Retinal S-opsin dominance in Ansell's mole-rats (Fukomys anselli) is a consequence of naturally low serum thyroxine

. 2018 Mar 12 ; 8 (1) : 4337. [epub] 20180312

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29531249
Odkazy

PubMed 29531249
PubMed Central PMC5847620
DOI 10.1038/s41598-018-22705-y
PII: 10.1038/s41598-018-22705-y
Knihovny.cz E-zdroje

Mammals usually possess a majority of medium-wavelength sensitive (M-) and a minority of short-wavelength sensitive (S-) opsins in the retina, enabling dichromatic vision. Unexpectedly, subterranean rodents from the genus Fukomys exhibit an S-opsin majority, which is exceptional among mammals, albeit with no apparent adaptive value. Because thyroid hormones (THs) are pivotal for M-opsin expression and metabolic rate regulation, we have, for the first time, manipulated TH levels in the Ansell's mole-rat (Fukomys anselli) using osmotic pumps. In Ansell's mole-rats, the TH thyroxine (T4) is naturally low, likely as an adaptation to the harsh subterranean ecological conditions by keeping resting metabolic rate (RMR) low. We measured gene expression levels in the eye, RMR, and body mass (BM) in TH-treated animals. T4 treatment increased both, S- and M-opsin expression, albeit M-opsin expression at a higher degree. However, this plasticity was only given in animals up to approximately 2.5 years. Mass-specific RMR was not affected following T4 treatment, although BM decreased. Furthermore, the T4 inactivation rate is naturally higher in F. anselli compared to laboratory rodents. This is the first experimental evidence that the S-opsin majority in Ansell's mole-rats is a side effect of low T4, which is downregulated to keep RMR low.

Zobrazit více v PubMed

Land, M. F. & Nilsson, D.-E. Animal Eyes. (Oxford University Press, 2012).

Peichl L. Diversity of mammalian photoreceptor properties: Adaptations to habitat and lifestyle? Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2005;287A:1001–1012. doi: 10.1002/ar.a.20262. PubMed DOI

Hunt DM, Peichl L. S cones: Evolution, retinal distribution, development, and spectral sensitivity. Vis. Neurosci. 2014;31:115–138. doi: 10.1017/S0952523813000242. PubMed DOI

Kock, D., Ingram, C. M., Frabotta, L. J., Honeycutt, R. L. & Burda, H. On the nomenclature of Bathyergidae and Fukomys n. gen. (Mammalia: Rodentia). Zootaxa, 51–55 (2006).

Burda H, Bruns V, Müller M. Sensory adaptations in subterranean mammals. Prog. Clin. Biol. Res. 1990;335:269–293. PubMed

Oelschläger HHA, Nakamura M, Herzog M, Burda H. Visual system labeled by c-fos immunohistochemistry after light exposure in the ‘blind’ subterranean Zambian mole-rat (Cryptomys anselli) Brain. Behav. Evol. 2000;55:209–220. doi: 10.1159/000006653. PubMed DOI

Cernuda-Cernuda R, Garcia-Fernandez JM, Gordijn MC, Bovee-Geurts PH, DeGrip WJ. The eye of the African mole-rat Cryptomys anselli: to see or not to see? Eur. J. Neurosci. 2003;17:709–720. doi: 10.1046/j.1460-9568.2003.02485.x. PubMed DOI

Peichl L, Němec P, Burda H. Unusual cone and rod properties in subterranean African mole-rats (Rodentia, Bathyergidae) Eur. J. Neurosci. 2004;19:1545–1558. doi: 10.1111/j.1460-9568.2004.03263.x. PubMed DOI

Němec P, Burda H, Peichl L. Subcortical visual system of the African mole-rat Cryptomys anselli: to see or not to see? Eur. J. Neurosci. 2004;20:757–768. doi: 10.1111/j.1460-9568.2004.03510.x. PubMed DOI

Wegner RE, Begall S, Burda H. Light perception in ‘blind’ subterranean Zambian mole-rats. Anim. Behav. 2006;72:1021–1024. doi: 10.1016/j.anbehav.2006.02.018. DOI

Kott O, Šumbera R, Němec P. Light perception in two strictly subterranean rodents: life in the dark or blue? PLoS One. 2010;5:e11810. doi: 10.1371/journal.pone.0011810. PubMed DOI PMC

Ahnelt PK, Kolb H. The mammalian photoreceptor mosaic-adaptive design. Prog. Retin. Eye Res. 2000;19:711–777. doi: 10.1016/S1350-9462(00)00012-4. PubMed DOI

Kott O, Moritz RE, Šumbera R, Burda H, Němec P. Light propagation in burrows of subterranean rodents: tunnel system architecture but not photoreceptor sensitivity limits light sensation range. J. Zool. 2014;294:67–75. doi: 10.1111/jzo.12152. DOI

Němec P, et al. The visual system in subterranean African mole-rats (Rodentia, Bathyergidae): retina, subcortical visual nuclei and primary visual cortex. Brain Res. Bull. 2008;75:356–364. doi: 10.1016/j.brainresbull.2007.10.055. PubMed DOI

Kott O, Němec P, Fremlová A, Mazoch V, Šumbera R. Behavioural tests reveal severe visual deficits in the strictly subterranean African mole-rats (Bathyergidae) but efficient vision in the fossorial rodent coruro (Spalacopus cyanus, Octodontidae) Ethology. 2016;122:1–13. doi: 10.1111/eth.12515. DOI

Ng L, et al. A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat. Genet. 2001;27:94–98. doi: 10.1038/83829. PubMed DOI

Roberts MR, Srinivas M, Forrest D, Morreale de Escobar G, Reh TA. Making the gradient: thyroid hormone regulates cone opsin expression in the developing mouse retina. Proc. Natl. Acad. Sci. USA. 2006;103:6218–6223. doi: 10.1073/pnas.0509981103. PubMed DOI PMC

Applebury ML, et al. Transient expression of thyroid hormone nuclear receptor TRbeta2 sets s opsin patterning during cone photoreceptor genesis. Dev. Dyn. 2007;236:1203–1212. doi: 10.1002/dvdy.21155. PubMed DOI

Glaschke A, et al. Thyroid hormone controls cone opsin expression in the retina of adult rodents. J. Neurosci. 2011;31:4844–4851. doi: 10.1523/JNEUROSCI.6181-10.2011. PubMed DOI PMC

Forrest D, Swaroop A. Minireview: the role of nuclear receptors in photoreceptor differentiation and disease. Mol. Endocrinol. 2012;26:905–915. doi: 10.1210/me.2012-1010. PubMed DOI PMC

Swaroop A, Kim D, Forrest D. Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat. Rev. Neurosci. 2010;11:563–576. doi: 10.1038/nrn2880. PubMed DOI PMC

Mendoza A, Hollenberg AN. New insights into thyroid hormone action. Pharmacol. Ther. 2017;173:135–145. doi: 10.1016/j.pharmthera.2017.02.012. PubMed DOI PMC

Glaschke A, Glösmann M, Peichl L. Developmental changes of cone opsin expression but not retinal morphology in the hypothyroid Pax8 knockout mouse. Invest. Ophthalmol. Vis. Sci. 2010;51:1719–1727. doi: 10.1167/iovs.09-3592. PubMed DOI

Roberts MR, Hendrickson A, McGuire CR, Reh TA. Retinoid x receptor γ is necessary to establish the s-opsin gradient in cone photoreceptors of the developing mouse retina. Invest. Ophthalmol. Vis. Sci. 2005;46:2897–2904. doi: 10.1167/iovs.05-0093. PubMed DOI

Cakir M, et al. The effect of hypothyroidism on color contrast sensitivity: a prospective study. Eur. Thyroid J. 2015;4:43–47. doi: 10.1159/000371549. PubMed DOI PMC

Henning Y, et al. Unusual ratio between free thyroxine and free triiodothyronine in a long-lived mole-rat species with bimodal ageing. PLoS One. 2014;9:e113698. doi: 10.1371/journal.pone.0113698. PubMed DOI PMC

Schielke, C. K. M., Burda, H., Henning, Y., Okrouhlík, J. & Begall, S. Higher resting metabolic rate in long-lived breeding Ansell’s mole-rats (Fukomys anselli). Front. Zool. 14, 10.1186/s12983-017-0229-6 (2017). PubMed PMC

Zelová J, Sumbera R, Sedlácek F, Burda H. Energetics in a solitary subterranean rodent, the silvery mole-rat, Heliophobius argenteocinereus, and allometry of RMR in African mole-rats (Bathyergidae) Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007;147:412–419. doi: 10.1016/j.cbpa.2007.01.002. PubMed DOI

Mullur R, Liu Y-Y, Brent GA. Thyroid hormone regulation of metabolism. Physiol. Rev. 2014;94:355–382. doi: 10.1152/physrev.00030.2013. PubMed DOI PMC

Bernal J, Guadano-Ferraz A, Morte B. Thyroid hormone transporters - functions and clinical implications. Nat. Rev. Endocrinol. 2015;11:406–417. doi: 10.1038/nrendo.2015.66. PubMed DOI

Mayerl S, et al. Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J. Clin. Invest. 2014;124:1987–1999. doi: 10.1172/JCI70324. PubMed DOI PMC

Friesema ECH, et al. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J. Biol. Chem. 2003;278:40128–40135. doi: 10.1074/jbc.M300909200. PubMed DOI

Kinne A, Schulein R, Krause G. Primary and secondary thyroid hormone transporters. Thyroid Res. 2011;4:S7. doi: 10.1186/1756-6614-4-S1-S7. PubMed DOI PMC

Hagenbuch B. Cellular entry of thyroid hormones by organic anion transporting polypeptides. Best Pract. Res. Clin. Endocrinol. Metab. 2007;21:209–221. doi: 10.1016/j.beem.2007.03.004. PubMed DOI

Müller, J. & Heuer, H. Expression pattern of thyroid hormone transporters in the postnatal mouse brain. Front. Endocrinol. (Lausanne)5, 10.3389/fendo.2014.00092 (2014). PubMed PMC

Pizzagalli F, et al. Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter. Mol. Endocrinol. 2002;16:2283–2296. doi: 10.1210/me.2001-0309. PubMed DOI

Bianco AC, Kim BW. Deiodinases: implications of the local control of thyroid hormone action. J. Clin. Invest. 2006;116:2571–2579. doi: 10.1172/JCI29812. PubMed DOI PMC

Bernal J. Thyroid hormone receptors in brain development and function. Nat. Clin. Pract. Endocrinol. Metab. 2007;3:249–259. doi: 10.1038/ncpendmet0424. PubMed DOI

Davies DT. Assessment of rodent thyroid endocrinology - Advantages and pit-falls. Comp. Haematol. Int. 1993;3:142–152. doi: 10.1007/BF00186098. DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Satoh S, et al. The spatial patterning of mouse cone opsin expression is regulated by BMP signaling through downstream effector COUP-TF nuclear receptors. J. Neurosci. 2009;29:12401–12411. doi: 10.1523/JNEUROSCI.0951-09.2009. PubMed DOI PMC

Buffenstein R, Woodley R, Thomadakis C, Daly TJM, Gray DA. Cold-induced changes in thyroid function in a poikilothermic mammal, the naked mole-rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001;280:R149–R155. doi: 10.1152/ajpregu.2001.280.1.R149. PubMed DOI

Bianco AC, et al. American Thyroid Association guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid. 2014;24:88–168. doi: 10.1089/thy.2013.0109. PubMed DOI PMC

Banovac K, Zakarija M, Rabinovitch A. A study of hepatic metabolism of thyroxine in BB/W rats treated with L-thyroxine. Horm. Metab. Res. 1989;21:69–72. doi: 10.1055/s-2007-1009153. PubMed DOI

Keck FS, Wolf CF, Pfeiffer EF. The influence of circulating thyroxine serum concentration on hepatic thyroxine deiodinating activity in rats. Exp. Clin. Endocrinol. 1990;96:269–277. doi: 10.1055/s-0029-1211019. PubMed DOI

Schoenmakers CH, Pigmans IG, Poland A, Visser TJ. Impairment of the selenoenzyme type I iodothyronine deiodinase in C3H/He mice. Endocrinology. 1993;132:357–361. doi: 10.1210/endo.132.1.8419134. PubMed DOI

Cheng CL, Gan KJ, Flamarique IN. Thyroid hormone induces a time-dependent opsin switch in the retina of salmonid fishes. Invest. Ophthalmol. Vis. Sci. 2009;50:3024–3032. doi: 10.1167/iovs.08-2713. PubMed DOI

Burda H. Reproductive biology (behaviour, breeding, and postnatal development) in subterranean mole-rats. Cryptomys hottentotus (Bathyergidae). Z. Säugetierkunde. 1989;54:360–376.

Zhang Y, Dufau ML. Gene silencing by nuclear orphan receptors. Vitam. Horm. 2004;68:1–48. doi: 10.1016/S0083-6729(04)68001-0. PubMed DOI

Henning, Y. & Szafranski, K. Age-dependent changes of monocarboxylate transporter 8 availability in the postnatal murine retina. Front. Cell. Neurosci. 10, 10.3389/fncel.2016.00205 (2016). PubMed PMC

Arbogast P, Flamant F, Godement P, Glösmann M, Peichl L. Thyroid hormone signaling in the mouse retina. PLoS One. 2016;11:e0168003. doi: 10.1371/journal.pone.0168003. PubMed DOI PMC

Fujieda H, Bremner R, Mears AJ, Sasaki H. Retinoic acid receptor-related orphan receptor α regulates a subset of cone genes during mouse retinal development. J. Neurochem. 2009;108:91–101. doi: 10.1111/j.1471-4159.2008.05739.x. PubMed DOI

Koibuchi N, Yamaoka S, Chin WW. Effect of altered thyroid status on neurotrophin gene expression during postnatal development of the mouse cerebellum. Thyroid. 2001;11:205–210. doi: 10.1089/105072501750159534. PubMed DOI

Singh S, Rajput YS, Barui AK, Sharma R, Grover S. Expression of developmental genes in brown fat cells grown in vitro is linked with lipid accumulation. In Vitro Cell. Dev. Biol. Anim. 2015;51:1003–1011. doi: 10.1007/s11626-015-9930-y. PubMed DOI

Kim B. Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid. 2008;18:141–144. doi: 10.1089/thy.2007.0266. PubMed DOI

Dumitrescu AM, Refetoff S. The syndromes of reduced sensitivity to thyroid hormone. Biochim. Biophys. Acta. 2013;1830:3987–4003. doi: 10.1016/j.bbagen.2012.08.005. PubMed DOI PMC

Avivi A, et al. They live in the land down under: thyroid function and basal metabolic rate in the blind mole rat. Spalax. Endocr. Res. 2014;39:79–84. PubMed

Rimbach R, Pillay N, Schradin C. Both thyroid hormone levels and resting metabolic rate decrease in African striped mice when food availability decreases. J. Exp. Biol. 2017;220:837–843. PubMed

Woodley R, Buffenstein R. Thermogenic changes with chronic cold exposure in the naked mole-rat (Heterocephalus glaber) Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2002;133:827–834. doi: 10.1016/S1095-6433(02)00199-X. PubMed DOI

Clement K, et al. In vivo regulation of human skeletal muscle gene expression by thyroid hormone. Genome Res. 2002;12:281–291. doi: 10.1101/gr.207702. PubMed DOI PMC

Akanuma, S., Hirose, S., Tachikawa, M. & Hosoya, K. Localization of organic anion transporting polypeptide (Oatp) 1a4 and Oatp1c1 at the rat blood-retinal barrier. Fluids Barriers CNS10, 10.1186/2045-8118-10-29 (2013). PubMed PMC

Dammann P, Burda H. Sexual activity and reproduction delay ageing in a mammal. Curr. Biol. 2006;16:R117–R118. doi: 10.1016/j.cub.2006.02.012. PubMed DOI

Garcia Montero A, Burda H, Begall S. Chemical restraint of African mole-rats (Fukomys sp.) with a combination of ketamine and xylazine. Vet. Anaesth. Analg. 2015;42:187–191. doi: 10.1111/vaa.12180. PubMed DOI

Opel KL, Chung D, McCord BR. A study of PCR inhibition mechanisms using real time PCR. J. Forensic Sci. 2010;55:25–33. doi: 10.1111/j.1556-4029.2009.01245.x. PubMed DOI

Adachi H, et al. Stage-specific reference genes significant for quantitative PCR during mouse retinal development. Genes Cells. 2015;20:625–635. doi: 10.1111/gtc.12254. PubMed DOI

Lighton, J. R. B. Measuring Metabolic Rates – A Manual for Scientists. (Oxford University Press, 2008).

de Winter, J. C. F. Using the Student’s t-test with extremely small sample sizes. Pract. Assess. Res. Eval. 18 (2013).

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 1995;57:289–300.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace