Mosquito- and tick-borne orthoflaviviruses cross an in vitro endothelial-astrocyte barrier

. 2025 ; 15 () : 1624636. [epub] 20250702

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40673004

INTRODUCTION: The genus Orthoflavivirus of the Flaviviridae family includes several notable pathogens such as mosquito-borne West-Nile virus (Orthoflavivirus nilense, WNV) and Tick-borne encephalitis virus (Orthoflavivirus encephalitidis, TBEV) that are highly neurotropic and may cause severe neurological disease leading to lifelong disabilities, coma and death. These viruses have developed mechanisms to breach the compact blood-brain barrier (BBB) and establish infection within the central nervous system (CNS). Nevertheless, neuroinvasive mechanisms of orthoflaviviruses remain poorly understood. Complex anatomy of the CNS and the organization of the BBB is a major challenge to study neuroinvasion of orthoflaviviruses in vivo. Therefore, in vitro BBB models are useful tools to study direct interaction of viruses with the endothelial barrier. METHODS: In this study, we employed an in vitro transwell BBB model comprising primary mouse brain microvascular endothelial cells and astrocytes to compare the ability of mosquito-borne and tick-borne orthoflaviviruses to cross a compact endothelial barrier and reach the basolateral compartment of the transwell system. The influence of virus inoculation on the barrier properties was determined by measuring transendothelial electrical resistance (TEER). RESULTS: The results demonstrate that while pathogenic WNV and TBEV cross the endothelial barrier the ability of low pathogenic Usutu virus (USUV) and Langat virus (LGTV) was inconsistent. All viruses tested display virus replication within the endothelial cells. Nevertheless, virus replication did not affect the barrier function of endothelial cells as demonstrated by sustained TEER and absence of leakage of high molecular weight dextran molecules through the endothelial barrier even at several hours post infection. DISCUSSION: Our findings indicate that orthoflaviviruses can infect the endothelial cells, replicate within them without affecting the cells and its barrier function. Nevertheless, only pathogenic WNV and TBEV showed the ability to cross the endothelial barrier and reach the basolateral compartment.

Zobrazit více v PubMed

Agliani G., Giglia G., Marshall E. M., Gröne A., Rockx B. H. G., van den Brand J. M. A. (2023). Pathological features of West Nile and Usutu virus natural infections in wild and domestic animals and in humans: A comparative review. One Health 16, 100525. doi:  10.1016/j.onehlt.2023.100525 PubMed DOI PMC

Cain M. D., Salimi H., Diamond M. S., Klein R. S. (2019). Mechanisms of pathogen invasion into the central nervous system. Neuron 103, 771–783. doi:  10.1016/j.neuron.2019.07.015 PubMed DOI

Chang C.-Y., Li J.-R., Chen W.-Y., Ou Y.-C., Lai C.-Y., Hu Y.-H., et al. (2015). Disruption of PubMed DOI

Chen C.-J., Ou Y.-C., Li J.-R., Chang C.-Y., Pan H.-C., Lai C.-Y., et al. (2014). Infection of pericytes PubMed DOI PMC

da Fonseca N. J., Lima Afonso M. Q., Pedersolli N. G., de Oliveira L. C., Andrade D. S., Bleicher L. (2017). Sequence, structure and function relationships in flaviviruses as assessed by evolutive aspects of its conserved non-structural protein domains. Biochem. Biophys. Res. Commun. 492, 565–571. doi:  10.1016/j.bbrc.2017.01.041 PubMed DOI

de Vries L., Harding A. T. (2023). Mechanisms of neuroinvasion and neuropathogenesis by pathologic flaviviruses. Viruses 15, 261. doi:  10.3390/v15020261 PubMed DOI PMC

Dunton A. D., Göpel T., Ho D. H., Burggren W. (2021). Form and function of the vertebrate and invertebrate blood-brain barriers. Int. J. Mol. Sci. 22, 12111. doi:  10.3390/ijms222212111 PubMed DOI PMC

German A. C., Myint K. S. A., Mai N. T. H., Pomeroy I., Phu N. H., Tzartos J., et al. (2006). A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model. Trans. R. Soc. Trop. Med. Hygiene 100, 1135–1145. doi:  10.1016/j.trstmh.2006.02.008 PubMed DOI

Gritsun T. S., Lashkevich V. A., Gould E. A. (2003). Tick-borne encephalitis. Antiviral Res. 57, 129–146. doi:  10.1016/S0166-3542(02)00206-1 PubMed DOI

Habarugira G., Suen W. W., Hobson-Peters J., Hall R. A., Bielefeldt-Ohmann H. (2020). West nile virus: an update on pathobiology, epidemiology, diagnostics, control and “One health” Implications. Pathogens 9, 589. doi:  10.3390/pathogens9070589 PubMed DOI PMC

Heinz F. X., Stiasny K. (2012). Flaviviruses and their antigenic structure. J. Clin. Virol. 55, 289–295. doi:  10.1016/j.jcv.2012.08.024 PubMed DOI

Iacono-Connors L. C., Schmaljohn C. S. (1992). Cloning and sequence analysis of the genes encoding the nonstructural proteins of langat virus and comparative analysis with other flaviviruses. Virology 188, 875–880. doi:  10.1016/0042-6822(92)90545-Z PubMed DOI

Kadry H., Noorani B., Cucullo L. (2020). A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 17, 69. doi:  10.1186/s12987-020-00230-3 PubMed DOI PMC

Kubinski M., Beicht J., Zdora I., Saletti G., Kircher M., Petry-Gusmag M., et al. (2023). Cross-reactive antibodies against Langat virus protect mice from lethal tick-borne encephalitis virus infection. Front. Immunol. 14. doi:  10.3389/fimmu.2023.1134371 PubMed DOI PMC

Kuno G., Chang G.-J. J., Tsuchiya K. R., Karabatsos N., Cropp C. B. (1998). Phylogeny of the genus PubMed DOI PMC

Lim S. M., Koraka P., Osterhaus A. D. M. E., Martina B. E. E. (2011). West nile virus: immunity and pathogenesis. Viruses 3, 811–828. doi:  10.3390/v3060811 PubMed DOI PMC

Mandl C. W. (2005). Steps of the tick-borne encephalitis virus replication cycle that affect neuropathogenesis. Virus Res. 111, 161–174. doi:  10.1016/j.virusres.2005.04.007 PubMed DOI

Mandl C. W., Iacono-Connors L., Wallner G., Holzmann H., Kunz C., Heinz F. X. (1991). Sequence of the genes encoding the structural proteins of the low-virulence tick-borne flaviviruses Langat TP21 and Yelantsev. Virology 185, 891–895. doi:  10.1016/0042-6822(91)90567-U PubMed DOI

Marshall E. M., Koopmans M., Rockx B. (2024). Usutu virus and West Nile virus use a transcellular route of neuroinvasion across an PubMed DOI PMC

Mishra M. K., Dutta K., Saheb S. K., Basu A. (2009). Understanding the molecular mechanism of blood–brain barrier damage in an experimental model of Japanese encephalitis: Correlation with minocycline administration as a therapeutic agent. Neurochemistry Int. 55, 717–723. doi:  10.1016/j.neuint.2009.07.006 PubMed DOI

Mora C., McKenzie T., Gaw I. M., Dean J. M., von Hammerstein H., Knudson T. A., et al. (2022). Over half of known human pathogenic diseases can be aggravated by climate change. Nat. Clim. Change 12, 869–875. doi:  10.1038/s41558-022-01426-1 PubMed DOI PMC

Morrey J. D., Olsen A. L., Siddharthan V., Motter N. E., Wang H., Taro B. S., et al. (2008). Increased blood–brain barrier permeability is not a primary determinant for lethality of West Nile virus infection in rodents. J. Gen. Virol. 89, 467–473. doi:  10.1099/vir.0.83345-0 PubMed DOI

Neufeldt C. J., Cortese M., Acosta E. G., Bartenschlager R. (2018). Rewiring cellular networks by members of the Flaviviridae family. Nat. Rev. Microbiol. 16, 125–142. doi:  10.1038/nrmicro.2017.170 PubMed DOI PMC

Palus M., Vancova M., Sirmarova J., Elsterova J., Perner J., Ruzek D. (2017). Tick-borne encephalitis virus infects human brain microvascular endothelial cells without compromising blood-brain barrier integrity. Virology 507, 110–122. doi:  10.1016/j.virol.2017.04.012 PubMed DOI

Papa M. P., Meuren L. M., Coelho S. V. A., Lucas C. G., de O., Mustafá Y. M., et al. (2017). Zika virus infects, activates, and crosses brain microvascular endothelial cells, without barrier disruption. Front. Microbiol. 8. doi:  10.3389/fmicb.2017.02557 PubMed DOI PMC

Perera D. R., Ranadeva N. D., Sirisena K., Wijesinghe K. J. (2023). Roles of NS1 protein in flavivirus pathogenesis. ACS Infect. Diseases. 10 (1), 20–56. doi:  10.1021/acsinfecdis.3c00566 PubMed DOI

Petry M., Palus M., Leitzen E., Mitterreiter J. G., Huang B., Kröger A., et al. (2021). Immunity to TBEV Related Flaviviruses with Reduced Pathogenicity Protects Mice from Disease but Not from TBEV Entry into the CNS. Vaccines 9, 196. doi:  10.3390/vaccines9030196 PubMed DOI PMC

Pivoriūnas A., Verkhratsky A. (2021). Astrocyte–endotheliocyte axis in the regulation of the blood–brain barrier. Neurochem. Res. 46, 2538–2550. doi:  10.1007/s11064-021-03338-6 PubMed DOI

Postler T. S., Beer M., Blitvich B. J., Bukh J., de Lamballerie X., Drexler J. F., et al. (2023). Renaming of the genus Flavivirus to Orthoflavivirus and extension of binomial species names within the family Flaviviridae. Arch. Virol. 168, 224. doi:  10.1007/s00705-023-05835-1 PubMed DOI

Pradier S., Lecollinet S., Leblond A. (2012). West Nile virus epidemiology and factors triggering change in its distribution in Europe. Rev. Sci. Tech 31, 829–844. doi:  10.20506/rst.31.3.2167 PubMed DOI

Prajeeth C. K., Dittrich-Breiholz O., Talbot S. R., Robert P. A., Huehn J., Stangel M. (2018). IFN-γ Producing th1 cells induce different transcriptional profiles in microglia and astrocytes. Front. Cell. Neurosci. 12. doi:  10.3389/fncel.2018.00352 PubMed DOI PMC

Puerta-Guardo H., Glasner D. R., Espinosa D. A., Biering S. B., Patana M., Ratnasiri K., et al. (2019). Flavivirus NS1 triggers tissue-specific vascular endothelial dysfunction reflecting disease tropism. Cell Rep. 26, 1598–1613.e8. doi:  10.1016/j.celrep.2019.01.036 PubMed DOI PMC

Rathore A. P. S., St. John A. L. (2020). Cross-reactive immunity among flaviviruses. Front. Immunol. 11. doi:  10.3389/fimmu.2020.00334 PubMed DOI PMC

Reed L. J., Muench H. (1938). A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 27, 493–497. doi:  10.1093/oxfordjournals.aje.a118408 DOI

Rochfort K. D., Collins L. E., Murphy R. P., Cummins P. M. (2014). Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions. PloS One 9, e101815. doi:  10.1371/journal.pone.0101815 PubMed DOI PMC

Ruscher C., Patzina-Mehling C., Melchert J., Graff S. L., McFarland S. E., Hieke C., et al. (2023). Ecological and clinical evidence of the establishment of West Nile virus in a large urban area in Europe, Berlin, Germany 2021 to 2022. Eurosurveillance 28, 2300258. doi:  10.2807/1560-7917.ES.2023.28.48.2300258 PubMed DOI PMC

Ruzek D., Avšič Županc T., Borde J., Chrdle A., Eyer L., Karganova G., et al. (2019). Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res. 164, 23–51. doi:  10.1016/j.antiviral.2019.01.014 PubMed DOI

Ruzek D., Salát J., Singh S. K., Kopecký J. (2011). Breakdown of the blood-brain barrier during tick-borne encephalitis in mice is not dependent on CD8+ T-cells. PloS One 6, e20472. doi:  10.1371/journal.pone.0020472 PubMed DOI PMC

Schweitzer F., Letoha T., Osterhaus A., Prajeeth C. K. (2025). Impact of tick-borne orthoflaviviruses infection on compact human brain endothelial barrier. Int. J. Mol. Sci. 26, 2342. doi:  10.3390/ijms26052342 PubMed DOI PMC

Smorodintsev A. A., Dubov A. V. (1986). The correlation between the pathogenesis and biological characteristics of tick-borne encephalitis virus. Tick-borne encephalitis its vaccino-prophylaxis Medicine Moscow 113–124, 190–211.

Störk T., de le Roi M., Haverkamp A.-K., Jesse S. T., Peters M., Fast C., et al. (2021). Analysis of avian Usutu virus infections in Germany from 2011 to 2018 with focus on dsRNA detection to demonstrate viral infections. Sci. Rep. 11, 24191. doi:  10.1038/s41598-021-03638-5 PubMed DOI PMC

Verma S., Kumar M., Gurjav U., Lum S., Nerurkar V. R. (2010). Reversal of West Nile virus-induced blood–brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor. Virology 397, 130–138. doi:  10.1016/j.virol.2009.10.036 PubMed DOI PMC

Verma S., Lo Y., Chapagain M., Lum S., Kumar M., Gurjav U., et al. (2009). West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: Transmigration across the PubMed DOI PMC

Wang T., Town T., Alexopoulou L., Anderson J. F., Fikrig E., Flavell R. A. (2004). Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat. Med. 10, 1366–1373. doi:  10.1038/nm1140 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...