Cryptochrome 1 in Retinal Cone Photoreceptors Suggests a Novel Functional Role in Mammals
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26898837
PubMed Central
PMC4761878
DOI
10.1038/srep21848
PII: srep21848
Knihovny.cz E-zdroje
- MeSH
- antisérum chemie MeSH
- Canidae fyziologie MeSH
- čípky retiny - opsiny genetika MeSH
- čípky retiny fyziologie účinky záření ultrastruktura MeSH
- cirkadiánní rytmus fyziologie účinky záření MeSH
- exprese genu MeSH
- fylogeneze * MeSH
- Hominidae fyziologie MeSH
- imunohistochemie MeSH
- konformace proteinů MeSH
- kryptochromy chemie genetika MeSH
- magnetické pole MeSH
- medvědovití fyziologie MeSH
- Mustelidae fyziologie MeSH
- proteinové domény MeSH
- ptáci fyziologie MeSH
- savci klasifikace fyziologie MeSH
- světlo MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antisérum MeSH
- čípky retiny - opsiny MeSH
- kryptochromy MeSH
Cryptochromes are a ubiquitous group of blue-light absorbing flavoproteins that in the mammalian retina have an important role in the circadian clock. In birds, cryptochrome 1a (Cry1a), localized in the UV/violet-sensitive S1 cone photoreceptors, is proposed to be the retinal receptor molecule of the light-dependent magnetic compass. The retinal localization of mammalian Cry1, homologue to avian Cry1a, is unknown, and it is open whether mammalian Cry1 is also involved in magnetic field sensing. To constrain the possible role of retinal Cry1, we immunohistochemically analysed 90 mammalian species across 48 families in 16 orders, using an antiserum against the Cry1 C-terminus that in birds labels only the photo-activated conformation. In the Carnivora families Canidae, Mustelidae and Ursidae, and in some Primates, Cry1 was consistently labeled in the outer segment of the shortwave-sensitive S1 cones. This finding would be compatible with a magnetoreceptive function of Cry1 in these taxa. In all other taxa, Cry1 was not detected by the antiserum that likely also in mammals labels the photo-activated conformation, although Western blots showed Cry1 in mouse retinal cell nuclei. We speculate that in the mouse and the other negative-tested mammals Cry1 is involved in circadian functions as a non-light-responsive protein.
Ernst Strüngmann Insitute for Neuroscience Deutschordenstr 46 60528 Frankfurt am Main Germany
Institute for Biology and Environmental Sciences IBU University of Oldenburg 26111 Oldenburg Germany
Max Planck Institute for Brain Research Max von Laue Str 4 60438 Frankfurt am Main Germany
Zobrazit více v PubMed
Chaves I. et al. The cryptochromes: blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62, 335–364 (2011). PubMed
Ritz T., Adem S. & Schulten K. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718 (2000). PubMed PMC
Ritz T., Thalau P., Phillips J. B., Wiltschko R. & Wiltschko W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429, 177–180 (2004). PubMed
Liedvogel M. et al. Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs. PLoS One 2, e1106 (2007). PubMed PMC
Du X. L. et al. Observation of magnetic field effects on transient fluorescence spectra of cryptochrome 1 from homing pigeons. Photochem. Photobiol. 90, 989–996 (2014). PubMed
Wiltschko R. & Wiltschko W. Sensing magnetic direction in birds: radical pair processes involving cryptochrome. Biosensors 4, 221–242 (2014). PubMed PMC
Rodgers C. T. & Hore P. J. Chemical magnetoreception in birds: the radical pair mechanism. Proc. Natl. Acad. Sci. USA 106, 353–360 (2009). PubMed PMC
Nießner C. et al. Avian ultraviolet/violet cones identified as probable magneto-receptors. PLoS One 6, e20091 (2011). PubMed PMC
Nießner C. et al. Magnetoreception: Activated Cryptochrome 1a concurs with magnetic orientation in birds. J. Roy. Soc. Interface 10, 20130638 (2013). PubMed PMC
Wiltschko R., Stapput K., Thalau P. & Wiltschko W. Directional orientation of birds by the magnetic field under different light conditions. J. R. Soc. Interface 7, S163–S177 (2010). PubMed PMC
Möller A., Sagasser S., Wiltschko W. & Schierwater B. Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. Naturwissenschaften 91, 585–588 (2004). PubMed
Miyamoto Y. & Sancar A. Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc. Natl. Acad. Sci. USA 95, 6097–6102 (1998). PubMed PMC
Ruan G. X., Zhang D. Q., Zhou T., Yamazaki S. & McMahon D. G. Circadian organization of the mammalian retina. Proc. Natl. Acad. Sci. USA 103, 9703–9708 (2006). PubMed PMC
Tosini G., Davidson A. J., Fukuhara C., Kasamatsu M. & Castanon-Cervantes O. Localization of a circadian clock in mammalian photoreceptors. FASEB J. 21, 3866–3871 (2007). PubMed PMC
Peichl L. Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 287A, 1001–1012 (2005). PubMed
Jacobs G. H. Evolution of colour vision in mammals. Phil. Trans. R. Soc. B 364, 2957–2967 (2009). PubMed PMC
Hunt D. M. & Peichl L. S cones: Evolution, retinal distribution, development, and spectral sensitivity. Vis. Neurosci. 31, 115–138 (2014). PubMed
Jacobs G. H. Losses of functional opsin genes, short-wavelength cone photopigments, and color vision – A significant trend in the evolution of mammalian vision. Vis. Neurosci. 30, 39–53 (2013). PubMed
Partch C., Clarkson M. W., Özgür S., Lee A. L. & Sancar A. Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor. Biochemistry 44, 3795–3805 (2005). PubMed
Kondoh M. et al. Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome. J. Mol. Biol. 413, 128–137 (2011). PubMed PMC
Ozturk N., Selby C. R., Annayev Y., Zhong D. & Sancar A. Reaction mechanism of Drosophila cryptochrome. Proc. Natl. Acad. Sci. USA 108, 516–521 (2011). PubMed PMC
Watari R. et al. Light-dependent structural change of chicken retinal cryptochrome4. J. Biol. Chem. 287, 42634–42641 (2012). PubMed PMC
Vieira J. et al. Human cryptochrome-1 confers light independent biological activity in transgenic Drosophila correlated with flavin radical stability. PLoS One 7, e31867 (2012). PubMed PMC
Douglas R. H. & Jeffery G. The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals. Proc. R. Soc. B 281, 20132995 (2014). PubMed PMC
Mouritsen H. & Hore P. The magnetic retina: Light dependent and trigeminal magnetoreception in migratory birds. Curr. Opin. Neurobiol. 22, 343–352 (2012). PubMed
Winklhofer M. & Kirschvink J. L. A quantitative assessment of torque-transducer models for magnetoreception. J. R. Soc. Interface 7, S273–S289 (2010). PubMed PMC
Begall S., Malkemper E. P., Červený J., Němec P. & Burda H. Magnetic alignment in mammals and other animals. Mamm. Biol. 78, 10–20 (2013).
Begall S., Burda H. & Malkemper E. P. Magnetoreception in Mammals. Adv. Stud. Behav. 46, 45–88 (2014).
Baker R. R. Goal orientation in blindfolded humans after long distance displacement: possible involvement of a magnetic sense. Science 210, 555–557 (1980). PubMed
Phillips J. B. et al. Rapid learning of magnetic compass direction by C57BL/6 mice in a 4-armed ‘plus’ water maze. PLoS One 8, e73112 (2013). PubMed PMC
Painter M. S., Dommer D. H., Altizer W. W., Muheim R. & Phillips J. B. Spontaneous magnetic orientation in larval Drosophila shares properties with learned magnetic compass responses in adult flies and mice. J. Exp. Biol. 216, 1307–1316 (2013). PubMed
Marhold S., Burda H., Kreilos I. & Wiltschko W. Magnetic orientation in the common molerat from Zambia. In: Orientation and navigation of birds, humans and other animals. Oxford: Royal Institute of Navigation, 51–59 (1997).
Malkemper E. P. et al. Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radio frequency fields. Sci. Rep. 4, 9917 (2015). PubMed PMC
Holland R., Kirschvink J. L., Doak T. G. & Wikelski M. Bats use magnetite to detect the earth’s magnetic field. PLoS One 3, e1676 (2008). PubMed PMC
Bischof H.-J., Nießner C., Peichl L., Wiltschko R. & Wiltschko W. Avian UV/violet cones as magnetoreceptors – The problem of separating visual and magnetic information. Commun. Integr. Biol. 4, 713–716 (2011). PubMed PMC
Schiviz A. N., Ruf T., Kuebber-Heiss A., Schubert C. & Ahnelt, K. P. Retinal cone topography of artiodactyl mammals: influence of body height and habitat. J. Comp. Neurol. 507, 1336–1350 (2008). PubMed
Wang Y. et al. A locus control region adjacent to the human red and green visual pigment genes. Neuron 9, 429–440 (1992). PubMed
Bininda-Emonds O. R. et al. The delayed rise of present-day mammals. Nature 446, 507–512 (2007). PubMed
Meredith R. W. et al. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011). PubMed
Tree of Life Web Project. Mammalia – Mammals. (1995) Available at: http://tolweb.org/Mammalia/15040/1995.01.01 (Accessed: 19th January 2016).
Myers P. et al. The Animal Diversity Web. Mammalia – Mammals. (2016) Available at: http://animaldiversity.org/accounts/Mammalia/classification/#Mammalia (Accessed: 19th January 2016).
Wilson D. E. & Reeder D. M. Mammal Species of the World. (2005) Available at: http://vertebrates.si.edu/msw/mswCFApp/msw/index.cfm (Accessed: 19th January 2016).