A thermosensitive gel matrix for bioreactor-assisted in-cell NMR of nucleic acids and proteins
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37688760
PubMed Central
PMC10687187
DOI
10.1007/s10858-023-00422-7
PII: 10.1007/s10858-023-00422-7
Knihovny.cz E-zdroje
- Klíčová slova
- Bioreactor, Cell immobilization, In-cell NMR, PLA-PEG-PLA, Thermosensitive hydrogel,
- MeSH
- bioreaktory MeSH
- DNA MeSH
- magnetická rezonanční spektroskopie MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- nukleové kyseliny * MeSH
- polymery chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- nukleové kyseliny * MeSH
- polylactide-polyethylene glycol-polylactide MeSH Prohlížeč
- polymery MeSH
Introducing the flow through the bioreactor has revolutionized in-cell NMR spectroscopy by prolonging the measurement time available to acquire spectral information about biomacromolecules in metabolically active cells. Bioreactor technology relies on immobilizer matrices, which secure cells in the active volume of the NMR coil and enable uniform perfusion of the growth medium, supplying fresh nutrients to the cells while removing toxic byproducts of their metabolism. The main drawbacks of commonly used matrices include the inability to recover intact cells post-measurement for additional analyses and/or requirements for specific operating temperatures. Here, we report on the development and characterization of a set of thermosensitive and nontoxic triblock copolymers based on poly(D,L-lactide)-b-poly(ethylene glycol)-b-poly(D,L-lactide) (PLA-PEG-PLA). Here, we show for the first time that these copolymers are suitable as immobilizer matrices for the acquisition of in-cell NMR spectra of nucleic acids and proteins over a commonly used sample temperature range of 15-40 °C and, importantly, allow recovery of cells after completion of in-cell NMR spectra acquisition. We compared the performances of currently used matrices in terms of cell viability (dye exclusion assays), cellular metabolism (1D 31P NMR), and quality of in-cell NMR spectra of two model biomacromolecules (hybrid double-stranded/i-motif DNA and ubiquitin). Our results demonstrate the suitability and advantages of PLA-PEG-PLA copolymers for application in bioreactor-assisted in-cell NMR.
Zobrazit více v PubMed
Andersen T, Auk-Emblem P, Dornish M. 3D cell culture in alginate hydrogels. Microarrays. 2015;4:133–161. doi: 10.3390/microarrays4020133. PubMed DOI PMC
Banci L, Barbieri L, Bertini I, et al. Atomic-resolution monitoring of protein maturation in live human cells by NMR. Nat Chem Biol. 2013;9:297–299. doi: 10.1038/nchembio.1202. PubMed DOI PMC
Barbieri L, Luchinat E (2021) Monitoring protein-ligand interactions in human cells by real-time quantitative in-cell nmr using a high cell density bioreactor. J Vis Exp 169. 10.3791/62323 PubMed
Breindel L, DeMott C, Burz DS, Shekhtman A. Real-time in-cell nuclear magnetic resonance: ribosome-targeted antibiotics modulate quinary protein interactions. Biochemistry. 2018;57:540–546. doi: 10.1021/acs.biochem.7b00938. PubMed DOI PMC
Breindel L, Burz DS, Shekhtman A. Active metabolism unmasks functional protein–protein interactions in real time in-cell NMR. Commun Biol. 2020;3:249. doi: 10.1038/s42003-020-0976-3. PubMed DOI PMC
Carvalho J, Alves S, Castro MMCA, et al. Development of a bioreactor system for cytotoxic evaluation of pharmacological compounds in living cells using NMR spectroscopy. J Pharmacol Toxicol Methods. 2019;95:70–78. doi: 10.1016/j.vascn.2018.11.004. PubMed DOI
Cerofolini L, Giuntini S, Barbieri L, et al. Real-time insights into biological events: In-cell processes and protein-ligand interactions. Biophys J. 2019;116:239–247. doi: 10.1016/j.bpj.2018.11.3132. PubMed DOI PMC
Du YJ, Lemstra PJ, Nijenhuis AJ, et al. ABA type copolymers of lactide with poly(ethylene glycol). Kinetic, mechanistic, and model studies. Macromolecules. 1995;28:2124–2132. doi: 10.1021/ma00111a004. DOI
Dzatko S, Krafcikova M, Hänsel-Hertsch R, et al. Evaluation of the stability of DNA i-motifs in the nuclei of living mammalian cells. Angew Chem Int Ed Engl. 2018;57:2165–2169. doi: 10.1002/anie.201712284. PubMed DOI PMC
Elstad NL, Fowers KD. OncoGel (ReGel/paclitaxel) - clinical applications for a novel paclitaxel delivery system. Adv Drug Deliv Rev. 2009;61:785–794. doi: 10.1016/j.addr.2009.04.010. PubMed DOI
Feng L, Ward JA, Li SK, et al. Assessment of PLGA-PEG-PLGA copolymer hydrogel for sustained drug delivery in the ear. Curr Drug Deliv. 2014;11:279–286. doi: 10.2174/1567201811666140118224616. PubMed DOI PMC
Fernández-Cossío S, León-Mateos A, Sampedro FG, Oreja MTC. Biocompatibility of agarose gel as a dermal filler: histologic evaluation of subcutaneous implants. Plast Reconstr Surg. 2007;120:1161–1169. doi: 10.1097/01.prs.0000279475.99934.71. PubMed DOI
Gmati D, Chen J, Jolicoeur M. Development of a small-scale bioreactor: application to in vivo NMR measurement. Biotechnol Bioeng. 2005;89:138–147. doi: 10.1002/bit.20293. PubMed DOI
Gong C, Qi T, Wei X, et al. Thermosensitive polymeric hydrogels as drug delivery systems. Curr Med Chem. 2013;20:79–94. doi: 10.2174/0929867311302010079. PubMed DOI
Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. Polymer. 2008;49:1993–2007. doi: 10.1016/j.polymer.2008.01.027. DOI
Inomata K, Ohno A, Tochio H, et al. High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature. 2009;458:106–109. doi: 10.1038/nature07839. PubMed DOI
Inomata K, Kamoshida H, Ikari M, et al. Impact of cellular health conditions on the protein folding state in mammalian cells. Chem Commun (Camb) 2017;53:11245–11248. doi: 10.1039/c7cc06004a. PubMed DOI
Kubo S, Nishida N, Udagawa Y, et al. A gel-encapsulated bioreactor system for NMR studies of protein-protein interactions in living mammalian cells. Angew Chem Int Ed Engl. 2013;52:1208–1211. doi: 10.1002/anie.201207243. PubMed DOI
Lee GM, Gray JJ, Palsson BO. Effect of trisodium citrate treatment on hybridoma cell viability. Biotechnol Tech. 1991;5:295–298. doi: 10.1007/BF02438666. DOI
Lin H, Li Q, Lei Y. An integrated miniature bioprocessing for personalized human induced pluripotent stem cell expansion and differentiation into neural stem cells. Sci Rep. 2017;7:40191. doi: 10.1038/srep40191. PubMed DOI PMC
López-Cano JJ, Sigen A, Andrés-Guerrero V, et al. Thermo-responsive PLGA-PEG-PLGA hydrogels as novel injectable platforms for neuroprotective combined therapies in the treatment of retinal degenerative diseases. Pharmaceutics. 2021;13:1–23. doi: 10.3390/pharmaceutics13020234. PubMed DOI PMC
Luchinat E, Banci L. In-cell NMR: from target structure and dynamics to drug screening. Curr Opin Struct Biol. 2022;74:102374. doi: 10.1016/j.sbi.2022.102374. PubMed DOI
Luchinat E, Barbieri L, Campbell TF, Banci L. Real-time quantitative in-cell NMR: ligand binding and protein oxidation monitored in human cells using multivariate curve resolution. Anal Chem. 2020;92:9997–10006. doi: 10.1021/acs.analchem.0c01677. PubMed DOI PMC
Lysáková K, Hlináková K, Kutálková K, et al. A novel approach in control release monitoring of protein-based bioactive substances from injectable PLGA-PEG-PLGA hydrogel. Express Polym Lett. 2022;16:798–811. doi: 10.3144/expresspolymlett.2022.59. DOI
Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polym (Basel) 2011;3:1377–1397. doi: 10.3390/polym3031377. PubMed DOI PMC
Michlovská L, Vojtová L, Mravcová L, et al. Functionalization conditions of PLGA-PEG-PLGA copolymer with itaconic anhydride. Macromol Symp. 2010;295:119–124. doi: 10.1002/masy.200900071. DOI
Oborná J, Mravcová L, Michlovská L, et al. The effect of PLGA-PEG-PLGA modification on the sol-gel transition and degradation properties. Express Polym Lett. 2016;10:361–372. doi: 10.3144/expresspolymlett.2016.34. DOI
Patel RG, Purwada A, Cerchietti L, et al. Microscale bioadhesive hydrogel arrays for cell engineering applications. Cell Mol Bioeng. 2014;7:394–408. doi: 10.1007/s12195-014-0353-8. PubMed DOI PMC
Perinelli DR, Cespi M, Bonacucina G, Palmieri GF. PEGylated polylactide (PLA) and poly (lactic-co-glycolic acid) (PLGA) copolymers for the design of drug delivery systems. J Pharm Investig. 2019;49:443–458. doi: 10.1007/s40005-019-00442-2. DOI
Renn DW. Agar and agarose: indispensable partners in biotechnology. Ind Eng Chem Prod Res Dev. 1984;23:17–21. doi: 10.1021/i300013a004. DOI
Rodrigues GMC, Gaj T, Adil MM, et al. Defined and scalable differentiation of human oligodendrocyte precursors from pluripotent stem cells in a 3D culture system. Stem Cell Reports. 2017;8:1770–1783. doi: 10.1016/j.stemcr.2017.04.027. PubMed DOI PMC
Sakamoto T, Yamaoki Y, Nagata T, Katahira M. Detection of parallel and antiparallel DNA triplex structures in living human cells using in-cell NMR. Chem Commun (Camb) 2021;57:6364–6367. doi: 10.1039/d1cc01761f. PubMed DOI
Serber Z, Keatinge-Clay AT, Ledwidge R, et al. High-resolution macromolecular NMR spectroscopy inside living cells. J Am Chem Soc. 2001;123:2446–2447. doi: 10.1021/ja0057528. PubMed DOI
Sharaf NG, Barnes CO, Charlton LM, et al. A bioreactor for in-cell protein NMR. J Magn Reson. 2010;202:140–146. doi: 10.1016/j.jmr.2009.10.008. PubMed DOI PMC
Smidsrød O, Skjåk-Braek G. Alginate as immobilization matrix for cells. Trends Biotechnol. 1990;8:71–78. doi: 10.1016/0167-7799(90)90139-O. PubMed DOI
Steinert HS, Rinnenthal J, Schwalbe H. Individual basepair stability of DNA and RNA studied by NMR-detected solvent exchange. Biophys J. 2012;102:2564–2574. doi: 10.1016/J.BPJ.2012.03.074. PubMed DOI PMC
Tanaka T, Ikeya T, Kamoshida H, et al. High-resolution protein 3D structure determination in living eukaryotic cells. Angew Chem Int Ed Engl. 2019;58:7284–7288. doi: 10.1002/anie.201900840. PubMed DOI
Theillet FX. In-cell structural biology by NMR: the benefits of the atomic scale. Chem Rev. 2022;122:9497–9570. doi: 10.1021/acs.chemrev.1c00937. PubMed DOI
Viskova P, Krafcik D, Trantirek L, Foldynova-Trantirkova S. In-cell NMR spectroscopy of nucleic acids in human cells. Curr Protoc Nucleic Acid Chem. 2019;76:e71. doi: 10.1002/cpnc.71. PubMed DOI
Wang P, Chu W, Zhuo X, et al. Modified PLGA-PEG-PLGA thermosensitive hydrogels with suitable thermosensitivity and properties for use in a drug delivery system. J Mater Chem B. 2017;5:1551–1565. doi: 10.1039/c6tb02158a. PubMed DOI