Structural and dynamic effects of pseudouridine modifications on noncanonical interactions in RNA

. 2023 Jun ; 29 (6) : 790-807. [epub] 20230303

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36868785

Pseudouridine is the most frequently naturally occurring RNA modification, found in all classes of biologically functional RNAs. Compared to uridine, pseudouridine contains an additional hydrogen bond donor group and is therefore widely regarded as a structure stabilizing modification. However, the effects of pseudouridine modifications on the structure and dynamics of RNAs have so far only been investigated in a limited number of different structural contexts. Here, we introduced pseudouridine modifications into the U-turn motif and the adjacent U:U closing base pair of the neomycin-sensing riboswitch (NSR)-an extensively characterized model system for RNA structure, ligand binding, and dynamics. We show that the effects of replacing specific uridines with pseudouridines on RNA dynamics crucially depend on the exact location of the replacement site and can range from destabilizing to locally or even globally stabilizing. By using a combination of NMR spectroscopy, MD simulations and QM calculations, we rationalize the observed effects on a structural and dynamical level. Our results will help to better understand and predict the consequences of pseudouridine modifications on the structure and function of biologically important RNAs.

Zobrazit více v PubMed

Akiyama BM, Laurence HM, Massey AR, Costantino DA, Xie X, Yang Y, Shi P-Y, Nix JC, Beckham JD, Kieft JS. 2016. Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science 354: 1148–1152. 10.1126/science.aah3963 PubMed DOI PMC

Arnez JG, Steitz TA. 1994. Crystal structure of unmodified tRNAGln complexed with glutaminyl-tRNA synthetase and ATP suggests a possible role for pseudo-uridines in stabilization of RNA structure. Biochemistry 33: 7560–7567. 10.1021/bi00190a008 PubMed DOI

Barfield M, Dingley AJ, Feigon J, Grzesiek S. 2001. A DFT study of the interresidue dependencies of scalar J-coupling and magnetic shielding in the hydrogen-bonding regions of a DNA triplex. J Am Chem Soc 123: 4014–4022. 10.1021/ja003781c PubMed DOI

Becker HF, Motorin Y, Florentz C, Giegé R, Grosjean H. 1998. Pseudouridine and ribothymidine formation in the tRNA-like domain of turnip yellow mosaic virus RNA. Nucleic Acids Res 26: 3991–3997. 10.1093/nar/26.17.3991 PubMed DOI PMC

Berendsen HJC, Grigera JR, Straatsma TP. 1987. The missing term in effective pair potentials. J Phys Chem 91: 6269–6271. 10.1021/j100308a038 DOI

Biedenbänder T, de Jesus V, Schmidt-Dengler M, Helm M, Corzilius B, Fürtig B. 2022. RNA modifications stabilize the tertiary structure of tRNAfMet by locally increasing conformational dynamics. Nucleic Acids Res 50: 2334–2349. 10.1093/nar/gkac040 PubMed DOI PMC

Björk GR, Ericson JU, Gustafsson CE, Hagervall TG, Jönsson YH, Wikström PM. 1987. Transfer RNA modification. Annu Rev Biochem 56: 263–287. 10.1146/annurev.bi.56.070187.001403 PubMed DOI

Borchardt EK, Martinez NM, Gilbert WV. 2020. Regulation and function of RNA pseudouridylation in human cells. Annu Rev Genet 54: 309–336. 10.1146/annurev-genet-112618-043830 PubMed DOI PMC

Brandenburg JG, Hochheim M, Bredow T, Grimme S. 2014. Low-cost quantum chemical methods for noncovalent interactions. J Phys Chem Lett 5: 4275–4284. 10.1021/jz5021313 PubMed DOI

Byrne RT, Konevega AL, Rodnina MV, Antson AA. 2010. The crystal structure of unmodified tRNAPhe from Escherichia coli. Nucleic Acids Res 38: 4154–4162. 10.1093/nar/gkq133 PubMed DOI PMC

Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV. 2014. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515: 143–146. 10.1038/nature13802 PubMed DOI PMC

Case DA, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham TE III, Cruzeiro VWD, Darden TA, Duke RE, Ghoreishi D, Gilson MK, et al. 2018. AMBER 2018. University of California, San Francisco.

Chyży P, Kulik M, Re S, Sugita Y, Trylska J. 2021. Mutations of N1 riboswitch affect its dynamics and recognition by neomycin through conformational selection. Front Mol Biosci 8: 633130. 10.3389/fmolb.2021.633130 PubMed DOI PMC

Cohn WE, Volkin E. 1951. Nucleoside-5′-phosphates from ribonucleic acid. Nature 167: 483–484. 10.1038/167483a0 DOI

Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. 1995. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117: 5179–5197. 10.1021/ja00124a002 DOI

Davis DR. 1995. Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res 23: 5020–5026. 10.1093/nar/23.24.5020 PubMed DOI PMC

Davis FF, Allen FW. 1957. Ribonucleic acids from yeast which contain a fifth nucleotide. J Biol Chem 227: 907–915. PubMed

Davis DR, Poulter CD. 1991. 1H-15N NMR studies of Escherichia coli tRNAPhe from hisT mutants: a structural role for pseudouridine. Biochemistry 30: 4223–4231. 10.1021/bi00231a017 PubMed DOI

Davis DR, Veltri CA, Nielsen L. 1998. An RNA model system for investigation of pseudouridine stabilization of the codon-anticodon interaction in tRNALys, tRNAHis and tRNATyr. J Biomol Struct Dyn 15: 1121–1132. 10.1080/07391102.1998.10509006 PubMed DOI

Deb I, Sarzynska J, Nilsson L, Lahiri A. 2014. Conformational preferences of modified uridines: comparison of AMBER derived force fields. J Chem Inf Model 54: 1129–1142. 10.1021/ci400582a PubMed DOI

Deb I, Pal R, Sarzynska J, Lahiri A. 2016. Reparameterizations of the χ torsion and Lennard-Jones σ parameters improve the conformational characteristics of modified uridines. J Comput Chem 37: 1576–1588. 10.1002/jcc.24374 PubMed DOI

Deb I, Popenda Ł, Sarzyńska J, Małgowska M, Lahiri A, Gdaniec Z, Kierzek R. 2019. Computational and NMR studies of RNA duplexes with an internal pseudouridine-adenosine base pair. Sci Rep 9: 16278. 10.1038/s41598-019-52637-0 PubMed DOI PMC

Del Bene JE, Perera SA, Bartlett RJ, Elguero J, Alkorta I, López-Leonardo C, Alajarin M. 2002. 3hJ(15N-31P) spin-spin coupling constants across N-H···O-P hydrogen bonds. J Am Chem Soc 124: 6393–6397. 10.1021/ja011755o PubMed DOI

Derrick WB, Horowitz J. 1993. Probing structural differences between native and in vitro transcribed Escherichia coli valine transfer RNA: evidence for stable base modification-dependent conformers. Nucleic Acids Res 21: 4948–4953. 10.1093/nar/21.21.4948 PubMed DOI PMC

Duchardt-Ferner E, Wöhnert J. 2017. NMR experiments for the rapid identification of P=O···H-X type hydrogen bonds in nucleic acids. J Biomol NMR 69: 101–110. 10.1007/s10858-017-0140-7 PubMed DOI

Duchardt-Ferner E, Weigand JE, Ohlenschläger O, Schmidtke SR, Suess B, Wöhnert J. 2010. Highly modular structure and ligand binding by conformational capture in a minimalistic riboswitch. Angew Chem Int Ed Engl 49: 6216–6219. 10.1002/anie.201001339 PubMed DOI

Duchardt-Ferner E, Ferner J, Wöhnert J. 2011. Rapid identification of noncanonical RNA structure elements by direct detection of OH···O=P, NH···O=P, and NH2···O=P hydrogen bonds in solution NMR spectroscopy. Angew Chem Int Ed Engl 50: 7927–7930. 10.1002/anie.201101743 PubMed DOI

Duchardt-Ferner E, Gottstein-Schmidtke SR, Weigand JE, Ohlenschläger O, Wurm J-P, Hammann C, Suess B, Wöhnert J. 2016. What a difference an OH makes: conformational dynamics as the basis for the ligand specificity of the neomycin-sensing riboswitch. Angew Chem Int Ed Engl 55: 1527–1530. 10.1002/anie.201507365 PubMed DOI

Durant PC, Davis DR. 1999. Stabilization of the anticodon stem-loop of tRNALys,3 by an A+-C base-pair and by pseudouridine. J Mol Biol 285: 115–131. 10.1006/jmbi.1998.2297 PubMed DOI

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, et al. 2009. Gaussian 09, Revision D01. Gaussian, Inc., Wallingford CT.

Fürtig B, Richter C, Wöhnert J, Schwalbe H. 2003. NMR spectroscopy of RNA. Chembiochem 4: 936–962. 10.1002/cbic.200300700 PubMed DOI

Gottstein-Schmidtke SR, Duchardt-Ferner E, Groher F, Weigand JE, Gottstein D, Suess B, Wöhnert J. 2014. Building a stable RNA U-turn with a protonated cytidine. RNA 20: 1163–1172. 10.1261/rna.043083.113 PubMed DOI PMC

Greenwood SJ, Schnare MN, Gray MW. 1996. Molecular characterization of U3 small nucleolar RNA from the early diverging protist, Euglena gracilis. Curr Genet 30: 338–346. 10.1007/s002940050142 PubMed DOI

Grimme S, Brandenburg JG, Bannwarth C, Hansen A. 2015. Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J Chem Phys 143: 54107. 10.1063/1.4927476 PubMed DOI

Grzesiek S, Cordier F, Jaravine V, Barfield M. 2004. Insights into biomolecular hydrogen bonds from hydrogen bond scalar couplings. Prog Nucl Magn Reson Spectrosc 45: 275–300. 10.1016/j.pnmrs.2004.08.001 DOI

Gutell RR, Cannone JJ, Konings D, Gautheret D. 2000. Predicting U-turns in ribosomal RNA with comparative sequence analysis. J Mol Biol 300: 791–803. 10.1006/jmbi.2000.3900 PubMed DOI

Herschlag D, Pinney MM. 2018. Hydrogen bonds: simple after all? Biochemistry 57: 3338–3352. 10.1021/acs.biochem.8b00217 PubMed DOI

Huang S, Wang YX, Draper DE. 1996. Structure of a hexanucleotide RNA hairpin loop conserved in ribosomal RNAs. J Mol Biol 258: 308–321. 10.1006/jmbi.1996.0252 PubMed DOI

Humphrey W, Dalke A, Schulten K. 1996. VMD: visual molecular dynamics. J Mol Graph 14: 33–38. 10.1016/0263-7855(96)00018-5 PubMed DOI

Hwang T-L, Mori S, Shaka AJ, van Zijl PCM. 1997. Application of phase-modulated CLEAN chemical EXchange spectroscopy (CLEANEX-PM) to detect water−protein proton exchange and intermolecular NOEs. J Am Chem Soc 119: 6203–6204. 10.1021/ja970160j DOI

Jeffrey GA, Yeon Y. 1986. The correlation between hydrogen-bond lengths and proton chemical shifts in crystals. Acta Crystallogr B Struct Sci 42: 410–413. 10.1107/S0108768186098038 DOI

Joung IS, Cheatham TE. 2008. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112: 9020–9041. 10.1021/jp8001614 PubMed DOI PMC

Kierzek E, Malgowska M, Lisowiec J, Turner DH, Gdaniec Z, Kierzek R. 2014. The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res 42: 3492–3501. 10.1093/nar/gkt1330 PubMed DOI PMC

Kim SH, Suddath FL, Quigley GJ, McPherson A, Sussman JL, Wang AH, Seeman NC, Rich A. 1974. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185: 435–440. 10.1126/science.185.4149.435 PubMed DOI

Klamt A, Schüürmann G. 1993. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2 5: 799–805. 10.1039/P29930000799 DOI

Krepl M, Vögele J, Kruse H, Duchardt-Ferner E, Wöhnert J, Sponer J. 2018. An intricate balance of hydrogen bonding, ion atmosphere and dynamics facilitates a seamless uracil to cytosine substitution in the U-turn of the neomycin-sensing riboswitch. Nucleic Acids Res 46: 6528–6543. 10.1093/nar/gky490 PubMed DOI PMC

Kruse H. 2020. External optimizer for quantum chemistry. https://github.com/hokru/xopt.v2.0

Kruse H, Šponer J. 2015. Towards biochemically relevant QM computations on nucleic acids: controlled electronic structure geometry optimization of nucleic acid structural motifs using penalty restraint functions. Phys Chem Chem Phys 17: 1399–1410. 10.1039/c4cp04680c PubMed DOI

Lin Y, Kielkopf CL. 2008. X-ray structures of U2 snRNA-branchpoint duplexes containing conserved pseudouridines. Biochemistry 47: 5503–5514. 10.1021/bi7022392 PubMed DOI PMC

Liu P, Li L, Millership JJ, Kang H, Leibowitz JL, Giedroc DP. 2007. A U-turn motif-containing stem-loop in the coronavirus 5′ untranslated region plays a functional role in replication. RNA 13: 763–780. 10.1261/rna.261807 PubMed DOI PMC

Lovejoy AF, Riordan DP, Brown PO. 2014. Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS ONE 9: e110799. 10.1371/journal.pone.0110799 PubMed DOI PMC

Meroueh M, Grohar PJ, Qiu J, SantaLucia J, Scaringe SA, Chow CS. 2000. Unique structural and stabilizing roles for the individual pseudouridine residues in the 1920 region of Escherichia coli 23S rRNA. Nucleic Acids Res 28: 2075–2083. 10.1093/nar/28.10.2075 PubMed DOI PMC

Miller JL, Kollman PA. 1996. Solvation free energies of the nucleic acid bases. J Phys Chem 100: 8587–8594. 10.1021/jp9605358 DOI

Moore PB. 1999. Structural motifs in RNA. Annu Rev Biochem 68: 287–300. 10.1146/annurev.biochem.68.1.287 PubMed DOI

Moras D, Comarmond MB, Fischer J, Weiss R, Thierry JC, Ebel JP, Giegé R. 1980. Crystal structure of yeast tRNAAsp. Nature 288: 669–674. 10.1038/288669a0 PubMed DOI

Mráziková K, Mlýnský V, Kührová P, Pokorná P, Kruse H, Krepl M, Otyepka M, Banáš P, Šponer J. 2020. UUCG RNA tetraloop as a formidable force-field challenge for MD simulations. J Chem Theory Comput 16: 7601–7617. 10.1021/acs.jctc.0c00801 PubMed DOI

Nanda RK, Tewari R, Govil G, Smith ICP. 1974. The conformation of β-pseudouridine about the glycosidic bond as studied by 1H homonuclear Overhauser measurements and molecular orbital calculations. Can J Chem 52: 371–375. 10.1139/v74-059 DOI

Neumann JM, Bernassau JM, Guéron M, Tran-Dinh S. 1980. Comparative conformations of uridine and pseudouridine and their derivatives. Eur J Biochem 108: 457–463. 10.1111/j.1432-1033.1980.tb04742.x PubMed DOI

Newby MI, Greenbaum NL. 2001. A conserved pseudouridine modification in eukaryotic U2 snRNA induces a change in branch-site architecture. RNA 7: 833–845. 10.1017/s1355838201002308 PubMed DOI PMC

Newby MI, Greenbaum NL. 2002a. Investigation of Overhauser effects between pseudouridine and water protons in RNA helices. Proc Natl Acad Sci 99: 12697–12702. 10.1073/pnas.202477199 PubMed DOI PMC

Newby MI, Greenbaum NL. 2002b. Sculpting of the spliceosomal branch site recognition motif by a conserved pseudouridine. Nat Struct Biol 9: 958–965. 10.1038/nsb873 PubMed DOI

Ofengand J, Bakin A. 1997. Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J Mol Biol 266: 246–268. 10.1006/jmbi.1996.0737 PubMed DOI

Pley HW, Flaherty KM, McKay DB. 1994. Three-dimensional structure of a hammerhead ribozyme. Nature 372: 68–74. 10.1038/372068a0 PubMed DOI

Pokorná P, Kruse H, Krepl M, Šponer J. 2018. QM/MM calculations on protein-RNA complexes: understanding limitations of classical MD simulations and search for reliable cost-effective QM methods. J Chem Theory Comput 14: 5419–5433. 10.1021/acs.jctc.8b00670 PubMed DOI

Puglisi EV, Puglisi JD. 1998. HIV-1 A-rich RNA loop mimics the tRNA anticodon structure. Nat Struct Biol 5: 1033–1036. 10.1038/4141 PubMed DOI

Quigley GJ, Rich A. 1976. Structural domains of transfer RNA molecules. Science 194: 796–806. 10.1126/science.790568 PubMed DOI

Reddy R, Busch H. 1988. Small nuclear RNAs: RNA sequences, structure, and modifications. In Structure and function of major and minor small nuclear ribonucleoprotein particles (ed. Birnstiel ML), pp. 1–37. Springer, Berlin, Heidelberg

Rinnenthal J, Klinkert B, Narberhaus F, Schwalbe H. 2010. Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution. Nucleic Acids Res 38: 3834–3847. 10.1093/nar/gkq124 PubMed DOI PMC

Roe DR, Cheatham TE. 2013. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9: 3084–3095. 10.1021/ct400341p PubMed DOI

Rohrer DC, Sundaralingam M. 1970. Stereochemistry of nucleic acids and their constituents. XI. The molecular structure and conformation of alpha-pseudouridine monohydrate, an unusual nucleoside with a “glycosidic” carbon-carbon bond. J Am Chem Soc 92: 4950–4955. 10.1021/ja00719a031 PubMed DOI

Schrödinger LLC. 2010. The PyMOL molecular graphics system. Version 1.4.1.

Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, León-Ricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES, et al. 2014. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159: 148–162. 10.1016/j.cell.2014.08.028 PubMed DOI PMC

Serebrov V, Vassilenko K, Kholod N, Gross HJ, Kisselev L. 1998. Mg2+ binding and structural stability of mature and in vitro synthesized unmodified Escherichia coli tRNAPhe. Nucleic Acids Res 26: 2723–2728. 10.1093/nar/26.11.2723 PubMed DOI PMC

Shi H, Moore PB. 2000. The crystal structure of yeast phenylalanine tRNA at 1.93 Å resolution: a classic structure revisited. RNA 6: 1091–1105. 10.1017/s1355838200000364 PubMed DOI PMC

Stallings SC, Moore PB. 1997. The structure of an essential splicing element: stem loop IIa from yeast U2 snRNA. Structure 5: 1173–1185. 10.1016/s0969-2126(97)00268-2 PubMed DOI

Steinbrecher T, Joung I, Case DA. 2011. Soft-core potentials in thermodynamic integration: comparing one- and two-step transformations. J Comput Chem 32: 3253–3263. 10.1002/jcc.21909 PubMed DOI PMC

Suddath FL, Quigley GJ, McPherson A, Sneden D, Kim JJ, Kim SH, Rich A. 1974. Three-dimensional structure of yeast phenylalanine transfer RNA at 3.0Å resolution. Nature 248: 20–24. 10.1038/248020a0 PubMed DOI

Sumita M, Desaulniers J-P, Chang Y-C, Chui HM-P, Clos L, Chow CS. 2005. Effects of nucleotide substitution and modification on the stability and structure of helix 69 from 28S rRNA. RNA 11: 1420–1429. 10.1261/rna.2320605 PubMed DOI PMC

Sundaralingam M. 1975. Structure and conformation of nucleosides and nucleotides and their analogs as determined by X-ray diffraction. Ann N Y Acad Sci 255: 3–42. 10.1111/j.1749-6632.1975.tb29211.x PubMed DOI

Vermeulen A, McCallum SA, Pardi A. 2005. Comparison of the global structure and dynamics of native and unmodified tRNAVal. Biochemistry 44: 6024–6033. 10.1021/bi0473399 PubMed DOI

Wagner G, Pardi A, Wuethrich K. 1983. Hydrogen bond length and proton NMR chemical shifts in proteins. J Am Chem Soc 105: 5948–5949. 10.1021/ja00356a056 DOI

Wang J, Cieplak P, Kollman PA. 2000. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comp Chem 21: 1049–1074. 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F DOI

Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA. 2004. Development and testing of a general amber force field. J Comput Chem 25: 1157–1174. PubMed

Weigand JE, Sanchez M, Gunnesch E-B, Zeiher S, Schroeder R, Suess B. 2008. Screening for engineered neomycin riboswitches that control translation initiation. RNA 14: 89–97. 10.1261/rna.772408 PubMed DOI PMC

Weigand JE, Schmidtke SR, Will TJ, Duchardt-Ferner E, Hammann C, Wöhnert J, Suess B. 2011. Mechanistic insights into an engineered riboswitch: a switching element which confers riboswitch activity. Nucleic Acids Res 39: 3363–3372. 10.1093/nar/gkq946 PubMed DOI PMC

Yarian CS, Basti MM, Cain RJ, Ansari G, Guenther RH, Sochacka E, Czerwinska G, Malkiewicz A, Agris PF. 1999. Structural and functional roles of the N1- and N3-protons of ψ at tRNA's position 39. Nucleic Acids Res 27: 3543–3549. 10.1093/nar/27.17.3543 PubMed DOI PMC

Zgarbová M, Otyepka M, Sponer J, Mládek A, Banáš P, Cheatham TE, Jurečka P. 2011. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J Chem Theory Comput 7: 2886–2902. 10.1021/ct200162x PubMed DOI PMC

Zhang Z, Vögele J, Mráziková K, Kruse H, Cang X, Wöhnert J, Krepl M, Šponer J. 2021. Phosphorothioate substitutions in RNA structure studied by molecular dynamics simulations, QM/MM calculations, and NMR experiments. J Phys Chem B 125: 825–840. 10.1021/acs.jpcb.0c10192 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace