• This record comes from PubMed

Sexual homomorphism in dioecious trees: extensive tests fail to detect sexual dimorphism in Populus †

. 2017 May 12 ; 7 (1) : 1831. [epub] 20170512

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 28500332
PubMed Central PMC5431824
DOI 10.1038/s41598-017-01893-z
PII: 10.1038/s41598-017-01893-z
Knihovny.cz E-resources

The evolution of sexual dimorphism and expansion of sex chromosomes are both driven through sexual conflict, arising from differing fitness optima between males and females. Here, we pair work in poplar (Populus) describing one of the smallest sex-determining regions known thus far in complex eukaryotes (~100 kbp) with comprehensive tests for sexual dimorphism using >1300 individuals from two Populus species and assessing 96 non-reproductive functional traits. Against expectation, we found sexual homomorphism (no non-reproductive trait differences between the sexes), suggesting that gender is functionally neutral with respect to non-reproductive features that affect plant survival and fitness. Combined with a small sex-determining region, we infer that sexual conflict may be effectively stymied or non-existent within these taxa. Both sexual homomorphism and the small sex-determining region occur against a background of strong environmental selection and local adaptation in Populus. This presents a powerful hypothesis for the evolution of dioecious species. Here, we suggest that environmental selection may be sufficient to suppress and stymy sexual conflict if it acts orthogonal to sexual selection, thereby placing limitations on the evolution of sexual dimorphism and genomic expansion of sex chromosomes.

Erratum In

PubMed

See more in PubMed

Renner SS. The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 2014;101:1588–1596. doi: 10.3732/ajb.1400196. PubMed DOI

Lloyd DG, Webb CJ. Secondary sex characters in plants. Bot. Rev. 1977;43:177–216. doi: 10.1007/BF02860717. DOI

Tognetti R. Adaptation to climate change of dioecious plants: does gender balance matter? Tree Physiol. 2012;32:1321–1324. doi: 10.1093/treephys/tps105. PubMed DOI

Barrett SCH, Hough J. Sexual dimorphism in flowering plants. J. Exp. Bot. 2013;64:67–82. doi: 10.1093/jxb/ers308. PubMed DOI

Juvany M, Munné-Bosch S. Sex-related differences in stress tolerance in dioecious plants: a critical appraisal in a physiological context. J. Exp. Bot. 2015;66:6083–6092. doi: 10.1093/jxb/erv343. PubMed DOI

Lande R. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution. 1980;34:292–305. doi: 10.1111/j.1558-5646.1980.tb04817.x. PubMed DOI

Meagher TR. Sexual dimorphism and ecological differentiation of male and female plants. Ann. Mo. Bot. Gard. 1984;71:254–264. doi: 10.2307/2399069. DOI

Rice WR. Sex chromosomes and the evolution of sexual dimorphism. Evolution. 1984;1:735–742. doi: 10.1111/j.1558-5646.1984.tb00346.x. PubMed DOI

Chapman T, Arnqvist G, Bangham J, Rowe L. Sexual conflict. TREE. 2003;18:41–47.

Cox RM, Calsbeek R. Sexually antagonistic selection, sexual dimorphism, and the resolution of intralocus sexual conflict. Am. Nat. 2009;173:176–187. doi: 10.1086/595841. PubMed DOI

Charlesworth D, Charlesworth B, Marais G. Steps in the evolution of heteromorphic sex chromosomes. Heredity. 2005;95:118–128. doi: 10.1038/sj.hdy.6800697. PubMed DOI

Ming R, Bendahmane A, Renner SS. Sex chromosomes in land plants. Annu. Rev. Plant Biol. 2011;62:485–514. doi: 10.1146/annurev-arplant-042110-103914. PubMed DOI

Charlesworth D. Plant sex chromosome evolution. J. Exp. Bot. 2013;64:405–420. doi: 10.1093/jxb/ers322. PubMed DOI

Charlesworth D. Plant sex chromosomes. Annu. Rev. Plant Biol. 2016;67:397–420. doi: 10.1146/annurev-arplant-043015-111911. PubMed DOI

Geraldes A, et al. Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus) Mol. Ecol. 2015;24:3243–3256. doi: 10.1111/mec.13126. PubMed DOI

Wang J, et al. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. PNAS. 2012;109:13710–13715. doi: 10.1073/pnas.1207833109. PubMed DOI PMC

Filatov DA. Homomorphic plant sex chromosomes are coming of age. Mol. Ecol. 2015;24:3217–3219. doi: 10.1111/mec.13268. PubMed DOI

Tennessen JA, Govindarajulu R, Liston A, Ashman TL. Homomorphic ZW chromosomes in a wild strawberry show distinctive recombination heterogeneity but a small sex‐determining region. New Phytol. 2016;211:1412–1423. doi: 10.1111/nph.13983. PubMed DOI PMC

Grant MC, Mitton JB. Elevational gradients in adult sex ratios and sexual differentiation in vegetative growth rates of Populus tremuloides Michx. Evolution. 1979;33:914–918. PubMed

Wang S, Curtis PS. Gender-specific responses of Populus tremuloides to atmospheric CO2 enrichment. New Phytol. 2001;150:675–684. doi: 10.1046/j.1469-8137.2001.00138.x. DOI

Stevens MT, Esser SM. Growth–defense tradeoffs differ by gender in dioecious trembling aspen (Populus tremuloides) Biochem. Syst. Ecol. 2009;30:567–573. doi: 10.1016/j.bse.2009.09.005. DOI

Zhao H, Li Y, Duan B, Korpelainen H, Li C. Sex-related adaptive responses of Populus cathayana to photoperiod transitions. Plant Cell Environ. 2009;32:1401–1411. doi: 10.1111/j.1365-3040.2009.02007.x. PubMed DOI

Chen L, Zhang S, Zhao H, Korpelainen H, Li C. Sex‐related adaptive responses to interaction of drought and salinity in Populus yunnanensis. Plant Cell Environ. 2010;33:1767–1778. doi: 10.1111/j.1365-3040.2010.02182.x. PubMed DOI

Xu X, Peng G, Wu C, Han Q. Global warming induces female cuttings of Populus cathayana to allocate more biomass, C and N to aboveground organs than do male cuttings. Aust. J. Bot. 2010;58:519–526. doi: 10.1071/BT10108. DOI

Yang F, et al. Different eco-physiological responses between male and female Populus deltoides clones to waterlogging stress. For Ecol Manage. 2011;262:1963–1971. doi: 10.1016/j.foreco.2011.08.039. DOI

Zhao H, Li Y, Zhang X, Korpelainen H, Li C. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO2 and elevated temperature. Tree Physiol. 2012;32:1325–1338. doi: 10.1093/treephys/tps074. PubMed DOI

Li L, Zhang Y, Luo J, Korpelainen H, Li C. Sex‐specific responses of Populus yunnanensis exposed to elevated CO2 and salinity. Physiol plantarum. 2013;147:477–488. doi: 10.1111/j.1399-3054.2012.01676.x. PubMed DOI

Randriamanana TR, et al. Sex-related differences in growth and carbon allocation to defence in Populus tremula as explained by current plant defence theories. Tree Physiol. 2014;34:471–487. doi: 10.1093/treephys/tpu034. PubMed DOI

Cole CT, Stevens MT, Anderson JE, Lindroth RL. Heterozygosity, gender, and the growth-defense trade-off in quaking aspen. Oecologia. 2016;181:381–390. doi: 10.1007/s00442-016-3577-6. PubMed DOI

Bourdeau PF. Photosynthetic and respiratory rates in leaves of male and female quaking aspen. Forest Sci. 1958;4:331–334.

Sakai AK, Burris TA. Growth in male and female aspen clones: a twenty-five-year longitudinal study. Ecology. 1985;66:1921–1927. doi: 10.2307/2937388. DOI

Letts MG, Phelan CA, Johnson DR, Rood SB. Seasonal photosynthetic gas exchange and leaf reflectance characteristics of male and female cottonwoods in a riparian woodland. Tree Physiol. 2008;28:1037–1048. doi: 10.1093/treephys/28.7.1037. PubMed DOI

Robinson KM, et al. Populus tremula (European aspen) shows no evidence of sexual dimorphism. BMC Plant Biol. 2014;14:276. doi: 10.1186/s12870-014-0276-5. PubMed DOI PMC

Savolainen O, Lascoux M, Merilä J. Ecological genomics of local adaptation. Nat. Rev. Genet. 2013;14:807–820. doi: 10.1038/nrg3522. PubMed DOI

Anderson JT, Wagner MR, Rushworth CA, Prasad KV, Mitchell-Olds T. The evolution of quantitative traits in complex environments. Heredity. 2014;112:4–12. doi: 10.1038/hdy.2013.33. PubMed DOI PMC

Poissant J, Wilson AJ, Coltman DW. Sex-specific genetic variance and the evolution of sexual dimorphism: A systematic review of cross-sex genetic correlations. Evolution. 2010;64:97–107. doi: 10.1111/j.1558-5646.2009.00793.x. PubMed DOI

Luquez V, et al. Natural phenological variation in aspen (Populus tremula): the SwAsp collection. Tree Genet. Genomes. 2008;4:279–292. doi: 10.1007/s11295-007-0108-y. DOI

Soolanayakanahally RY, Guy RD, Silim SN, Drewes EC, Schroeder WR. Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (Populus balsamifera L.) Plant Cell Environ. 2009;32:1821–1832. doi: 10.1111/j.1365-3040.2009.02042.x. PubMed DOI

Ma XF, Hall D, Onge KR, Jansson S, Ingvarsson PK. Genetic differentiation, clinal variation and phenotypic associations with growth cessation across the Populus tremula photoperiodic pathway. Genetics. 2010;186:1033–1044. doi: 10.1534/genetics.110.120873. PubMed DOI PMC

Chamaillard S, et al. Variations in bulk leaf carbon isotope discrimination, growth and related leaf traits among three Populus nigra L. populations. Tree Physiol. 2011;31:1076–1087. doi: 10.1093/treephys/tpr089. PubMed DOI

Keller SR, et al. Climate driven local adaptation of ecophysiology and phenology in balsam poplar Populus balsamifera L. (Salicaceae) Am. J. Bot. 2011;98:99–108. doi: 10.3732/ajb.1000317. PubMed DOI

Evans LM, et al. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nat. Genet. 2014;46:1089–1096. doi: 10.1038/ng.3075. PubMed DOI

McKown AD, et al. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. New Phytol. 2014;201:1263–1276. doi: 10.1111/nph.12601. PubMed DOI

Kaluthota S, et al. Higher photosynthetic capacity from higher latitude: foliar characteristics and gas exchange of southern, central and northern populations of Populus angustifolia. Tree Physiol. 2015;35:936–948. doi: 10.1093/treephys/tpv069. PubMed DOI

Soolanayakanahally, R. Y. et al. Comparative physiology of allopatric Populus species: geographic clines in photosynthesis, height growth, and carbon isotope discrimination in common gardens. Front. Plant Sci. 2015, 6 (2015). PubMed PMC

Geraldes A, et al. Landscape genomics of Populus trichocarpa: the role of hybridization, limited gene flow and natural selection in shaping patterns of population structure. Evolution. 2014;68:3260–3280. doi: 10.1111/evo.12497. PubMed DOI

Suarez-Gonzalez A, et al. Genomic and functional approaches reveal a case of adaptive introgression from Populus balsamifera (balsam poplar) in P. trichocarpa (black cottonwood) Mol. Ecol. 2016;25:2427–2442. doi: 10.1111/mec.13539. PubMed DOI

Slavov GT, et al. Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa. New Phytol. 2012;196:713–725. doi: 10.1111/j.1469-8137.2012.04258.x. PubMed DOI

Blanckenhorn WU, Stillwell RC, Young KA, Fox CW, Ashton KH. When Rensch meets Bergmann: does sexual size dimorphism change systematically with latitude? Evolution. 2006;60:2004–2011. doi: 10.1111/j.0014-3820.2006.tb01838.x. PubMed DOI

Keller SR, Olson MS, Silim S, Schroeder W, Tiffin P. Genomic diversity, population structure, and migration following rapid range expansion in the balsam poplar, Populus balsamifera. Mol. Ecol. 2010;19:1212–1226. doi: 10.1111/j.1365-294X.2010.04546.x. PubMed DOI

Petry WK, et al. Sex-specific responses to climate change in plants alter population sex ratio and performance. Science. 2016;353:69–71. doi: 10.1126/science.aaf2588. PubMed DOI

Pletsers A, Caffarra A, Kelleher CT, Donnelly A. Chilling temperature and photoperiod influence the timing of bud burst in juvenile Betula pubescens Ehrh. and Populus tremula L. trees. Ann. For. Sci. 2015;72:941–953. doi: 10.1007/s13595-015-0491-8. DOI

Jarman P. Mating system and sexual dimorphism in large terrestrial, mammalian herbivores. Biol. Rev. 1983;58:485–520. doi: 10.1111/j.1469-185X.1983.tb00398.x. DOI

Zhou L, Bawa R, Holliday JA. Exome resequencing reveals signatures of demographic and adaptive processes across the genome and range of black cottonwood (Populus trichocarpa) Mol. Ecol. 2014;23:2486–2499. doi: 10.1111/mec.12752. PubMed DOI

Porth I, et al. Evolutionary quantitative genomics of Populus trichocarpa. PloS One. 2015;10:e0142864. doi: 10.1371/journal.pone.0142864. PubMed DOI PMC

Olson MS, et al. The adaptive potential of Populus balsamifera L. to phenology requirements in a warmer global climate. Mol. Ecol. 2012;22:1214–1230. doi: 10.1111/mec.12067. PubMed DOI

Levsen ND, Tiffin P, Olson MS. Pleistocene speciation in the genus Populus (Salicaceae) Syst. Biol. 2012;61:401–412. doi: 10.1093/sysbio/syr120. PubMed DOI PMC

McKown AD, et al. Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. New Phytol. 2014;203:535–553. doi: 10.1111/nph.12815. PubMed DOI

Arbuthnott D, Dutton EM, Agrawal AF, Rundle HD. The ecology of sexual conflict: ecologically dependent parallel evolution of male harm and female resistance in Drosophila melanogaster. Ecol. Lett. 2014;17:221–228. doi: 10.1111/ele.12222. PubMed DOI

Xie C-Y, Ying CC, Yanchuk AD, Holowachuk DL. Ecotypic mode of regional differentiation caused by restricted gene migration: a case in black cottonwood (Populus trichocarpa) along the Pacific Northwest coast. Can. J. Forest Res. 2009;39:519–526. doi: 10.1139/X08-190. DOI

McKown AD, Guy RD, Azam MS, Drewes EC, Quamme L. Seasonality and phenology alter functional leaf traits. Oecologia. 2013;172:653–665. doi: 10.1007/s00442-012-2531-5. PubMed DOI

Muchero W, et al. High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus. BMC Genomics. 2015;16:24. doi: 10.1186/s12864-015-1215-z. PubMed DOI PMC

Soolanayakanahally RY, Guy RD, Silim SN, Song M. Timing of photoperiodic competency causes phenological mismatch in balsam poplar (Populus balsamifera L.) Plant Cell Environ. 2013;36:116–127. doi: 10.1111/j.1365-3040.2012.02560.x. PubMed DOI

Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: a R library for genome-wide association analysis. Bioinformatics. 2007;23:1294–1296. doi: 10.1093/bioinformatics/btm108. PubMed DOI

McKown AD, et al. Association genetics, geography, and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs. Mol. Ecol. 2014;23:5771–5790. doi: 10.1111/mec.12969. PubMed DOI

La Mantia J, et al. Association analysis identifies Melampsora ×columbiana poplar leaf rust resistance SNPs. PLoS One. 2013;8:e78423. doi: 10.1371/journal.pone.0078423. PubMed DOI PMC

Porth I, et al. Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations. New Phytol. 2013;197:777–790. doi: 10.1111/nph.12014. PubMed DOI

Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Kuznetsova A, Brockhoff PB, Christensen RH. Package lmerTest: tests in linear mixed effects models. R package version. 2016;2:0–32.

Keselman HJ. A Monte Carlo investigation of three estimates of treatment magnitude: Epsilon squared, eta squared, and omega squared. Can. Psychol. Rev. 1975;16:44. doi: 10.1037/h0081789. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...