Sexual homomorphism in dioecious trees: extensive tests fail to detect sexual dimorphism in Populus †
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28500332
PubMed Central
PMC5431824
DOI
10.1038/s41598-017-01893-z
PII: 10.1038/s41598-017-01893-z
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The evolution of sexual dimorphism and expansion of sex chromosomes are both driven through sexual conflict, arising from differing fitness optima between males and females. Here, we pair work in poplar (Populus) describing one of the smallest sex-determining regions known thus far in complex eukaryotes (~100 kbp) with comprehensive tests for sexual dimorphism using >1300 individuals from two Populus species and assessing 96 non-reproductive functional traits. Against expectation, we found sexual homomorphism (no non-reproductive trait differences between the sexes), suggesting that gender is functionally neutral with respect to non-reproductive features that affect plant survival and fitness. Combined with a small sex-determining region, we infer that sexual conflict may be effectively stymied or non-existent within these taxa. Both sexual homomorphism and the small sex-determining region occur against a background of strong environmental selection and local adaptation in Populus. This presents a powerful hypothesis for the evolution of dioecious species. Here, we suggest that environmental selection may be sufficient to suppress and stymy sexual conflict if it acts orthogonal to sexual selection, thereby placing limitations on the evolution of sexual dimorphism and genomic expansion of sex chromosomes.
Department of Botany University of British Columbia Vancouver BC V6T 1Z4 Canada
See more in PubMed
Renner SS. The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 2014;101:1588–1596. doi: 10.3732/ajb.1400196. PubMed DOI
Lloyd DG, Webb CJ. Secondary sex characters in plants. Bot. Rev. 1977;43:177–216. doi: 10.1007/BF02860717. DOI
Tognetti R. Adaptation to climate change of dioecious plants: does gender balance matter? Tree Physiol. 2012;32:1321–1324. doi: 10.1093/treephys/tps105. PubMed DOI
Barrett SCH, Hough J. Sexual dimorphism in flowering plants. J. Exp. Bot. 2013;64:67–82. doi: 10.1093/jxb/ers308. PubMed DOI
Juvany M, Munné-Bosch S. Sex-related differences in stress tolerance in dioecious plants: a critical appraisal in a physiological context. J. Exp. Bot. 2015;66:6083–6092. doi: 10.1093/jxb/erv343. PubMed DOI
Lande R. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution. 1980;34:292–305. doi: 10.1111/j.1558-5646.1980.tb04817.x. PubMed DOI
Meagher TR. Sexual dimorphism and ecological differentiation of male and female plants. Ann. Mo. Bot. Gard. 1984;71:254–264. doi: 10.2307/2399069. DOI
Rice WR. Sex chromosomes and the evolution of sexual dimorphism. Evolution. 1984;1:735–742. doi: 10.1111/j.1558-5646.1984.tb00346.x. PubMed DOI
Chapman T, Arnqvist G, Bangham J, Rowe L. Sexual conflict. TREE. 2003;18:41–47.
Cox RM, Calsbeek R. Sexually antagonistic selection, sexual dimorphism, and the resolution of intralocus sexual conflict. Am. Nat. 2009;173:176–187. doi: 10.1086/595841. PubMed DOI
Charlesworth D, Charlesworth B, Marais G. Steps in the evolution of heteromorphic sex chromosomes. Heredity. 2005;95:118–128. doi: 10.1038/sj.hdy.6800697. PubMed DOI
Ming R, Bendahmane A, Renner SS. Sex chromosomes in land plants. Annu. Rev. Plant Biol. 2011;62:485–514. doi: 10.1146/annurev-arplant-042110-103914. PubMed DOI
Charlesworth D. Plant sex chromosome evolution. J. Exp. Bot. 2013;64:405–420. doi: 10.1093/jxb/ers322. PubMed DOI
Charlesworth D. Plant sex chromosomes. Annu. Rev. Plant Biol. 2016;67:397–420. doi: 10.1146/annurev-arplant-043015-111911. PubMed DOI
Geraldes A, et al. Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus) Mol. Ecol. 2015;24:3243–3256. doi: 10.1111/mec.13126. PubMed DOI
Wang J, et al. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. PNAS. 2012;109:13710–13715. doi: 10.1073/pnas.1207833109. PubMed DOI PMC
Filatov DA. Homomorphic plant sex chromosomes are coming of age. Mol. Ecol. 2015;24:3217–3219. doi: 10.1111/mec.13268. PubMed DOI
Tennessen JA, Govindarajulu R, Liston A, Ashman TL. Homomorphic ZW chromosomes in a wild strawberry show distinctive recombination heterogeneity but a small sex‐determining region. New Phytol. 2016;211:1412–1423. doi: 10.1111/nph.13983. PubMed DOI PMC
Grant MC, Mitton JB. Elevational gradients in adult sex ratios and sexual differentiation in vegetative growth rates of Populus tremuloides Michx. Evolution. 1979;33:914–918. PubMed
Wang S, Curtis PS. Gender-specific responses of Populus tremuloides to atmospheric CO2 enrichment. New Phytol. 2001;150:675–684. doi: 10.1046/j.1469-8137.2001.00138.x. DOI
Stevens MT, Esser SM. Growth–defense tradeoffs differ by gender in dioecious trembling aspen (Populus tremuloides) Biochem. Syst. Ecol. 2009;30:567–573. doi: 10.1016/j.bse.2009.09.005. DOI
Zhao H, Li Y, Duan B, Korpelainen H, Li C. Sex-related adaptive responses of Populus cathayana to photoperiod transitions. Plant Cell Environ. 2009;32:1401–1411. doi: 10.1111/j.1365-3040.2009.02007.x. PubMed DOI
Chen L, Zhang S, Zhao H, Korpelainen H, Li C. Sex‐related adaptive responses to interaction of drought and salinity in Populus yunnanensis. Plant Cell Environ. 2010;33:1767–1778. doi: 10.1111/j.1365-3040.2010.02182.x. PubMed DOI
Xu X, Peng G, Wu C, Han Q. Global warming induces female cuttings of Populus cathayana to allocate more biomass, C and N to aboveground organs than do male cuttings. Aust. J. Bot. 2010;58:519–526. doi: 10.1071/BT10108. DOI
Yang F, et al. Different eco-physiological responses between male and female Populus deltoides clones to waterlogging stress. For Ecol Manage. 2011;262:1963–1971. doi: 10.1016/j.foreco.2011.08.039. DOI
Zhao H, Li Y, Zhang X, Korpelainen H, Li C. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO2 and elevated temperature. Tree Physiol. 2012;32:1325–1338. doi: 10.1093/treephys/tps074. PubMed DOI
Li L, Zhang Y, Luo J, Korpelainen H, Li C. Sex‐specific responses of Populus yunnanensis exposed to elevated CO2 and salinity. Physiol plantarum. 2013;147:477–488. doi: 10.1111/j.1399-3054.2012.01676.x. PubMed DOI
Randriamanana TR, et al. Sex-related differences in growth and carbon allocation to defence in Populus tremula as explained by current plant defence theories. Tree Physiol. 2014;34:471–487. doi: 10.1093/treephys/tpu034. PubMed DOI
Cole CT, Stevens MT, Anderson JE, Lindroth RL. Heterozygosity, gender, and the growth-defense trade-off in quaking aspen. Oecologia. 2016;181:381–390. doi: 10.1007/s00442-016-3577-6. PubMed DOI
Bourdeau PF. Photosynthetic and respiratory rates in leaves of male and female quaking aspen. Forest Sci. 1958;4:331–334.
Sakai AK, Burris TA. Growth in male and female aspen clones: a twenty-five-year longitudinal study. Ecology. 1985;66:1921–1927. doi: 10.2307/2937388. DOI
Letts MG, Phelan CA, Johnson DR, Rood SB. Seasonal photosynthetic gas exchange and leaf reflectance characteristics of male and female cottonwoods in a riparian woodland. Tree Physiol. 2008;28:1037–1048. doi: 10.1093/treephys/28.7.1037. PubMed DOI
Robinson KM, et al. Populus tremula (European aspen) shows no evidence of sexual dimorphism. BMC Plant Biol. 2014;14:276. doi: 10.1186/s12870-014-0276-5. PubMed DOI PMC
Savolainen O, Lascoux M, Merilä J. Ecological genomics of local adaptation. Nat. Rev. Genet. 2013;14:807–820. doi: 10.1038/nrg3522. PubMed DOI
Anderson JT, Wagner MR, Rushworth CA, Prasad KV, Mitchell-Olds T. The evolution of quantitative traits in complex environments. Heredity. 2014;112:4–12. doi: 10.1038/hdy.2013.33. PubMed DOI PMC
Poissant J, Wilson AJ, Coltman DW. Sex-specific genetic variance and the evolution of sexual dimorphism: A systematic review of cross-sex genetic correlations. Evolution. 2010;64:97–107. doi: 10.1111/j.1558-5646.2009.00793.x. PubMed DOI
Luquez V, et al. Natural phenological variation in aspen (Populus tremula): the SwAsp collection. Tree Genet. Genomes. 2008;4:279–292. doi: 10.1007/s11295-007-0108-y. DOI
Soolanayakanahally RY, Guy RD, Silim SN, Drewes EC, Schroeder WR. Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (Populus balsamifera L.) Plant Cell Environ. 2009;32:1821–1832. doi: 10.1111/j.1365-3040.2009.02042.x. PubMed DOI
Ma XF, Hall D, Onge KR, Jansson S, Ingvarsson PK. Genetic differentiation, clinal variation and phenotypic associations with growth cessation across the Populus tremula photoperiodic pathway. Genetics. 2010;186:1033–1044. doi: 10.1534/genetics.110.120873. PubMed DOI PMC
Chamaillard S, et al. Variations in bulk leaf carbon isotope discrimination, growth and related leaf traits among three Populus nigra L. populations. Tree Physiol. 2011;31:1076–1087. doi: 10.1093/treephys/tpr089. PubMed DOI
Keller SR, et al. Climate driven local adaptation of ecophysiology and phenology in balsam poplar Populus balsamifera L. (Salicaceae) Am. J. Bot. 2011;98:99–108. doi: 10.3732/ajb.1000317. PubMed DOI
Evans LM, et al. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nat. Genet. 2014;46:1089–1096. doi: 10.1038/ng.3075. PubMed DOI
McKown AD, et al. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. New Phytol. 2014;201:1263–1276. doi: 10.1111/nph.12601. PubMed DOI
Kaluthota S, et al. Higher photosynthetic capacity from higher latitude: foliar characteristics and gas exchange of southern, central and northern populations of Populus angustifolia. Tree Physiol. 2015;35:936–948. doi: 10.1093/treephys/tpv069. PubMed DOI
Soolanayakanahally, R. Y. et al. Comparative physiology of allopatric Populus species: geographic clines in photosynthesis, height growth, and carbon isotope discrimination in common gardens. Front. Plant Sci. 2015, 6 (2015). PubMed PMC
Geraldes A, et al. Landscape genomics of Populus trichocarpa: the role of hybridization, limited gene flow and natural selection in shaping patterns of population structure. Evolution. 2014;68:3260–3280. doi: 10.1111/evo.12497. PubMed DOI
Suarez-Gonzalez A, et al. Genomic and functional approaches reveal a case of adaptive introgression from Populus balsamifera (balsam poplar) in P. trichocarpa (black cottonwood) Mol. Ecol. 2016;25:2427–2442. doi: 10.1111/mec.13539. PubMed DOI
Slavov GT, et al. Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa. New Phytol. 2012;196:713–725. doi: 10.1111/j.1469-8137.2012.04258.x. PubMed DOI
Blanckenhorn WU, Stillwell RC, Young KA, Fox CW, Ashton KH. When Rensch meets Bergmann: does sexual size dimorphism change systematically with latitude? Evolution. 2006;60:2004–2011. doi: 10.1111/j.0014-3820.2006.tb01838.x. PubMed DOI
Keller SR, Olson MS, Silim S, Schroeder W, Tiffin P. Genomic diversity, population structure, and migration following rapid range expansion in the balsam poplar, Populus balsamifera. Mol. Ecol. 2010;19:1212–1226. doi: 10.1111/j.1365-294X.2010.04546.x. PubMed DOI
Petry WK, et al. Sex-specific responses to climate change in plants alter population sex ratio and performance. Science. 2016;353:69–71. doi: 10.1126/science.aaf2588. PubMed DOI
Pletsers A, Caffarra A, Kelleher CT, Donnelly A. Chilling temperature and photoperiod influence the timing of bud burst in juvenile Betula pubescens Ehrh. and Populus tremula L. trees. Ann. For. Sci. 2015;72:941–953. doi: 10.1007/s13595-015-0491-8. DOI
Jarman P. Mating system and sexual dimorphism in large terrestrial, mammalian herbivores. Biol. Rev. 1983;58:485–520. doi: 10.1111/j.1469-185X.1983.tb00398.x. DOI
Zhou L, Bawa R, Holliday JA. Exome resequencing reveals signatures of demographic and adaptive processes across the genome and range of black cottonwood (Populus trichocarpa) Mol. Ecol. 2014;23:2486–2499. doi: 10.1111/mec.12752. PubMed DOI
Porth I, et al. Evolutionary quantitative genomics of Populus trichocarpa. PloS One. 2015;10:e0142864. doi: 10.1371/journal.pone.0142864. PubMed DOI PMC
Olson MS, et al. The adaptive potential of Populus balsamifera L. to phenology requirements in a warmer global climate. Mol. Ecol. 2012;22:1214–1230. doi: 10.1111/mec.12067. PubMed DOI
Levsen ND, Tiffin P, Olson MS. Pleistocene speciation in the genus Populus (Salicaceae) Syst. Biol. 2012;61:401–412. doi: 10.1093/sysbio/syr120. PubMed DOI PMC
McKown AD, et al. Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. New Phytol. 2014;203:535–553. doi: 10.1111/nph.12815. PubMed DOI
Arbuthnott D, Dutton EM, Agrawal AF, Rundle HD. The ecology of sexual conflict: ecologically dependent parallel evolution of male harm and female resistance in Drosophila melanogaster. Ecol. Lett. 2014;17:221–228. doi: 10.1111/ele.12222. PubMed DOI
Xie C-Y, Ying CC, Yanchuk AD, Holowachuk DL. Ecotypic mode of regional differentiation caused by restricted gene migration: a case in black cottonwood (Populus trichocarpa) along the Pacific Northwest coast. Can. J. Forest Res. 2009;39:519–526. doi: 10.1139/X08-190. DOI
McKown AD, Guy RD, Azam MS, Drewes EC, Quamme L. Seasonality and phenology alter functional leaf traits. Oecologia. 2013;172:653–665. doi: 10.1007/s00442-012-2531-5. PubMed DOI
Muchero W, et al. High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus. BMC Genomics. 2015;16:24. doi: 10.1186/s12864-015-1215-z. PubMed DOI PMC
Soolanayakanahally RY, Guy RD, Silim SN, Song M. Timing of photoperiodic competency causes phenological mismatch in balsam poplar (Populus balsamifera L.) Plant Cell Environ. 2013;36:116–127. doi: 10.1111/j.1365-3040.2012.02560.x. PubMed DOI
Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: a R library for genome-wide association analysis. Bioinformatics. 2007;23:1294–1296. doi: 10.1093/bioinformatics/btm108. PubMed DOI
McKown AD, et al. Association genetics, geography, and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs. Mol. Ecol. 2014;23:5771–5790. doi: 10.1111/mec.12969. PubMed DOI
La Mantia J, et al. Association analysis identifies Melampsora ×columbiana poplar leaf rust resistance SNPs. PLoS One. 2013;8:e78423. doi: 10.1371/journal.pone.0078423. PubMed DOI PMC
Porth I, et al. Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations. New Phytol. 2013;197:777–790. doi: 10.1111/nph.12014. PubMed DOI
Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Kuznetsova A, Brockhoff PB, Christensen RH. Package lmerTest: tests in linear mixed effects models. R package version. 2016;2:0–32.
Keselman HJ. A Monte Carlo investigation of three estimates of treatment magnitude: Epsilon squared, eta squared, and omega squared. Can. Psychol. Rev. 1975;16:44. doi: 10.1037/h0081789. DOI