RNA kink-turns are highly anisotropic with respect to lateral displacement of the flanking stems
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35122735
PubMed Central
PMC8943727
DOI
10.1016/j.bpj.2022.01.025
PII: S0006-3495(22)00075-3
Knihovny.cz E-zdroje
- MeSH
- konformace nukleové kyseliny MeSH
- ribozomy metabolismus MeSH
- RNA * chemie MeSH
- simulace molekulární dynamiky * MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA * MeSH
Kink-turns are highly bent internal loop motifs commonly found in the ribosome and other RNA complexes. They frequently act as binding sites for proteins and mediate tertiary interactions in larger RNA structures. Kink-turns have been a topic of intense research, but their elastic properties in the folded state are still poorly understood. Here we use extensive all-atom molecular dynamics simulations to parameterize a model of kink-turn in which the two flanking helical stems are represented by effective rigid bodies. Time series of the full set of six interhelical coordinates enable us to extract minimum energy shapes and harmonic stiffness constants for kink-turns from different RNA functional classes. The analysis suggests that kink-turns exhibit isotropic bending stiffness but are highly anisotropic with respect to lateral displacement of the stems. The most flexible lateral displacement mode is perpendicular to the plane of the static bend. These results may help understand the structural adaptation and mechanical signal transmission by kink-turns in complex natural and artificial RNA structures.
Department of Informatics and Chemistry University of Chemistry and Technology Prague Czech Republic
Institute of Biophysics of the Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Klein D.J., Schmeing T.M., et al. Steitz T.A. The kink-turn: a new RNA secondary structure motif. EMBO J. 2001;20:4214–4221. PubMed PMC
Ben-Shem A., Garreau de Loubresse N., et al. Yusupov M. The structure of the eukaryotic ribosome at 3.0 A resolution. Science. 2011;334:1524–1529. PubMed
Wozniak A.K., Nottrott S., et al. Oesterhelt F. Detecting protein-induced folding of the U4 snRNA kink-turn by single-molecule multiparameter FRET measurements. RNA. 2005;11:1545–1554. PubMed PMC
Moore T., Zhang Y., et al. Li H. Molecular basis of box C/D RNA-protein interactions: cocrystal structure of Archaeal L7Ae and a box C/D RNA. Structure. 2004;12:807–818. PubMed
Montange R.K., Batey R.T. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature. 2006;441:1172–1175. PubMed
Zhang J., Ferre-D'Amare A.R. Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA. Nature. 2013;500:363–366. PubMed PMC
Chao J.A., Williamson J.R. Joint x-ray and NMR refinement of the yeast L30e-mRNA complex. Structure. 2004;12:1165–1176. PubMed
Huang L., Lilley D.M.J. A quasi-cyclic RNA nano-scale molecular object constructed using kink turns. Nanoscale. 2016;8:15189–15195. PubMed PMC
Huang L., Lilley D.M.J. The kink turn, a key architectural element in RNA structure. J. Mol. Biol. 2016;428:790–801. PubMed PMC
Huang L., Lilley D.M.J. The kink-turn in the structural biology of RNA. Q. Rev. Biophys. 2018;51:e5. PubMed
Daldrop P., Lilley D.M.J. The plasticity of a structural motif in RNA: structural polymorphism of a kink turn as a function of its environment. RNA. 2013;19:357–364. PubMed PMC
Curuksu J., Sponer J., Zacharias M. Elbow flexibility of the kt38 RNA kink-turn motif investigated by free-energy molecular dynamics simulations. Biophys. J. 2009;97:2004–2013. PubMed PMC
Sponer J., Bussi G., et al. Otyepka M. RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem. Rev. 2018;118:4177–4338. PubMed PMC
Cojocaru V., Klement R., Jovin T.M. Loss of G-A base pairs is insufficient for achieving a large opening of U4 snRNA K-turn motif. Nucleic Acids Res. 2005;33:3435–3446. PubMed PMC
Cojocaru V., Nottrott S., et al. Jovin T.M. The snRNP 15.5K protein folds its cognate K-turn RNA: a combined theoretical and biochemical study. RNA. 2005;11:197–209. PubMed PMC
Razga F., Koca J., et al. Leontis N.B. Hinge-like motions in RNA kink-turns: the role of the second A-minor motif and nominally unpaired bases. Biophys. J. 2005;88:3466–3485. PubMed PMC
Razga F., Zacharias M., et al. Sponer J. RNA kink-turns as molecular elbows: hydration, cation binding, and large-scale dynamics. Structure. 2006;14:825–835. PubMed
Reblova K., Sponer J.E., et al. Sponer J. A-minor tertiary interactions in RNA kink-turns. Molecular dynamics and quantum chemical analysis. J. Phys. Chem. B. 2011;115:13897–13910. PubMed
Zhang H., Zhang H., Chen C. Simulation study of the plasticity of k-turn motif in different environments. Biophys. J. 2020;119:1416–1426. PubMed PMC
Goody T.A., Melcher S.E., et al. Lilley D.M.J. The kink-turn motif in RNA is dimorphic, and metal ion-dependent. RNA. 2004;10:254–264. PubMed PMC
Lankas F. DNA sequence-dependent deformability - insights from computer simulations. Biopolymers. 2004;73:327–339. PubMed
Dohnalova H., Lankas F. Deciphering the mechanical properties of B-DNA duplex. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021:e1575. doi: 10.1002/wcms.1575. DOI
Liebl K., Drsata T., et al. Zacharias M. Explaining the striking difference in twist-stretch coupling between DNA and RNA: a comparative molecular dynamics analysis. Nucleic Acids Res. 2015;43:10143–10156. PubMed PMC
Reblova K., Sponer J., Lankas F. Structure and mechanical properties of the ribosomal L1 stalk three-way junction. Nucleic Acids Res. 2012;40:6290–6303. PubMed PMC
Aumann F., Lankas F., et al. Langowski J. Monte Carlo simulation of chromatin stretching. Phys. Rev. E. 2006;73:041927. PubMed
Drsata T., Reblova K., et al. Lankas F. rRNA C-loops: mechanical properties of a recurrent structural motif. J. Chem. Theory Comput. 2017;13:3359–3371. PubMed
Zgarbova M., Luque F.J., et al. Jurecka P. A novel approach for deriving force field torsion angle parameters accounting for conformation-dependent solvation effects. J. Chem. Theory Comput. 2012;8:3232–3242. PubMed
Banas P., Hollas D., et al. Otyepka M. Performance of molecular mechanics force fields for RNA simulations: stability of UUCG and GNRA hairpins. J. Chem. Theory Comput. 2010;6:3836–3849. PubMed PMC
Lu X.-J., Olson W.K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 2003;31:5108–5121. doi: 10.1093/nar/gkg680. PubMed DOI PMC
Huang L., Liao X., et al. Lilley D.M.J. Structure and folding of four putative kink turns identified in structured RNA species in a test of structural prediction rules. Nucleic Acids Res. 2021;49:5916–5924. PubMed PMC
Tan D., Piana S., et al. Shaw D.E. RNA force field with accuracy comparable to state-of-the-art protein force fields. Proc. Natl. Acad. Sci. U S A. 2018;115:E1346–E1355. PubMed PMC
Mlynsky V., Kuhrova P., et al. Sponer J. Fine-tuning of the AMBER RNA force field with a new term adjusting interactions of terminal nucleotides. J. Chem. Theory Comput. 2020;16:3936–3946. PubMed
Bailor M.H., Musselman C., et al. Al-Hashimi H.M. Characterizing the relative orientation and dynamics of RNA A-form helices using NMR residual dipolar couplings. Nat. Protoc. 2007;2:1536–1546. PubMed PMC
Curuksu J., Zarkzewska K., Zacharias M. Magnitude and direction of DNA bending induced by screw-axis orientation: influence of sequence, mismatches and abasic sites. Nucleic Acids Res. 2008;36:2268–2283. PubMed PMC
Reymer A., Zakrzewska K., Lavery R. Sequence-dependent response of DNA to torsional stress: a potential biological regulation mechanism. Nucleic Acids Res. 2018;46:1684–1694. PubMed PMC
Drsata T., Spackova N., et al. Lankas F. Mechanical properties of symmetric and asymmetric DNA A-tracts: implications for looping and nucleosome positioning. Nucleic Acids Res. 2014;42:7383–7394. PubMed PMC
Moakher M. Means and averaging in the group of rotations. SIAM J. Matrix Anal. Appl. 2002;24:1–16.
Kriegel F., Matek C., et al. Lipfert J. The temperature dependence of the helical twist of DNA. Nucleic Acids Res. 2018;46:7998–8009. PubMed PMC
Lavery R., Moakher M., et al. Zakrzewska K. Conformational analysis of nucleic acids revisited: Curves+ Nucleic Acids Res. 2009;37:5917–5929. PubMed PMC
Lu X.-J., Olson W.K. 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nat. Protoc. 2008;3:1213–1227. PubMed PMC
Dickerson R.E., Bansal M., et al. Zhurkin V.B. Definitions and nomenclature of nucleic acid structure parameters. J. Mol. Biol. 1989;205:787–791. PubMed
Olson W.K., Bansal M., et al. Berman H.M. A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 2001;313:229–237. PubMed
McPhee S.A., Huang L., Lilley D.M.J. A critical base pair in k-turns that confers folding characteristics and correlates with biological function. Nat. Commun. 2014;5:5127. PubMed PMC
Ashraf S., Huang L., Lilley D.M.J. Sequence determinants of the folding properties of box C/D kink-turns in RNA. RNA. 2017;23:1927–1935. PubMed PMC
Lescoute A., Leontis N.B., et al. Westhof E. Recurrent structural RNA motifs, isostericity matrices and sequence alignments. Nucleic Acids Res. 2005;33:2395–2409. PubMed PMC