Differential recognition by the tumor suppressor protein p53 of DNA modified by the novel antitumor trinuclear platinum drug BBR3464 and cisplatin
Jazyk angličtina Země Velká Británie, Anglie Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, P.H.S.
Grantová podpora
R01 CA078754
NCI NIH HHS - United States
R56 CA078754
NCI NIH HHS - United States
CA-78754
NCI NIH HHS - United States
PubMed
15486204
PubMed Central
PMC524304
DOI
10.1093/nar/gkh896
PII: 32/18/5546
Knihovny.cz E-zdroje
- MeSH
- adukty DNA chemie účinky léků genetika metabolismus MeSH
- cisplatina chemie farmakologie MeSH
- konsenzuální sekvence genetika MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- organoplatinové sloučeniny chemie farmakologie MeSH
- protinádorové látky chemie farmakologie MeSH
- responzivní elementy genetika MeSH
- sekvence nukleotidů MeSH
- substrátová specifita MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Názvy látek
- adukty DNA MeSH
- BBR 3464 MeSH Prohlížeč
- cisplatina MeSH
- nádorový supresorový protein p53 MeSH
- organoplatinové sloučeniny MeSH
- protinádorové látky MeSH
The trinuclear platinum agent BBR3464, a representative of a new class of anticancer drugs, is more potent than conventional mononuclear cisplatin [cis-diamminedichloroplatinum(II)]. BBR3464 retains significant activity in human tumor cell lines and xenografts that are refractory or poorly responsive to cisplatin, and displays a high activity in human tumor cell lines that are characterized by both wild-type and mutant p53 gene. In contrast, on average, cells with mutant p53 are more resistant to the effect of cisplatin. It has been hypothesized that the sensitivity or resistance of tumor cells to cisplatin might be also associated with cell cycle control and repair processes that involve p53. DNA is a major pharmacological target of platinum compounds and DNA binding activity of the p53 protein is crucial for its tumor suppressor function. This study, using gel-mobility-shift assays, was undertaken to examine the interactions of active and latent p53 protein with DNA fragments and oligodeoxyribonucleotide duplexes modified by BBR3464 in a cell free medium and to compare these results with those describing the interactions of these proteins with DNA modified by cisplatin. The results indicate that structurally different DNA adducts of BBR3464 and cisplatin exhibit a different efficiency to affect the binding affinity of the modified DNA to p53 protein. It has been suggested that different structural perturbations induced in DNA by the adducts of BBR3464 and cisplatin produce a differential response to p53 protein activation and recognition and that a 'molecular approach' to control of downstream effects such as protein recognition and pathways of apoptosis induction may consist in design of structurally unique DNA adducts as cell signals.
Zobrazit více v PubMed
Farrell N., Qu,Y., Bierbach,U., Valsecchi,M. and Menta,E. (1999) Structure-activity relationship within di- and trinuclear platinum phase I clinical agents. In Lippert,B. (ed.), Cisplatin. Chemistry and Biochemistry of a Leading Anticancer Drug. VHCA, WILEY-VCH, Zurich, Weinheim, pp. 479–496.
Farrell N. (2000) Polynuclear charged platinum compounds as a new class of anticancer agents: Toward a new paradigm. In Kelland,L.R. and Farrell,N.P. (eds), Platinum-based Drugs in Cancer Therapy. Humana Press Inc, Totowa, NJ, pp. 321–338.
Farrell N. (2004) Polynuclear platinum drugs. In Sigel,A. and Sigel,H. (eds), Metal Ions in Biological Systems. Marcel Dekker, Inc., New York, Basel, Hong Kong, Vol. 41, pp. 251–296. PubMed
Brabec V., Kasparkova,J., Vrana,O., Novakova,O., Cox,J.W., Qu,Y. and Farrell,N. (1999) DNA modifications by a novel bifunctional trinuclear platinum Phase I anticancer agent. Biochemistry, 38, 6781–6790. PubMed
Zehnulova J., Kasparkova,J., Farrell,N. and Brabec,V. (2001) Conformation, recognition by high mobility group domain proteins, and nucleotide excision repair of DNA intrastrand cross-links of novel antitumor trinuclear platinum complex BBR3464. J. Biol. Chem., 276, 22191–22199. PubMed
Kasparkova J., Zehnulova,J., Farrell,N. and Brabec,V. (2002) DNA interstrand cross-links of the novel antitumor trinuclear platinum complex BBR3464. Conformation, recognition by high mobility group domain proteins, and nucleotide excision repair. J. Biol. Chem., 277, 48076–48086. PubMed
Davies M.S., Thomas,D.S., Hegmans,A., Berners-Price,S.J. and Farrell,N. (2002) Kinetic and equilibria studies of the aquation of the trinuclear platinum phase II anticancer agent [{trans-PtCl(NH3)2}2{μ-trans-Pt(NH3)2(NH2(CH2)6NH2)2}]4+ (BBR3464). Inorg. Chem., 41, 1101–1109. PubMed
McGregor T.D., Bousfield,W., Qu,Y. and Farrell,N. (2002) Circular dichroism study of the irreversibility of conformational changes induced by polyamine-linked dinuclear platinum compounds. J. Inorg. Biochem., 91, 212–219. PubMed
Qu Y., Scarsdale,N.J., Tran,M.C. and Farrell,N.P. (2003) Cooperative effects in long-range 1,4 DNA–DNA interstrand cross-links formed by polynuclear platinum complexes: an unexpected syn orientation of adenine bases outside the binding sites. J. Biol. Inorg. Chem., 8, 19–28. PubMed
Pratesi P., Righetti,S.C., Supino,R., Pollizi,D., Manzotti,C., Giuliania,F.C., Pezzoni,G., Tognella,S., Sinelli,S., Perego,P.et al. (1999) High antitumor activity of a novel multinuclear platinum complex against cisplatin-resistant p53 mutant human tumors. Brit. J. Cancer, 80, 1912–1919. PubMed PMC
O'Connor P.M., Jackman,J., Bae,I., Myers,T.G., Fan,S., Mutoh,M., Scudiero,D.A., Monks,A., Sausville,E.A., Weinstein,J.N., Friend,S.et al. (1997) Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res., 57, 4285–4300. PubMed
Jordan P. and Carmo-Fonseca,M. (2000) Molecular mechanisms involved in cisplatin cytotoxicity. Cell. Mol. Life Sci., 57, 1229–1235. PubMed PMC
Riva C.M. (2000) Restoration of wild-type p53 activity enhances the sensitivity of pleural metastasis to cisplatin through an apoptotic mechanism. Anticancer Res., 20, 4463–4471. PubMed
Calvert A.H., Thomas,H., Colombo,N., Gore,M., Earl,H., Sena,L., Camboni,G., Liati,P. and Sessa,C. (2001) Phase II clinical study of BBR 3464, a novel, bifunctional platinum analogue, in patients with advanced ovarian cancer. Eur. J. Cancer, 37 (Suppl. 6), S260.
Orlandi L., Colella,G., Bearzatto,A., Abolafio,G., Manzotti,C., Daidone,M.G. and Zaffaroni,N. (2001) Effects of a novel trinuclear platinum complex in cisplatin-sensitive and cisplatin-resistant human ovarian cancer cell lines: interference with cell cycle progression and induction of apoptosis. Eur. J. Cancer, 37, 649–659. PubMed
El-Deiry W.S., Kern,S.E., Pietenpol,J.A., Kinzler,K.W. and Vogelstein,B. (1992) Definition of a consensus binding site for p53. Nature Genet., 1, 45–49. PubMed
Ahn J. and Prives,C. (2001) The C-terminus of p53: the more you learn the less you know. Nature Struct. Biol., 8, 730–732. PubMed
Johnson N.P., Butour,J.-L., Villani,G., Wimmer,F.L., Defais,M., Pierson,V. and Brabec,V. (1989) Metal antitumor compounds: The mechanism of action of platinum complexes. Prog. Clin. Biochem. Med., 10, 1–24.
May P. and May,E. (1999) Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene, 18, 7621–7636. PubMed
Tokino T., Thiagalingam,S., Eldeiry,W.S., Waldman,T., Kinzler,K.W. and Vogelstein,B. (1994) p53 tagged sites from human genomic DNA. Hum. Mol. Genet., 3, 1537–1542. PubMed
Nagaich A.K., Zhurkin,V.B., Durell,S.R., Jernigan,R.L., Appella,E. and Harrington,R.E. (1999) p53-induced DNA bending and twisting: p53 tetramer binds on the outer side of a DNA loop and increases DNA twisting. Proc. Natl Acad. Sci. USA, 96, 1875–1880. PubMed PMC
Lebrun A., Lavery,R. and Weinstein,H. (2001) Modeling multi-component protein-DNA complexes: the role of bending and dimerization in the complex of p53 dimers with DNA. Protein Eng., 14, 233–243. PubMed
Kasparkova J., Pospisilova,S. and Brabec,V. (2001) Different recognition of DNA modified by antitumor cisplatin and its clinically ineffective trans isomer by tumor suppressor protein p53. J. Biol. Chem., 276, 16064–16069. PubMed
Kartalou M. and Essigmann,J.M. (2001) Recognition of cisplatin adducts by cellular proteins. Mutat. Res., 478, 1–21. PubMed
Brabec V. (2002) DNA modifications by antitumor platinum and ruthenium compounds: their recognition and repair. In Moldave,K. (ed.), Prog. Nucleic Acid Res. Mol. Biol. Academic Press Inc, San Diego, CA, Vol. 71, pp. 1–68. PubMed
Fojta M., Pivonkova,H., Brazdova,M., Kovarova,L., Palecek,E., Pospisilova,S., Vojtesek,B., Kasparkova,J. and Brabec,V. (2003) Recognition of DNA modified by antitumor cisplatin by ‘latent’ and ‘active’ protein p53. Biochem. Pharmacol., 65, 1305–1316. PubMed
Kasparkova J., Farrell,N. and Brabec,V. (2000) Sequence specificity, conformation, and recognition by HMG1 protein of major DNA interstrand cross-links of antitumor dinuclear platinum complexes. J. Biol. Chem., 275, 15789–15798. PubMed
Hupp T.R. and Lane,D.P. (1995) Two distinct signaling pathways activate the latent DNA binding function of p53 in a casein kinase II-independent manner. J. Biol. Chem., 270, 18165–18174. PubMed
Kim S.D., Vrana,O., Kleinwächter,V., Niki,K. and Brabec,V. (1990) Polarographic determination of subnanogram quantities of free platinum in reaction mixture with DNA. Anal. Lett., 23, 1505–1518.
Vojtesek B., Bartek,J., Midgley,C.A. and Lane,D.P. (1992) An immunochemical analysis of the human nuclear phosphoprotein p53—New monoclonal-antibodies and epitope mapping using recombinant p53. J. Immunol. Meth., 151, 237–244. PubMed
Mazur S.J., Sakaguchi,K., Appella,E., Wang,X.W., Harris,C.C. and Bohr,V.A. (1999) Preferential binding of tumor suppressor p53 to positively or negatively supercoiled DNA involves the C-terminal domain. J. Mol. Biol., 292, 241–249. PubMed
Brazdova M., Palecek,J., Cherny,D.I., Billova,S., Fojta,M., Pecinka,P., Vojtesek,B., Jovin,T.M. and Palecek,E. (2002) Role of tumor suppressor p53 domains in selective binding to supercoiled DNA. Nucleic Acids Res., 30, 4966–4974. PubMed PMC
Jamieson E.R. and Lippard,S.J. (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem. Rev., 99, 2467–2498. PubMed
Gelasco A. and Lippard,S.J. (1998) NMR solution structure of a DNA dodecamer duplex containing a cis-diammineplatinum(II) adduct d(GpG) intrastrand cross-link, the major adduct of the anticancer drug cisplatin. Biochemistry, 37, 9230–9239. PubMed
Takahara P.M., Frederick,C.A. and Lippard,S.J. (1996) Crystal structure of the anticancer drug cisplatin bound to duplex DNA. J. Am. Chem. Soc., 118, 12309–12321.
Brabec V., Sip,M. and Leng,M. (1993) DNA conformational distortion produced by site-specific interstrand cross-link of trans-diamminedichloroplatinum(II). Biochemistry, 32, 11676–11681. PubMed
Keck M.V. and Lippard,S.J. (1992) Unwinding of supercoiled DNA by platinum ethidium and related complexes. J. Am. Chem. Soc., 114, 3386–3390.
Berners-Price S.J., Davies,M.S., Cox,J.W., Thomas,D.S. and Farrell,N. (2003) Competitive reactions of interstrand and intrastrand DNA-Pt adducts: A dinuclear-platinum complex preferentially forms a 1,4-interstrand cross-link rather than a 1,2 intrastrand cross-link on binding to a GG 14mer duplex. Chem. Eur. J., 9, 713–725. PubMed
Hegmans A., Berners-Price,S.J., Davies,M.S., Thomas,D., Humphreys,A. and Farrell,N. (2004) Long range 1,4 and 1,6-interstrand cross-links formed by a trinuclear platinum complex. Minor groove pre-association affects kinetics and mechanism of cross-link formation as well as adduct structure. J. Am. Chem. Soc., 126, 2166–2180. PubMed
Cho Y., Gorina,S., Jeffrey,P.D. and Pavletich,N.P. (1994) Crystal structure of a p53 tumor suppressor–DNA complex: understanding tumorigenic mutations. Science, 265, 346–355. PubMed
Nagaich A.K., Zhurkin,V.B., Sakamoto,H., Gorin,A.A., Clore,G.M., Gronenborn,A.M., Appella,E. and Harrington,R.E. (1997) Architectural accommodation in the complex of four p53 DNA binding domain peptides with the p21/waf1/cip1 DNA response element. J. Biol. Chem., 272, 14830–14841. PubMed