordination properties of 1,4,7-triazacyclononane (tacn) derivatives bearing varying numbers of phosphinic/carboxylic acid pendant groups towards 68Ga, 1,4,7-triazacyclononane-7-acetic-1,4-bis(methylenephosphinic) acid (NOPA) and 1,4,7- triazacyclononane-4,7-diacetic-1-[methylene(2-carboxyethyl)phosphinic] acid (NO2AP) were synthesized using Mannich reactions with trivalent or pentavalent forms of H-phosphinic acids as phosphorus components. Stepwise protonation constants logK1-3 12.06, 3.90 and 1.95, and stability constants with GaIII and CuII, logKGaL 24.01 and logKCuL 16.66, were potentiometrically determined for NOPA. Both ligands were labelled with 68Ga and compared with NOTA (tacn-N,N',N″-triacetic acid) and NOPO, a TRAP-type [tacn-N,N',N″- tris(methylenephosphinic acid)] chelator. At pH 3, NOPO and NOPA showed higher labelling efficiency (binding with lower ligand excess) at both room temperature and 95 °C, compared to NO2AP and NOTA. Labelling efficiency at pH = 0-3 correlated with a number of phosphinic acid pendants: NOPO >> NOPA > NO2AP >> NOTA; however, it was more apparent at 95 °C than at room temperature. By contrast, NOTA was found to be labelled more efficiently at pH > 4 compared to the ligands with phosphinic acids. Overall, replacement of a single phosphinate donor with a carboxylate does not challenge 68Ga labelling of TRAP-type chelators. However, the presence of carboxylates facilitates labelling at neutral or weakly acidic pH.

Zobrazit více v PubMed

Charkraborty S., Liu S. 99mTc and 111In-labeling of small biomolecules: Bifunctional chelators and related coordination chemistry. Curr. Top. Med. Chem. 2010;10:1113–1134. doi: 10.2174/156802610791384243. PubMed DOI

Rösch F. Past, present and future of 68Ge/68Ga generators. Appl. Radiat. Isot. 2013;76:24–30. doi: 10.1016/j.apradiso.2012.10.012. PubMed DOI

Banerjee S.R., Pomper M.G. Clinical applications of gallium-68. Appl. Radiat. Isot. 2013;76:2–13. doi: 10.1016/j.apradiso.2013.01.039. PubMed DOI PMC

Velikyan I. Continued rapid growth in 68Ga applications: Update 2013 to June 2014. J. Label. Compd. Radiopharm. 2015;58:99–121. doi: 10.1002/jlcr.3250. PubMed DOI

Geijer H., Breimer L.H. Somatostatin receptor PET/CT in neuroendocrine tumours: Update on systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging. 2013;40:1770–1780. doi: 10.1007/s00259-013-2482-z. PubMed DOI

Van Essen M., Sundin A., Krenning E.P., Kwekkeboom D.J. Neuroendocrine tumours: The role of imaging for diagnosis and therapy. Nat. Rev. Endocrinol. 2014;10:102–114. doi: 10.1038/nrendo.2013.246. PubMed DOI

Ramogida C.F., Orvig C. Tumour targeting with radiometals for diagnosis and therapy. Chem. Commun. 2013;49:4720–4739. doi: 10.1039/c3cc41554f. PubMed DOI

Price E.W., Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev. 2014;43:260–290. doi: 10.1039/C3CS60304K. PubMed DOI

Notni J., Hermann P., Havlíčková J., Kotek J., Kubíček V., Plutnar J., Loktionova N., Riss P.J., Rösch F., Lukeš I. A triazacyclononane based bifunctional phosphinate ligand for preparation of multimeric 68Ga PET tracers. Chem. Eur. J. 2010;16:7174–7185. doi: 10.1002/chem.200903281. PubMed DOI

Šimeček J., Zemek O., Hermann P., Wester H.J., Notni J. A monoreactive bifunctional triazacyclononane-phosphinate chelator with high selectivity for gallium-68. ChemMedChem. 2012;7:1375–1378. doi: 10.1002/cmdc.201200261. PubMed DOI

Andre J.P., Mäcke H.R., Zehnder M., Macko L., Akyel K.G. 1,4,7-triazacyclononane-1-succinic acid-4,7-diacetic acid (NODASA): A new bifunctional chelator for radio gallium-labelling of biomolecules. Chem. Commun. 1998:1301–1302. doi: 10.1039/a801294f. DOI

Eisenwiener K.P., Prata M.I.M., Buschmann I., Zhang H.W., Santos A.C., Wenger S., Reubi J.C., Mäcke H.R. NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [Ga-67/68] and [In-111] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. Bioconjugate Chem. 2002;13:530–541. doi: 10.1021/bc010074f. PubMed DOI

Riss P.J., Kroll C., Nagel V., Rösch F. NODAPA-OH and NODAPA-(NCS)n: Synthesis, 68Ga-radiolabelling and in vitro characterisation of novel versatile bifunctional chelators for molecular imaging. Bioorg. Med. Chem. Lett. 2008;18:5364–5367. doi: 10.1016/j.bmcl.2008.09.054. PubMed DOI

Singh A.N., Liu W., Hao G., Kumar A., Gupta A., Oz O.K., Hsieh J.T., Sun X. Multivalent bifunctional chelator scaffolds for gallium-68 based positron emission tomography imaging probe design: Signal amplification via multivalency. Bioconjugate Chem. 2011;22:1650–1662. doi: 10.1021/bc200227d. PubMed DOI PMC

Guerra Gomez F.L., Uehara T., Rokugawa T., Higaki Y., Suzuki H., Hanaoka H., Akizawa H., Arano Y. Synthesis and evaluation of diastereoisomers of 1,4,7-triazacyclononane-1,4,7-tris-(glutaric acid) (NOTGA) for multimeric radiopharmaceuticals of galium. Bioconjugate Chem. 2012;23:2229–2238. doi: 10.1021/bc300340g. PubMed DOI

Waldron B.P., Parker D., Burchardt C., Yufit D.S., Zimny M., Rösch F. Structure and stability of hexadentate complexes of ligands based on AAZTA for efficient PET labelling with gallium-68. Chem. Commun. 2013;49:579–581. doi: 10.1039/C2CC37544C. PubMed DOI

Boros E., Ferreira C.L., Cawthray J.F., Price E.W., Patrick B.O., Wester D.W., Adam M.J., Orvig C. Acyclic chelate with ideal properties for Ga-68 PET imaging agent elaboration. J. Am. Chem. Soc. 2010;132:15726–15733. doi: 10.1021/ja106399h. PubMed DOI

Berry D.J., Ma Y., Ballinger J.R., Tavaré R., Koers A., Sunassee K., Zhou T., Nawaz S., Mullen G.E.D., Hider R.C., et al. Efficient bifunctional gallium-68 chelators for positron emission tomography: Tris(hydroxypyridinone) ligands. Chem. Commun. 2011;47:7068–7070. doi: 10.1039/c1cc12123e. PubMed DOI PMC

Notni J., Šimeček J., Hermann P., Wester H.J. TRAP, a powerful and versatile framework for gallium-68 radiopharmaceuticals. Chem. Eur. J. 2011;17:14718–14722. doi: 10.1002/chem.201103503. PubMed DOI

Šimeček J., Hermann P., Wester H.J., Notni J. How is 68Ga labeling of macrocyclic chelators influenced by metal ion contaminants in 68Ge/68Ga generator eluates? ChemMedChem. 2013;8:95–103. doi: 10.1002/cmdc.201200471. PubMed DOI

Eder M., Schäfer M., Bauder-Wüst U., Hull W.E., Wängler C., Mier W., Haberkorn U., Eisenhut M. 68Ga-Complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjugate Chem. 2012;23:688–697. doi: 10.1021/bc200279b. PubMed DOI

Afshar-Oromieh A., Malcher A., Eder M., Eisenhut M., Linhart H.G., Hadaschik B.A., Holland-Letz T., Giesel F.L., Kratochwil C., Haufe S., et al. PET imaging with a [68Ga] gallium-labelled PSMA ligand for the diagnosis of prostate cancer: Biodistribution in humans and first evaluation of tumour lesions. Eur. J. Nucl. Med. Mol. Imaging. 2013;40:486–495. doi: 10.1007/s00259-012-2298-2. PubMed DOI

Boros E., Ferreira C.L., Yapp D.T.T., Gill R.K., Price E.W., Adam M.J., Orvig C. RGD conjugates of the H2dedpa scaffold: Synthesis, labeling and imaging with 68Ga. Nucl. Med. Biol. 2012;29:785–794. doi: 10.1016/j.nucmedbio.2012.01.003. PubMed DOI

Notni J., Pohle K., Wester H.J. Be spoilt for choice with radiolabelled RGD peptides: Preclinical evaluation of 68Ga-TRAP(RGD)3. Nucl. Med. Biol. 2013;40:33–41. doi: 10.1016/j.nucmedbio.2012.08.006. PubMed DOI

Šimeček J., Schulz M., Notni J., Plutnar J., Kubíček V., Havlíčková J., Hermann P. Complexation of metal ions with TRAP (1,4,7-triazacyclononane phosphinic acid) ligands and NOTA: Phosphinate-containing ligands as unique chelators for trivalent galium. Inorg. Chem. 2012;51:577–590. doi: 10.1021/ic202103v. PubMed DOI

Notni J., Šimeček J., Wester H.J. Phosphinic acid functionalized polyazacycloalkane chelators for radiodiagnostics and radiotherapeutics: Unique characteristics and applications. ChemMedChem. 2014;9:1107–1115. doi: 10.1002/cmdc.201400055. (corrigendum: ibid.2014, 9, 2614) PubMed DOI

Bazakas K., Lukeš I. Synthesis and complexing properties of polyazamacrocycles with pendant N-methylenephosphinic acid. J. Chem. Soc. Dalton Trans. 1995 doi: 10.1039/dt9950001133. DOI

Cole E., Parker D., Ferguson G., Gallagher J.F., Kaitner B. Synthesis and structure of chiral metal complexes of polyazacycloalkane ligands incorporating phosphinic acid donors. J. Chem. Soc. Chem. Commun. 1991:1473–1475. doi: 10.1039/c39910001473. DOI

Hacht B. Gallium(III) ion hydrolysis under physiological conditions. Bull. Korean Chem. Soc. 2008;29:372–376.

Notni J., Hermann P., Dregely I., Wester H.J. Convenient synthesis of 68Ga-labeled gadolinium(III) complexes: Towards bimodal responsive probes for functional imaging with PET/MRI. Chem. Eur. J. 2013;19:12602–12606. doi: 10.1002/chem.201302751. PubMed DOI

Šimeček J., Notni J., Kapp T.G., Kessler H., Wester H.J. Benefits of NOPO as chelator in gallium-68 peptides, exemplified by preclinical characterization of 68Ga-NOPO−c(RGDfK) Mol. Pharm. 2014;11:1687–1695. doi: 10.1021/mp5000746. PubMed DOI

Šimeček J., Zemek O., Hermann P., Notni J., Wester H.J. Tailored gallium(III) chelator NOPO: Synthesis, characterization, bioconjugation, and application in preclinical Ga-68-PET imaging. Mol. Pharm. 2014;11:3893–3903. doi: 10.1021/mp400642s. PubMed DOI

Van Haveren J., DeLeon L., Ramasamy R., van Westrenen J., Sherry A.D. The design of macrocyclic ligands for monitoring magnesium in tissue by 31P-NMR. NMR Biomed. 1995;8:197–205. doi: 10.1002/nbm.1940080504. PubMed DOI

Huskens J., Sherry A.D. Synthesis and characterization of 1,4,7-triazacyclononane derivatives with methylphosphinate and acetate side chains for monitoring free MgII by 31P- and 1H-NMR spectroscopy. J. Am. Chem. Soc. 1996;118:4396–4404. doi: 10.1021/ja953771p. DOI

Atkins T.J. Tricyclic trisaminomethanes. J. Am. Chem. Soc. 1980;102:6364–6365. doi: 10.1021/ja00540a044. DOI

Schulz D., Weyhermüller T., Wieghard K., Nuber B. The monofunctionalized 1,4,7-triazacyclononane derivatives 1,4,7-triazacyclononane-N-acetate (L1) and N-(2-hydroxybenzyl-1,4,7-triazacyclononane (HL2) and their complexes with vanadium(IV)/(V). Localized and delocalized electronic structures in compounds containing the mixed valent [OVIV-O-VVO]3+ core. Inorg. Chim. Acta. 1995;240:217–229.

Warden A.C., Spiccia L., Hearn M.T.W., Boas J.F., Pilbrow J.R. The synthesis, structure and properties of copper(II) complexes of asymmetrically functionalized derivatives of 1,4,7-triazacyclononane. Dalton Trans. 2005:1804–1813. doi: 10.1039/b417739h. PubMed DOI

Studer M., Kaden T.A. Metal complexes with macrocyclic ligands. Part XXV. One-step synthesis of mono-N-substituted azamacrocycles with a carboxylic group in the side-chain and their complexes with Cu2+ and Ni2+ Helv. Chim. Acta. 1986;69:2081–2086. doi: 10.1002/hlca.19860690832. DOI

Warden A., Graham B., Hearn M.T.W., Spiccia L. Synthesis of novel derivatives of 1,4,7-triazacyclononane. Org. Lett. 2001;3:2855–2858. doi: 10.1021/ol016291d. PubMed DOI

Kovács Z., Sherry A.D. A general synthesis of mono- and disubstituted 1,4,7-triazacyclononanes. Tetrahedron Lett. 1995;36:9269–9272. doi: 10.1016/0040-4039(95)02009-E. DOI

Moedritzer K., Irani R.R. The direct synthesis of α-aminomethylphosphonic acids. Mannich-type reactions with orthophosphorous acid. J. Org. Chem. 1966;31:1603–1607. doi: 10.1021/jo01343a067. DOI

Remore D. Chemistry of phosphorous acid: new routes to phosphonic acids and phosphate esters. J. Org. Chem. 1978;43:992–996. doi: 10.1021/jo00399a041. DOI

Lukeš I., Kotek J., Vojtíšek J., Hermann P. Complexes of tetraazacycles bearing methylphosphinic/phosphonic acid pendant arms with copper(II), zinc(II) and lanthanides(III). A comparison with their acetic acid analogues. Coord. Chem. Rev. 2001;216–217:287–312. doi: 10.1016/S0010-8545(01)00336-8. DOI

Drahoš B., Kubíček V., Bonnet C.S., Hermann P., Lukeš I., Tóth É. Dissociation kinetics of Mn2+ complexes of NOTA and DOTA. Dalton Trans. 2011;40:1945–1951. doi: 10.1039/c0dt01328e. PubMed DOI

Holub J., Meckel M., Kubíček V., Rösch F., Hermann P. Gallium(III) complexes of NOTA-bis(phosphonate) conjugates as PET radiotracers for bone imaging. Contrast Media Mol. Imaging. 2015;10:122–134. doi: 10.1002/cmmi.1606. PubMed DOI

Gröβ S., Elias H. Kinetics and mechanism of complex formation: The reaction of nickel(II) with 1,4,7-triazacyclononane-N,N',N"-triacetic acid. Inorg. Chim. Acta. 1996;251:347–354.

Řezanka P., Kubíček V., Hermann P., Lukeš I. Synthesis of a bifunctional monophosphinate DOTA derivative having free carboxylate group in the phosphorus side chain. Synthesis. 2008:1431–1435. doi: 10.1002/chin.200838172. DOI

Kubíček V., Havlíčková J., Kotek J., Tircsó G., Hermann P., Tóth É., Lukeš I. Gallium(iii) complexes of DOTA and DOTA-monoamide: Kinetic and thermodynamic studies. Inorg. Chem. 2010;49:10960–10969. doi: 10.1021/ic101378s. PubMed DOI

Kývala M., Lubal P., Lukeš I. Determination of equilibrium constants with the OPIUM computer program; Proceedings of the IX. Spanish-Italian and Mediterranean Congress on Thermodynamics of Metal Complexes (SIMEC 98); Girona, Spain. 2–5 June 1998; [(accessed on 23 September 2014)]. p. 94. The Full Version of the OPIUM Program is Available (Free of Charge) on http://web.natur.cuni.cz/~kyvala/opium.html.

NIST Standard Reference Database 46 (Critically Selected Stability Constants of Metal Complexes) National Institute of Standards and Technology; Gaithersburg, MD, USA: 2003. Version 7.0.

Baes C.F., Jr., Mesmer R.E. The Hydrolysis of Cations. Wiley; New York, NY, USA: 1976.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...