On the Origin of Reduced Cytotoxicity of Germanium-Doped Diamond-Like Carbon: Role of Top Surface Composition and Bonding
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
SGS18/157/OHK4/2T/17
České Vysoké Učení Technické v Praze
CZ.02.1.01/0.0/0.0/16_026/0008382
MEYS CR
PubMed
33668693
PubMed Central
PMC7996325
DOI
10.3390/nano11030567
PII: nano11030567
Knihovny.cz E-resources
- Keywords
- Raman spectroscopy, carbon capping film, cytotoxicity, diamond-like carbon, germanium, low energy ion scattering spectroscopy, photoelectron spectroscopy,
- Publication type
- Journal Article MeSH
This work attempts to understand the behaviour of Ge-induced cytotoxicity of germanium-doped hydrogen-free diamond-like carbon (DLC) films recently thoroughly studied and published by Jelinek et al. At a low doping level, the films showed no cytotoxicity, while at a higher doping level, the films were found to exhibit medium to high cytotoxicity. We demonstrate, using surface-sensitive methods-two-angle X-ray-induced core-level photoelectron spectroscopy (ARXPS) and Low Energy Ion Scattering (LEIS) spectroscopy, that at a low doping level, the layers are capped by a carbon film which impedes the contact of Ge species with tissue. For higher Ge content in the DLC films, oxidized Ge species are located at the top surface of the layers, provoking cytotoxicity. The present results indicate no threshold for Ge concentration in cell culture substrate to avoid a severe toxic reaction.
See more in PubMed
Lifshitz Y. Diamond-like carbon–present status. Diam. Relat. Mater. 1999;8:1659–1676. doi: 10.1016/S0925-9635(99)00087-4. DOI
Robertson J. Diamond-like amorphous carbon. Mater. Sci. Eng. R Rep. 2002;37:129–281. doi: 10.1016/S0927-796X(02)00005-0. DOI
Vetter J. 60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf. Coat. Technol. 2014;257:213–240. doi: 10.1016/j.surfcoat.2014.08.017. DOI
Bewilogua K., Hofmann D. History of diamond-like carbon films—From first experiments to worldwide applications. Surf. Coat. Technol. 2014;242:214–225. doi: 10.1016/j.surfcoat.2014.01.031. DOI
Love C.A., Cook R.B., Harvey T.J., Dearnley P.A., Wood R.J.K. Diamond like carbon coatings for potential application in bio-logical implants—A review. Tribol. Int. 2013;63:141–150. doi: 10.1016/j.triboint.2012.09.006. DOI
Hauert R., Thorwarth K. An overview on diamond-like carbon coatings in medical applications. Surf. Coat. Technol. 2013;233:119–130. doi: 10.1016/j.surfcoat.2013.04.015. DOI
Barkhudarov E.M., Kossyi I.A., Anpilov A.M., Ivashkin P.I., Artem‘ev K.V., Moryakov I.V., Misakin M.A., Christofi N., Burmistrov D.E., Smirnova V.V., et al. New nanostructured carbon coating inhib-its bacterial growth, but does not influence on animal cells. Nanomaterials. 2020;10:2130. doi: 10.3390/nano10112130. PubMed DOI PMC
Al-Jumaili A., Alancherry S., Bazaka K., Jacob M.V. Review on the Antimicrobial Properties of Carbon Nanostructures. Materials. 2017;10:1066. doi: 10.3390/ma10091066. PubMed DOI PMC
Zemek J., Houdkova J., Jiricek P., Jelinek M., Jurek K., Kocourek T., Ledinsky M. In-depth distribution of ele-ments and bonding in the surface region of calcium-doped diamond-like carbon films. Appl. Surf. Sci. 2021;539:148250. doi: 10.1016/j.apsusc.2020.148250. DOI
Dobrzinski D., Boguszewska-Czubara A., Sugimori K. Hydrochemical and biomedical insights into germanium potential of curative waters: A case study of health resorts in the Sudetes Mountains (Poland) Environ. Geochem. Health. 2018;40:1355–1375. doi: 10.1007/s10653-017-0061-0. PubMed DOI PMC
Mertens R.T., Parkin S., Awuach S.G. Exploring six-coordinate germanium(IV)- diketonate complexes as anti-cancer agents. Inorg. Chem. Acta. 2020;503:119375. doi: 10.1016/j.ica.2019.119375. PubMed DOI PMC
Gao Y., Wang S.Q., Yang C.Y., An N., Liu Z., Yan M., Guo C.S. A near-infrared responsive germanium com-plex of Ge/GeO2 for targeted tumor phototherapy. J. Mat. Chem. B. 2019;7:5056–5064. doi: 10.1039/C9TB00548J. PubMed DOI
Cho J.M., Chae J., Jeong S.R., Moon M.J., Shin D.Y., Lee J.H. Immune activation of Bio-Germanium in a randomized, double-blind, placebo-controlled clinical trial with 130 human subjects: Therapeutic opportunities from new insights. PLoS ONE. 2020;15:e0240358. doi: 10.1371/journal.pone.0240358. PubMed DOI PMC
Wada T., Hanyu T., Nozaki K., Kataoka K., Kawatani T., Asahi T., Sawamura N. Antioxidant Activity of Ge-132, a Synthetic Organic Germanium, on Cultured Mammalian Cells. Biol. Pharm. Bull. 2018;41:749–753. doi: 10.1248/bpb.b17-00949. PubMed DOI
Hwa S.-H., Bolger P.M. Hazard assessment of germanium supplements. Regul. Toxicol. Pharmacol. 1997;25:211–219. PubMed
Cheong Y.H., Kim S.U., Seo D.C., Chang N.I., Lee J.B., Park J.H., Heo J.-S., Cho J.-S. Effect of Inorganic and Organic Germanium Treatments on the Growth of Lettuce (Lactuca sativa) J. Korean Soc. Appl. Biol. Chem. 2009;52:389–396. doi: 10.3839/jksabc.2009.069. DOI
Bhattacharjee S., Rietjens I.M.C.M., Singh M.P., Atkins T.M., Purkait T.K., Xu Z., Regli S., Shukaliak A., Clark R.J., Mitchell B.S., et al. Cy-totoxicity of surface-functionalized silicon and germanium nanoparticles: The dominant role of surface charges. Nanoscale. 2013;5:4870–4883. doi: 10.1039/c3nr34266b. PubMed DOI PMC
Zhi B., Yang Y., Hudson-Smith N.V., Kortshagen U.R., Haynes C.L. Bacterial toxicity of germanium nanocrys-tals induced by doping with boron and phosphorus. ACS Appl. Nano Mater. 2019;2:4744–4755. doi: 10.1021/acsanm.9b00525. DOI
Robertson S.N., Gibson D., Mackay W.G., Reid S., Williams C., Birney R. Investigation of the antimicrobial properties of modified multilayer diamond-like carbon coatings on 316 stainless steel. Surf. Coat. Technol. 2017;314:72–78. doi: 10.1016/j.surfcoat.2016.11.035. DOI
Jelinek M., Kocourek T., Jurek K., Jelinek M., Smolková B., Uzhytchak M., Lunov O. Preliminary Study of Ge-DLC Nanocomposite Biomaterials Prepared by Laser Codeposition. Nanomaterials. 2019;9:451. doi: 10.3390/nano9030451. PubMed DOI PMC
Kovtun A., Jones D., Dell’Elce S., Treossi E., Liscio A., Palermo V. Accurate chemical analysis of oxygenated graphene-based materials using X-ray photoelectron spectroscopy. Carbon. 2019;143:268–275. doi: 10.1016/j.carbon.2018.11.012. DOI
Gupta N., Veettill B.P., Conibeer G., Shrestha S. Effect of substrate temperature and radio frequency power on compositional, structural and optical properties of amorphous germanium carbide films deposited using sputtering. J. Non-Cryst. Solids. 2016;443:97–102. doi: 10.1016/j.jnoncrysol.2016.04.018. DOI
Han J., Jiang C., Zhu J. Non-hydrogenated amorphous germanium carbide with adjustable microstructure and properties: A potential anti-reflection and protective coating for infrared windows. Surf. Interface Anal. 2012;45:685–690. doi: 10.1002/sia.5130. DOI
Che X.-S., Liu Z.-T., Li Y.-P., Tan T.-T. Effects of radio frequency power on the optical and electrical properties of germanium carbon films. J. Alloy. Compd. 2013;577:15–18. doi: 10.1016/j.jallcom.2013.04.072. DOI
Zhan C.-Y., Wang L.-W., Huang N.-K. Effect of bias on content of GeC in Ge1-xCx films. Chin. Phys. Lett. 2007;24:803.
Jiang C., Zhu J., Han J., Cao W. The surface topography, structural and mechanical properties of Ge1−xCx films prepared by magnetron co-sputtering. J. Non-Cryst. Solids. 2014;383:126–130. doi: 10.1016/j.jnoncrysol.2013.04.011. DOI
Zemek J., Houdkova J., Jiricek P., Jelinek M. Amorphous carbon nanocomposite films doped by titanium: Sur-face and sub-surface composition and bonding. Diam. Relat. Mater. 2018;81:61–69. doi: 10.1016/j.diamond.2017.11.009. DOI
Merel P., Tabbal M., Chaker M., Moisa S., Margot J. Direct evaluation of the sp3 content in dia-mond-like-carbon films by XPS. Appl. Surf. Sci. 1998;136:105–110. doi: 10.1016/S0169-4332(98)00319-5. DOI
Haerle R., Riedo E., Pasquarello A., Baldereschi A. sp2/sp3hybridization ratio in amorphous carbon from C1score-level shifts: X-ray photoelectron spectroscopy and first-principles calculation. Phys. Rev. B. 2001;65:045101. doi: 10.1103/PhysRevB.65.045101. DOI
Leiro J., Heinonen M., Laiho T., Batirev I. Core-level XPS spectra of fullerene, highly oriented pyrolitic graphite, and glassy carbon. J. Electron Spectrosc. Relat. Phenom. 2003;128:205–213. doi: 10.1016/S0368-2048(02)00284-0. DOI
Zemek J., Houdkova J., Jiricek P., Jelinek M. Surface and in-depth distribution of sp2 and sp3 coordinated car-bon atoms in diamond-like carbon films modified by argon ion bombardment during growth. Carbon. 2018;134:71–79. doi: 10.1016/j.carbon.2018.03.072. DOI
Prabhakaran K., Ogino T. Oxidation of Ge(100) and Ge(111) surfaces: An UPS and XPS study. Surf. Sci. 1995;325:263–271. doi: 10.1016/0039-6028(94)00746-2. DOI
Wolter S., Tyler T., Jokerst N. Surface characterization of oxide growth on porous germanium films oxidized in air. Thin Solid Films. 2012;522:217–222. doi: 10.1016/j.tsf.2012.09.041. DOI
Foong Y.M., Koh A.T.T., Ng H.Y., Chua D.H.C. Mechanism behind the surface evolution and microstructure changes of laser fabricated nanostructured carbon composite. J. Appl. Phys. 2011;110:54904. doi: 10.1063/1.3626828. DOI
Shinotsuka H., Powell C.J., Penn D.R. Calculations of electron inelastic mean free paths. X. Data for 41 ele-mental solids over the 50 eV to 200 keV range with the relativistic full Pen algorithm. Surf. Interface Anal. 2015;47:871–888. doi: 10.1002/sia.5789. DOI
Jablonski A., Powell C.J. Practical expressions for the mean escape depth, the information depth, and the effec-tive attenuation length in Auger-electron spectroscopy and x-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A. 2009;27:253–261. doi: 10.1116/1.3071947. DOI
Takabayashi S., Motomitsu K., Takahagi T., Terayama A., Okamoto K., Nakatani T. Qualitative analysis of a diamondlike carbon film by angle-resolved x-ray photoelectron spectroscopy. J. Appl. Phys. 2007;101:103542. doi: 10.1063/1.2735416. DOI
Lesiak B., Kövér L., Tóth J., Zemek J., Jiricek P., Kromka A., Rangam N. Csp2/sp3 hybridisations in carbon nanomaterials—XPS and (X)AES study. Appl. Surf. Sci. 2018;452:223–231. doi: 10.1016/j.apsusc.2018.04.269. DOI
Brongersma H.H., Draxler M., de Ridder M., Bauer P. Surface composition analysis by low-energy ion scatter-ing. Surf. Sci. Reps. 2007;62:63–101. doi: 10.1016/j.surfrep.2006.12.002. DOI
Mikhailov S.N., van den Oetelaar L.C.A., Brongersma H.H. Strong matrix effect in low- energy He+ ion scatter-ing from carbon. Nucl. Instr. Meth. Phys. Res. B. 1994;93:210–214. doi: 10.1016/0168-583X(94)95689-8. DOI
Průša S., Procházka P., Bábor P., Šikola T., Ter Veen R., Fartmann M., Grehl T., Brüner P., Roth D., Bauer P., et al. Highly Sensitive Detection of Surface and Intercalated Impurities in Graphene by LEIS. Langmuir. 2015;31:9628–9635. doi: 10.1021/acs.langmuir.5b01935. PubMed DOI
Bom N., Soares G., Krug C., Baumvol I., Radtke C. Probing the stability of Al2O3/Ge structures with ion beams. Nucl. Instrum. Methods Phys. Res. Sect. B. 2012;273:146–148. doi: 10.1016/j.nimb.2011.07.061. DOI
Hueper W.C. Effects of overdoses of germanium dioxid upon the blood and tissues of rabbits. Am. J. Med. Sci. 1931;181:820–829. doi: 10.1097/00000441-193106000-00009. DOI
Chiu S.-J., Lee M.-Y., Chen H.-W., Chou W.-G., Lin L.-Y. Germanium oxide inhibits the transition from G2 to M phase of CHO cells. Chem. Interact. 2002;141:211–228. doi: 10.1016/S0009-2797(02)00072-8. PubMed DOI
Davis C.A., Amaratunga G.A.J., Knowles K.M. Growth Mechanism and Cross-Sectional Structure of Tetrahedral Amorphous Carbon Thin Films. Phys. Rev. Lett. 1998;80:3280–3283. doi: 10.1103/PhysRevLett.80.3280. DOI
Soin N., Roy S.S., Ray S.C., Lemoine P., Rahman A., Maguire P.D., Mitra S.K., McLaughlin J.A. Thickness dependent electronic structure of ultra-thin tetrahedral amorphous carbon (ta-C) films. Thin Solid Films. 2012;520:2909–2915. doi: 10.1016/j.tsf.2011.12.039. DOI
Kohary K., Kugler S. Growth of amorphous carbon: Low-energy molecular dynamics simulation of atomic bombardment. Phys. Rev. B. 2001;63:193404. doi: 10.1103/PhysRevB.63.193404. DOI
Marks N. Thin film deposition of tetrahedral amorphous carbon: A molecular dynamics study. Diam. Relat. Mater. 2005;14:1223–1231. doi: 10.1016/j.diamond.2004.10.047. DOI
Ferrary A.C., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 2000;61:14095–14107. doi: 10.1103/PhysRevB.61.14095. DOI
Dey R., Dolai S., Hussain S., Bhar R., Pal A.K. Phosphorus doping of diamond-like carbon films by radio fre-quency CVD-cum-evaporation technique. Diam. Relat. Mater. 2018;82:70–78. doi: 10.1016/j.diamond.2018.01.002. DOI