RNA kink-turns are highly anisotropic with respect to lateral displacement of the flanking stems

. 2022 Mar 01 ; 121 (5) : 705-714. [epub] 20220203

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35122735
Odkazy

PubMed 35122735
PubMed Central PMC8943727
DOI 10.1016/j.bpj.2022.01.025
PII: S0006-3495(22)00075-3
Knihovny.cz E-zdroje

Kink-turns are highly bent internal loop motifs commonly found in the ribosome and other RNA complexes. They frequently act as binding sites for proteins and mediate tertiary interactions in larger RNA structures. Kink-turns have been a topic of intense research, but their elastic properties in the folded state are still poorly understood. Here we use extensive all-atom molecular dynamics simulations to parameterize a model of kink-turn in which the two flanking helical stems are represented by effective rigid bodies. Time series of the full set of six interhelical coordinates enable us to extract minimum energy shapes and harmonic stiffness constants for kink-turns from different RNA functional classes. The analysis suggests that kink-turns exhibit isotropic bending stiffness but are highly anisotropic with respect to lateral displacement of the stems. The most flexible lateral displacement mode is perpendicular to the plane of the static bend. These results may help understand the structural adaptation and mechanical signal transmission by kink-turns in complex natural and artificial RNA structures.

Zobrazit více v PubMed

Klein D.J., Schmeing T.M., et al. Steitz T.A. The kink-turn: a new RNA secondary structure motif. EMBO J. 2001;20:4214–4221. PubMed PMC

Ben-Shem A., Garreau de Loubresse N., et al. Yusupov M. The structure of the eukaryotic ribosome at 3.0 A resolution. Science. 2011;334:1524–1529. PubMed

Wozniak A.K., Nottrott S., et al. Oesterhelt F. Detecting protein-induced folding of the U4 snRNA kink-turn by single-molecule multiparameter FRET measurements. RNA. 2005;11:1545–1554. PubMed PMC

Moore T., Zhang Y., et al. Li H. Molecular basis of box C/D RNA-protein interactions: cocrystal structure of Archaeal L7Ae and a box C/D RNA. Structure. 2004;12:807–818. PubMed

Montange R.K., Batey R.T. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature. 2006;441:1172–1175. PubMed

Zhang J., Ferre-D'Amare A.R. Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA. Nature. 2013;500:363–366. PubMed PMC

Chao J.A., Williamson J.R. Joint x-ray and NMR refinement of the yeast L30e-mRNA complex. Structure. 2004;12:1165–1176. PubMed

Huang L., Lilley D.M.J. A quasi-cyclic RNA nano-scale molecular object constructed using kink turns. Nanoscale. 2016;8:15189–15195. PubMed PMC

Huang L., Lilley D.M.J. The kink turn, a key architectural element in RNA structure. J. Mol. Biol. 2016;428:790–801. PubMed PMC

Huang L., Lilley D.M.J. The kink-turn in the structural biology of RNA. Q. Rev. Biophys. 2018;51:e5. PubMed

Daldrop P., Lilley D.M.J. The plasticity of a structural motif in RNA: structural polymorphism of a kink turn as a function of its environment. RNA. 2013;19:357–364. PubMed PMC

Curuksu J., Sponer J., Zacharias M. Elbow flexibility of the kt38 RNA kink-turn motif investigated by free-energy molecular dynamics simulations. Biophys. J. 2009;97:2004–2013. PubMed PMC

Sponer J., Bussi G., et al. Otyepka M. RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem. Rev. 2018;118:4177–4338. PubMed PMC

Cojocaru V., Klement R., Jovin T.M. Loss of G-A base pairs is insufficient for achieving a large opening of U4 snRNA K-turn motif. Nucleic Acids Res. 2005;33:3435–3446. PubMed PMC

Cojocaru V., Nottrott S., et al. Jovin T.M. The snRNP 15.5K protein folds its cognate K-turn RNA: a combined theoretical and biochemical study. RNA. 2005;11:197–209. PubMed PMC

Razga F., Koca J., et al. Leontis N.B. Hinge-like motions in RNA kink-turns: the role of the second A-minor motif and nominally unpaired bases. Biophys. J. 2005;88:3466–3485. PubMed PMC

Razga F., Zacharias M., et al. Sponer J. RNA kink-turns as molecular elbows: hydration, cation binding, and large-scale dynamics. Structure. 2006;14:825–835. PubMed

Reblova K., Sponer J.E., et al. Sponer J. A-minor tertiary interactions in RNA kink-turns. Molecular dynamics and quantum chemical analysis. J. Phys. Chem. B. 2011;115:13897–13910. PubMed

Zhang H., Zhang H., Chen C. Simulation study of the plasticity of k-turn motif in different environments. Biophys. J. 2020;119:1416–1426. PubMed PMC

Goody T.A., Melcher S.E., et al. Lilley D.M.J. The kink-turn motif in RNA is dimorphic, and metal ion-dependent. RNA. 2004;10:254–264. PubMed PMC

Lankas F. DNA sequence-dependent deformability - insights from computer simulations. Biopolymers. 2004;73:327–339. PubMed

Dohnalova H., Lankas F. Deciphering the mechanical properties of B-DNA duplex. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021:e1575. doi: 10.1002/wcms.1575. DOI

Liebl K., Drsata T., et al. Zacharias M. Explaining the striking difference in twist-stretch coupling between DNA and RNA: a comparative molecular dynamics analysis. Nucleic Acids Res. 2015;43:10143–10156. PubMed PMC

Reblova K., Sponer J., Lankas F. Structure and mechanical properties of the ribosomal L1 stalk three-way junction. Nucleic Acids Res. 2012;40:6290–6303. PubMed PMC

Aumann F., Lankas F., et al. Langowski J. Monte Carlo simulation of chromatin stretching. Phys. Rev. E. 2006;73:041927. PubMed

Drsata T., Reblova K., et al. Lankas F. rRNA C-loops: mechanical properties of a recurrent structural motif. J. Chem. Theory Comput. 2017;13:3359–3371. PubMed

Zgarbova M., Luque F.J., et al. Jurecka P. A novel approach for deriving force field torsion angle parameters accounting for conformation-dependent solvation effects. J. Chem. Theory Comput. 2012;8:3232–3242. PubMed

Banas P., Hollas D., et al. Otyepka M. Performance of molecular mechanics force fields for RNA simulations: stability of UUCG and GNRA hairpins. J. Chem. Theory Comput. 2010;6:3836–3849. PubMed PMC

Lu X.-J., Olson W.K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 2003;31:5108–5121. doi: 10.1093/nar/gkg680. PubMed DOI PMC

Huang L., Liao X., et al. Lilley D.M.J. Structure and folding of four putative kink turns identified in structured RNA species in a test of structural prediction rules. Nucleic Acids Res. 2021;49:5916–5924. PubMed PMC

Tan D., Piana S., et al. Shaw D.E. RNA force field with accuracy comparable to state-of-the-art protein force fields. Proc. Natl. Acad. Sci. U S A. 2018;115:E1346–E1355. PubMed PMC

Mlynsky V., Kuhrova P., et al. Sponer J. Fine-tuning of the AMBER RNA force field with a new term adjusting interactions of terminal nucleotides. J. Chem. Theory Comput. 2020;16:3936–3946. PubMed

Bailor M.H., Musselman C., et al. Al-Hashimi H.M. Characterizing the relative orientation and dynamics of RNA A-form helices using NMR residual dipolar couplings. Nat. Protoc. 2007;2:1536–1546. PubMed PMC

Curuksu J., Zarkzewska K., Zacharias M. Magnitude and direction of DNA bending induced by screw-axis orientation: influence of sequence, mismatches and abasic sites. Nucleic Acids Res. 2008;36:2268–2283. PubMed PMC

Reymer A., Zakrzewska K., Lavery R. Sequence-dependent response of DNA to torsional stress: a potential biological regulation mechanism. Nucleic Acids Res. 2018;46:1684–1694. PubMed PMC

Drsata T., Spackova N., et al. Lankas F. Mechanical properties of symmetric and asymmetric DNA A-tracts: implications for looping and nucleosome positioning. Nucleic Acids Res. 2014;42:7383–7394. PubMed PMC

Moakher M. Means and averaging in the group of rotations. SIAM J. Matrix Anal. Appl. 2002;24:1–16.

Kriegel F., Matek C., et al. Lipfert J. The temperature dependence of the helical twist of DNA. Nucleic Acids Res. 2018;46:7998–8009. PubMed PMC

Lavery R., Moakher M., et al. Zakrzewska K. Conformational analysis of nucleic acids revisited: Curves+ Nucleic Acids Res. 2009;37:5917–5929. PubMed PMC

Lu X.-J., Olson W.K. 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nat. Protoc. 2008;3:1213–1227. PubMed PMC

Dickerson R.E., Bansal M., et al. Zhurkin V.B. Definitions and nomenclature of nucleic acid structure parameters. J. Mol. Biol. 1989;205:787–791. PubMed

Olson W.K., Bansal M., et al. Berman H.M. A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 2001;313:229–237. PubMed

McPhee S.A., Huang L., Lilley D.M.J. A critical base pair in k-turns that confers folding characteristics and correlates with biological function. Nat. Commun. 2014;5:5127. PubMed PMC

Ashraf S., Huang L., Lilley D.M.J. Sequence determinants of the folding properties of box C/D kink-turns in RNA. RNA. 2017;23:1927–1935. PubMed PMC

Lescoute A., Leontis N.B., et al. Westhof E. Recurrent structural RNA motifs, isostericity matrices and sequence alignments. Nucleic Acids Res. 2005;33:2395–2409. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace