Magnetic alignment enhances homing efficiency of hunting dogs
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
Operational Programme Research, Development and Education, EVA 4.0
European Social Fund - International
Operational Programme Research, Development and Education, CZ.02.1.01/0.0/0.0/16_019/0000803
European Social Fund - International
MZE-RO0718
Ministry of Agriculture of the Czech Republic - International
CIGA CZU (Project No. 20174319)
Czech University of Life Sciences Prague - International
IGA (Project No. B07/16)
Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague - International
No. 15-21840S
Grant Agency of the Czech Republic - International
Operational Programme Research, Development and Education, EVA 4.0
European Regional Development Fund - International
Operational Programme Research, Development and Education, CZ.02.1.01/0.0/0.0/16_019/0000803
European Regional Development Fund - International
PubMed
32539933
PubMed Central
PMC7297537
DOI
10.7554/elife.55080
PII: 55080
Knihovny.cz E-resources
- Keywords
- dog, ecology, homing, magnetoreception, navigation,
- MeSH
- Magnetic Phenomena * MeSH
- Orientation * MeSH
- Working Dogs physiology MeSH
- Dogs MeSH
- Homing Behavior * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Dogs MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Despite anecdotal reports of the astonishing homing abilities in dogs, their homing strategies are not fully understood. We equipped 27 hunting dogs with GPS collars and action cams, let them freely roam in forested areas, and analyzed components of homing in over 600 trials. When returning to the owner (homewards), dogs either followed their outbound track ('tracking') or used a novel route ('scouting'). The inbound track during scouting started mostly with a short (about 20 m) run along the north-south geomagnetic axis, irrespective of the actual direction homewards. Performing such a 'compass run' significantly increased homing efficiency. We propose that this run is instrumental for bringing the mental map into register with the magnetic compass and to establish the heading of the animal.
Biology Department Barry University Miami United States
Department of Biological Sciences Virginia Tech Blacksburg United States
Department of Ethology Institute of Animal Science Praha Czech Republic
See more in PubMed
Adámková J, Svoboda J, Benediktová K, Martini S, Nováková P, Tůma D, Kučerová M, Divišová M, Begall S, Hart V, Burda H. Directional preference in dogs: laterality and "pull of the north". PLOS ONE. 2017;12:e0185243. doi: 10.1371/journal.pone.0185243. PubMed DOI PMC
Batschelet E. Circular Statistics in Biology. London: Academic Press; 1981.
Begall S, Malkemper EP, Červený J, Němec P, Burda H. Magnetic alignment in mammals and other animals. Mammalian Biology. 2013;78:10–20. doi: 10.1016/j.mambio.2012.05.005. DOI
Burda H, Marhold S, Westenberger T, Wiltschko R, Wiltschko W. Magnetic compass orientation in the subterranean rodent Cryptomys hottentotus (Bathyergidae) Experientia. 1990;46:528–530. doi: 10.1007/BF01954256. PubMed DOI
Cullen KE, Taube JS. Our sense of direction: progress, controversies and challenges. Nature Neuroscience. 2017;20:1465–1473. doi: 10.1038/nn.4658. PubMed DOI PMC
Greif S, Borissov I, Yovel Y, Holland RA. A functional role of the sky's polarization pattern for orientation in the greater mouse-eared bat. Nature Communications. 2014;5:4488. doi: 10.1038/ncomms5488. PubMed DOI PMC
Hart V, Nováková P, Malkemper EP, Begall S, Hanzal V, Ježek M, Kušta T, Němcová V, Adámková J, Benediktová K, Červený J, Burda H. Dogs are sensitive to small variations of the earth's magnetic field. Frontiers in Zoology. 2013;10:80. doi: 10.1186/1742-9994-10-80. PubMed DOI PMC
Horváth G, Varjú D. Polarized Light in Animal Vision. Berlin, Heidelberg: Springer; 2004. DOI
Kiernan K, Tao J, Gibbs P. Tips and Strategies for Mixed Modeling with SAS/STAT Procedures. SAS Global Forum; 2012.
Kimchi T, Etienne AS, Terkel J. A subterranean mammal uses the magnetic compass for path integration. PNAS. 2004;101:1105–1109. doi: 10.1073/pnas.0307560100. PubMed DOI PMC
Lohmann KJ. Animal migration research takes wing. Current Biology. 2018;28:R952–R955. doi: 10.1016/j.cub.2018.08.016. PubMed DOI
Malkemper EP, Eder SHK, Begall S, Phillips JB, Winklhofer M, Hart V, Burda H. Magnetoreception in the wood mouse (Apodemus sylvaticus): influence of weak frequency-modulated radio frequency fields. Scientific Reports. 2015;5:9917. doi: 10.1038/srep09917. PubMed DOI PMC
Malkemper EP, Painter MS, Landler L. Shifted magnetic alignment in vertebrates: evidence for neural lateralization? Journal of Theoretical Biology. 2016;399:141–147. doi: 10.1016/j.jtbi.2016.03.040. PubMed DOI
Marshall J, Cronin TW. Polarisation vision. Current Biology. 2011;21:R101–R105. doi: 10.1016/j.cub.2010.12.012. PubMed DOI
Martini S, Begall S, Findeklee T, Schmitt M, Malkemper EP, Burda H. Dogs can be trained to find a bar magnet. PeerJ. 2018;6:e6117. doi: 10.7717/peerj.6117. PubMed DOI PMC
Mouritsen H. Long-distance navigation and magnetoreception in migratory animals. Nature. 2018;558:50–59. doi: 10.1038/s41586-018-0176-1. PubMed DOI
Muheim R, Edgar NM, Sloan KA, Phillips JB. Magnetic compass orientation in C57BL/6J mice. Learning & Behavior. 2006;34:366–373. doi: 10.3758/BF03193201. PubMed DOI
Nahm M. Mysterious ways : the riddle of the homing ability. J. Soc. Psych. Res. 2015;79:140–155.
Ostfeld RS, Manson RH. Long-Distance homing in Meadow Voles, Microtus pennsylvanicus. Journal of Mammalogy. 1996;77:870–873. doi: 10.2307/1382692. DOI
Painter MS, Davis M, Ganesh S, Rak E, Brumet K, Bayne H, Malkemper EP, Phillips JB. Evidence for plasticity in magnetic nest-building orientation in laboratory mice. Animal Behaviour. 2018;138:93–100. doi: 10.1016/j.anbehav.2018.02.006. DOI
Papi F. Animal Homing. Berlin, Heidelberg: Springer; 1992. DOI
Phillips JB, Freake MJ, Fischer JH, Borland CS. Behavioral titration of a magnetic map coordinate. Journal of Comparative Physiology A. 2002;188:157–160. doi: 10.1007/s00359-002-0286-x. PubMed DOI
Poulter S, Hartley T, Lever C. The neurobiology of mammalian navigation. Current Biology. 2018;28:R1023–R1042. doi: 10.1016/j.cub.2018.05.050. PubMed DOI
Richardson EH. Dogs Bwar Their Training and Psychology. London: Skeffington & Son Ltd; 1920.
Schmidt-Koenig K, Keeton WT. Animal Migration, Navigation, and Homing. Berlin, Heidelberg: Springer; 1978. DOI
Stokes ME, Davis CS, Koch GG. Categorical Data Analysis Using SAS. SAS Institute Inc; 2012.
Tao J, Littell R. Mixed Models Analyses Using the SAS System: Course Notes. SAS Institute Inc; 2002.
Tsoar A, Nathan R, Bartan Y, Vyssotski A, Dell'Omo G, Ulanovsky N. Large-scale navigational map in a mammal. PNAS. 2011;108:E718–E724. doi: 10.1073/pnas.1107365108. PubMed DOI PMC
Wiltschko R, Wiltschko W. Magnetic Orientation in Animals. Berlin, Heidelberg: Springer; 1995. DOI
Wolbers T, Wiener JM. Challenges for identifying the neural mechanisms that support spatial navigation: the impact of spatial scale. Frontiers in Human Neuroscience. 2014;8:1–12. doi: 10.3389/fnhum.2014.00571. PubMed DOI PMC