Mechanical regulation of mitochondrial morphodynamics in cancer cells by extracellular microenvironment
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38585282
PubMed Central
PMC10992729
DOI
10.1016/j.bbiosy.2024.100093
PII: S2666-5344(24)00006-0
Knihovny.cz E-zdroje
- Klíčová slova
- Cancer, Mechanotransduction, Mitochondria, Mitochondrial dynamics, Tumor metabolism,
- Publikační typ
- časopisecké články MeSH
Recently, it has been recognized that physical abnormalities (e.g. elevated solid stress, elevated interstitial fluid pressure, increased stiffness) are associated with tumor progression and development. Additionally, these mechanical forces originating from tumor cell environment through mechanotransduction pathways can affect metabolism. On the other hand, mitochondria are well-known as bioenergetic, biosynthetic, and signaling organelles crucial for sensing stress and facilitating cellular adaptation to the environment and physical stimuli. Disruptions in mitochondrial dynamics and function have been found to play a role in the initiation and advancement of cancer. Consequently, it is logical to hypothesize that mitochondria dynamics subjected to physical cues may play a pivotal role in mediating tumorigenesis. Recently mitochondrial biogenesis and turnover, fission and fusion dynamics was linked to mechanotransduction in cancer. However, how cancer cell mechanics and mitochondria functions are connected, still remain poorly understood. Here, we discuss recent studies that link mechanical stimuli exerted by the tumor cell environment and mitochondria dynamics and functions. This interplay between mechanics and mitochondria functions may shed light on how mitochondria regulate tumorigenesis.
Department of Pediatric Research Oslo University Hospital Oslo Norway
Institute for Clinical and Experimental Medicine Prague 14021 Czech Republic
Zobrazit více v PubMed
Saraswathibhatla A, Indana D, Chaudhuri O. Cell-extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol. 2023;24:495–516. doi: 10.1038/s41580-023-00583-1. PubMed DOI PMC
Uhler C, Shivashankar GV. Regulation of genome organization and gene expression by nuclear mechanotransduction. Nat Rev Mol Cell Biol. 2017;18:717–727. doi: 10.1038/nrm.2017.101. PubMed DOI
Janmey PA, Fletcher DA, Reinhart-King CA. Stiffness sensing by cells. Physiol Rev. 2020;100:695–724. doi: 10.1152/physrev.00013.2019. PubMed DOI PMC
Yamada KM, Doyle AD, Lu JY. Cell-3D matrix interactions: recent advances and opportunities. Trends Cell Biol. 2022;32:883–895. doi: 10.1016/j.tcb.2022.03.002. PubMed DOI PMC
Ladoux B, Mège RM. Mechanobiology of collective cell behaviours. Nat Rev Mol Cell Biol. 2017;18:743–757. doi: 10.1038/nrm.2017.98. PubMed DOI
Romani P, Valcarcel-Jimenez L, Frezza C, Dupont S. Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol. 2021;22:22–38. doi: 10.1038/s41580-020-00306-w. PubMed DOI
Du HX, Bartleson JM, Butenko S, Alonso V, Liu WF, Winer DA, et al. Tuning immunity through tissue mechanotransduction. Nat Rev Immunol. 2023;23:174–188. doi: 10.1038/s41577-022-00761-w. PubMed DOI PMC
Di XP, Gao XS, Peng L, Ai JZ, Jin X, Qi SQ, et al. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther. 2023;8:282. doi: 10.1038/s41392-023-01501-9. PubMed DOI PMC
Nia HDT, Munn LL, Jain RK. Physical traits of cancer. Science. 2020;370:eaaz0868. doi: 10.1126/science.aaz0868. PubMed DOI PMC
Paul CD, Mistriotis P, Konstantopoulos K. Cancer cell motility: lessons from migration in confined spaces. Nat Rev Cancer. 2017;17:131–140. doi: 10.1038/nrc.2016.123. PubMed DOI PMC
Broders-Bondon F, Ho-Bouldoires THN, Fernandez-Sanchez ME, Farge E. Mechanotransduction in tumor progression: The dark side of the force. J Cell Biol. 2018;217:1571–1587. doi: 10.1083/jcb.201701039. PubMed DOI PMC
Evers TMJ, Holt LJ, Alberti S, Mashaghi A. Reciprocal regulation of cellular mechanics and metabolism. Nat Metab. 2021;3:456–468. doi: 10.1038/s42255-021-00384-w. PubMed DOI PMC
Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science. 2020;368:eaaw5473. doi: 10.1126/science.aaw5473. PubMed DOI PMC
Sciacovelli M, Oncometabolites Frezza C. Unconventional triggers of oncogenic signalling cascades. Free Radic Biol Med. 2016;100:175–181. doi: 10.1016/j.freeradbiomed.2016.04.025. PubMed DOI PMC
Senft D, Ronai ZA. Regulators of mitochondrial dynamics in cancer. Curr Opin Cell Biol. 2016;39:43–52. doi: 10.1016/j.ceb.2016.02.001. PubMed DOI PMC
Su EML, Villard C, Mitochondria Manneville JB. At the crossroads between mechanobiology and cell metabolism. Biol Cell. 2023;115 doi: 10.1111/boc.202300010. PubMed DOI
Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21:204–224. doi: 10.1038/s41580-020-0210-7. PubMed DOI
Chen W, Zhao HK, Li YS. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther. 2023;8:333. doi: 10.1038/s41392-023-01547-9. PubMed DOI PMC
Zanotelli MR, Zhang J, Reinhart-King CA. Mechanoresponsive metabolism in cancer cell migration and metastasis. Cell Metab. 2021;33:1307–1321. doi: 10.1016/j.cmet.2021.04.002. PubMed DOI PMC
Liberti MV, Locasale JW. The warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41:211–218. doi: 10.1016/j.tibs.2015.12.001. PubMed DOI PMC
Shiraishi T, Verdone JE, Huang J, Kahlert UD, Hernandez JR, Torga G, et al. Glycolysis is the primary bioenergetic pathway for cell motility and cytoskeletal remodeling in human prostate and breast cancer cells. Oncotarget. 2015;6:130–143. doi: 10.18632/oncotarget.2766. PubMed DOI PMC
Humphries BA, Buschhaus JM, Chen YC, Haley HR, Qyli T, Chiang B, et al. Plasminogen activator inhibitor 1 (PAI1) promotes actin cytoskeleton reorganization and glycolytic metabolism in triple-negative breast cancer. Mol Cancer Res. 2019;17:1142–1154. doi: 10.1158/1541-7786.Mcr-18-0836. PubMed DOI PMC
DeBerardinis RJ, Chandel NS. We need to talk about the Warburg effect. Nat Metab. 2020;2:127–129. doi: 10.1038/s42255-020-0172-2. PubMed DOI
Cox TR. The matrix in cancer. Nat Rev Cancer. 2021;21:217–238. doi: 10.1038/s41568-020-00329-7. PubMed DOI
Wu MJ, Ren AJ, Xu D, Peng XJ, Ye XH, Li A. Diagnostic performance of elastography in malignant soft tissue tumors: A systematic review and meta-analysis. Ultrasound Med Biol. 2021;47:855–868. doi: 10.1016/j.ultrasmedbio.2020.12.017. PubMed DOI
Boyd NF, Li Q, Melnichouk O, Huszti E, Martin LJ, Gunasekara A, et al. Evidence that breast tissue stiffness is associated with risk of breast cancer. PLoS One. 2014;9 doi: 10.1371/journal.pone.0100937. PubMed DOI PMC
Chen W, Fang LX, Chen HL, Zheng JH. Accuracy of ultrasound elastography for predicting breast cancer response to neoadjuvant chemotherapy: A systematic review and meta-analysis. World J Clin Cases. 2022;10:3436–3448. doi: 10.12998/wjcc.v10.i11.3436. PubMed DOI PMC
Maskarinec G, Pagano IS, Little MA, Conroy SM, Park SY, Kolonel LN. Mammographic density as a predictor of breast cancer survival: the Multiethnic Cohort. Breast Cancer Res. 2013;15:R7. doi: 10.1186/bcr3378. PubMed DOI PMC
Evans A, Whelehan P, Thomson K, Brauer K, Jordan L, Purdie C, et al. Differentiating benign from malignant solid breast masses: value of shear wave elastography according to lesion stiffness combined with greyscale ultrasound according to BI-RADS classification. Br J Cancer. 2012;107:224–229. doi: 10.1038/bjc.2012.253. PubMed DOI PMC
Carrara S, Di Leo M, Grizzi F, Correale L, Rahal D, Anderloni A, et al. EUS elastography (strain ratio) and fractal-based quantitative analysis for the diagnosis of solid pancreatic lesions. Gastrointest Endosc. 2018;87:1464–1473. doi: 10.1016/j.gie.2017.12.031. PubMed DOI
Shahryari M, Tzschätzsch H, Guo J, Garcia SRM, Böning G, Fehrenbach U, et al. Tomoelastography distinguishes noninvasively between benign and malignant liver lesions. Cancer Res. 2019;79:5704–5710. doi: 10.1158/0008-5472.Can-19-2150. PubMed DOI
Rouvière O, Melodelima C, Dinh AH, Bratan F, Pagnoux G, Sanzalone T, et al. Stiffness of benign and malignant prostate tissue measured by shear-wave elastography: a preliminary study. Eur Radiol. 2017;27:1858–1866. doi: 10.1007/s00330-016-4534-9. PubMed DOI
Merino MM, Levayer R, Moreno E. Survival of the fittest: essential roles of cell competition in development, aging, and cancer. Trends Cell Biol. 2016;26:776–788. doi: 10.1016/j.tcb.2016.05.009. PubMed DOI
Papalazarou V, Zhang T, Paul NR, Juin A, Cantini M, Maddocks ODK, et al. The creatine-phosphagen system is mechanoresponsive in pancreatic adenocarcinoma and fuels invasion and metastasis. Nat Metab. 2020;2:62–80. doi: 10.1038/s42255-019-0159-z. PubMed DOI PMC
Guo L, Cui CH, Zhang K, Wang JX, Wang YL, Lu YX, et al. Kindlin-2 links mechano-environment to proline synthesis and tumor growth. Nat Commun. 2019;10:845. doi: 10.1038/s41467-019-08772-3. PubMed DOI PMC
Elia I, Rossi M, Stegen S, Broekaert D, Doglioni G, van Gorsel M, et al. Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature. 2019;568:117–121. doi: 10.1038/s41586-019-0977-x. PubMed DOI PMC
Mookerjee SA, Goncalves RLS, Gerencser AA, Nicholls DG, Brand MD. The contributions of respiration and glycolysis to extracellular acid production. Biochim Biophys Acta-Bioenerg. 2015;1847:171–181. doi: 10.1016/j.bbabio.2014.10.005. PubMed DOI
Wellen KE, Thompson CB. A two-way street: reciprocal regulation of metabolism and signalling. Nat Rev Mol Cell Biol. 2012;13:270–276. doi: 10.1038/nrm3305. PubMed DOI
Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity. 2015;42:406–417. doi: 10.1016/j.immuni.2015.02.002. PubMed DOI PMC
Lightowlers RN, Taylor RW, Turnbull DM. Mutations causing mitochondrial disease: What is new and what challenges remain? Science. 2015;349:1494–1499. doi: 10.1126/science.aac7516. PubMed DOI
Mishra P, Carelli V, Manfredi G, Chan DC. Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab. 2014;19:630–641. doi: 10.1016/j.cmet.2014.03.011. PubMed DOI PMC
Jiao HF, Jiang D, Hu XY, Du WQ, Ji LL, Yang YZ, et al. Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell. 2021;184 doi: 10.1016/j.cell.2021.04.027. 2896-910.e13. PubMed DOI
Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337:1062–1065. doi: 10.1126/science.1219855. PubMed DOI PMC
Tilokani L, Nagashima S, Paupe V, Prudent J. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem. 2018;62:341–360. doi: 10.1042/Ebc20170104. PubMed DOI PMC
Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12:685–698. doi: 10.1038/nrc3365. PubMed DOI PMC
Breda CND, Davanzo GG, Basso PJ, Camara NOS, Moraes-Vieira PMM. Mitochondria as central hub of the immune system. Redox Biol. 2019;26 doi: 10.1016/j.redox.2019.101255. PubMed DOI PMC
Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46. doi: 10.1158/2159-8290.Cd-21-1059. PubMed DOI
Hagenbuchner J, Kuznetsov AV, Obexer P, Ausserlechner MJ. BIRC5/Survivin enhances aerobic glycolysis and drug resistance by altered regulation of the mitochondrial fusion/fission machinery. Oncogene. 2013;32:4748–4757. doi: 10.1038/onc.2012.500. PubMed DOI
Kashatus JA, Nascimento A, Myers LJ, Sher A, Byrne FL, Hoehn KL, et al. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell. 2015;57:537–551. doi: 10.1016/j.molcel.2015.01.002. PubMed DOI PMC
Tian GA, Xu WT, Zhang XL, Zhou YQ, Sun Y, Hu LP, et al. CCBE1 promotes mitochondrial fusion by inhibiting the TGF3-DRP1 axis to prevent the progression of hepatocellular carcinoma. Matrix Biol. 2023;117:31–45. doi: 10.1016/j.matbio.2023.02.007. PubMed DOI
Liu XW, Sun J, Yuan P, Shou KQ, Zhou YH, Gao WQ, et al. Mfn2 inhibits proliferation and cell-cycle in Hela cells via Ras-NF-κB signal pathway. Cancer Cell Int. 2019;19:197. doi: 10.1186/s12935-019-0916-9. PubMed DOI PMC
Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene. 2013;32:4814–4824. doi: 10.1038/onc.2012.494. PubMed DOI PMC
Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575:299–309. doi: 10.1038/s41586-019-1730-1. PubMed DOI PMC
Fu YQ, Dong W, Xu YT, Li L, Yu X, Pang YH, et al. Targeting mitochondrial dynamics by AZD5363 in triple-negative breast cancer MDA-MB-231 cell-derived spheres. Naunyn-Schmiedebergs Arch Pharmacol. 2023;396:2545–2553. doi: 10.1007/s00210-023-02477-7. PubMed DOI PMC
Romani P, Nirchio N, Arboit M, Barbieri V, Tosi A, Michielin F, et al. Mitochondrial fission links ECM mechanotransduction to metabolic redox homeostasis and metastatic chemotherapy resistance. Nat Cell Biol. 2022;24:168–180. doi: 10.1038/s41556-022-00843-w. PubMed DOI PMC
Archer SL. Mitochondrial dynamics - mitochondrial fission and fusion in human diseases. N Engl J Med. 2013;369:2236–2251. doi: 10.1056/NEJMra1215233. PubMed DOI
Min E, Schwartz MA. Translocating transcription factors in fluid shear stress-mediated vascular remodeling and disease. Exp Cell Res. 2019;376:92–97. doi: 10.1016/j.yexcr.2019.01.005. PubMed DOI PMC
Petridou NI, Spiró Z, Heisenberg CP. Multiscale force sensing in development. Nat Cell Biol. 2017;19:581–588. doi: 10.1038/ncb3524. PubMed DOI
Tschumperlin DJ, Ligresti G, Hilscher MB, Shah VH. Mechanosensing and fibrosis. J Clin Invest. 2018;128:74–84. doi: 10.1172/Jci93561. PubMed DOI PMC
Vining KH, Mooney DJ. Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol. 2017;18:728–742. doi: 10.1038/nrm.2017.108. PubMed DOI PMC
Mohammadi H, Sahai E. Mechanisms and impact of altered tumour mechanics. Nat Cell Biol. 2018;20:766–774. doi: 10.1038/s41556-018-0131-2. PubMed DOI
Chen K, Wang Y, Deng X, Guo L, Wu C. Extracellular matrix stiffness regulates mitochondrial dynamics through PINCH-1- and kindlin-2-mediated signalling. Curr Res Cell Biol. 2021;2 doi: 10.1016/j.crcbio.2021.100008. DOI
Tharp KM, Higuchi-Sanabria R, Timblin GA, Ford B, Garzon-Coral C, Schneider C, et al. Adhesion-mediated mechanosignaling forces mitohormesis. Cell Metab. 2021;33 doi: 10.1016/j.cmet.2021.04.017. 1322-41.e13. PubMed DOI PMC
Xie J, Bao M, Hu XY, Koopman WJH, Huck WTS. Energy expenditure during cell spreading influences the cellular response to matrix stiffness. Biomaterials. 2021;267 doi: 10.1016/j.biomaterials.2020.120494. PubMed DOI
Guo T, Jiang CS, Yang SZ, Zhu Y, He C, Carter AB, et al. Mitochondrial fission and bioenergetics mediate human lung fibroblast durotaxis. JCI Insight. 2023;8 doi: 10.1172/jci.insight.157348. PubMed DOI PMC
Yanes B, Rainero E. The interplay between cell-extracellular matrix interaction and mitochondria dynamics in cancer. Cancers. 2022;14:1433. doi: 10.3390/cancers14061433. PubMed DOI PMC
Zanotelli MR, Goldblatt ZE, Miller JP, Bordeleau F, Li J, VanderBurgh JA, et al. Regulation of ATP utilization during metastatic cell migration by collagen architecture. Mol Biol Cell. 2018;29:1–9. doi: 10.1091/mbc.E17-01-0041. PubMed DOI PMC
Frtus A, Smolkov B, Uzhytchak M, Lunova M, Jirsa M, Petrenko Y, et al. Mechanical regulation of mitochondrial dynamics and function in a 3D-engineered liver tumor microenvironment. ACS Biomater Sci Eng. 2023;9:2408–2425. doi: 10.1021/acsbiomaterials.2c01518. PubMed DOI PMC
Helle SCJ, Feng Q, Aebersold MJ, Hirt L, Grüter RR, Vahid A, et al. Mechanical force induces mitochondrial fission. Elife. 2017;6:e30292. doi: 10.7554/eLife.30292. PubMed DOI PMC
Pang GF, Xie Q, Yao JJ. Mitofusin 2 inhibits bladder cancer cell proliferation and invasion via the Wnt/β-catenin pathway. Oncol Lett. 2019;18:2434–2442. doi: 10.3892/ol.2019.10570. PubMed DOI PMC
Xu K, Chen G, Li XB, Wu XQ, Chang ZJ, Xu JH, et al. MFN2 suppresses cancer progression through inhibition of mTORC2/Akt signaling. Sci Rep. 2017;7:41718. doi: 10.1038/srep41718. PubMed DOI PMC
Chen L, Zhang J, Lyu ZM, Chen YB, Ji XY, Cao HY, et al. Positive feedback loop between mitochondrial fission and Notch signaling promotes survivin-mediated survival of TNBC cells. Cell Death Dis. 2018;9:1050. doi: 10.1038/s41419-018-1083-y. PubMed DOI PMC
Lin ZCA, Lin XY, Chen JH, Huang GQ, Chen TG, Zheng LL. Mitofusin-2 is a novel anti-angiogenic factor in pancreatic cancer. J Gastrointest Oncol. 2021;12:484–495. doi: 10.21037/jgo-21-176. PubMed DOI PMC
You M-H, Jeon MJ, Sr Kim, Lee WK, Cheng S-y, Jang G, et al. Mitofusin-2 modulates the epithelial to mesenchymal transition in thyroid cancer progression. Sci Rep. 2021;11:2054. doi: 10.1038/s41598-021-81469-0. PubMed DOI PMC
Kitamura S, Yanagi T, Imafuku K, Hata H, Abe R, Shimizu H. Drp1 regulates mitochondrial morphology and cell proliferation in cutaneous squamous cell carcinoma. J Dermatol Sci. 2017;88:298–307. doi: 10.1016/j.jdermsci.2017.08.004. PubMed DOI
Xie Q, Wu QL, Horbinski CM, Flavahan WA, Yang KL, Zhou WC, et al. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci. 2015;18:501–510. doi: 10.1038/nn.3960. PubMed DOI PMC
Yin MJ, Lu Q, Liu X, Wang T, Liu Y, Chen LF. Silencing Drp1 inhibits glioma cells proliferation and invasion by RHOA/ROCK1 pathway. Biochem Biophys Res Commun. 2016;478:663–668. doi: 10.1016/j.bbrc.2016.08.003. PubMed DOI
Huang QC, Zhan L, Cao HY, Li JB, Lyu YH, Guo X, et al. Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways. Autophagy. 2016;12:999–1014. doi: 10.1080/15548627.2016.1166318. PubMed DOI PMC