Free Energy Landscape of GAGA and UUCG RNA Tetraloops
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
- Publikační typ
- časopisecké články MeSH
We report the folding thermodynamics of ccUUCGgg and ccGAGAgg RNA tetraloops using atomistic molecular dynamics simulations. We obtain a previously unreported estimation of the folding free energy using parallel tempering in combination with well-tempered metadynamics. A key ingredient is the use of a recently developed metric distance, eRMSD, as a biased collective variable. We find that the native fold of both tetraloops is not the global free energy minimum using the AmberχOL3 force field. The estimated folding free energies are 30.2 ± 0.5 kJ/mol for UUCG and 7.5 ± 0.6 kJ/mol for GAGA, in striking disagreement with experimental data. We evaluate the viability of all possible one-dimensional backbone force field corrections. We find that disfavoring the gauche+ region of α and ζ angles consistently improves the existing force field. The level of accuracy achieved with these corrections, however, cannot be considered sufficient by judging on the basis of available thermodynamic data and solution experiments.
Citace poskytuje Crossref.org
Automatic Learning of Hydrogen-Bond Fixes in the AMBER RNA Force Field
Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview