Triploid Hybrid Vigor in Above-Ground Growth and Methane Fermentation Efficiency of Energy Willow
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35283877
PubMed Central
PMC8905242
DOI
10.3389/fpls.2022.770284
Knihovny.cz E-zdroje
- Klíčová slova
- CO2 fixation, Salix, biogas, growth rate, plant hormones, water use,
- Publikační typ
- časopisecké články MeSH
Hybrid vigor and polyploidy are genetic events widely utilized to increase the productivity of crops. Given that bioenergy usage needs to be expanded, we investigated triploid hybrid vigor in terms of the biology of biomass-related willow traits and their relevance to the control of biomethane production. To produce triploid hybrid genotypes, we crossed two female diploid Swedish cultivars (Inger, Tordis) with two male autotetraploid willow (Salix viminalis) variants (PP-E7, PP-E15). Field studies at two locations and in two successive years recorded considerable midparent heterosis (MPH%) in early shoot length that ranged between 11.14 and 68.85% and in the growth rate between 34.12 and 97.18%. The three triploid hybrids (THs) developed larger leaves than their parental cultivars, and the MPH% for their CO2 assimilation rate varied between 0.84 and 25.30%. The impact of hybrid vigor on the concentrations of plant hormones in these TH genotypes reflected essentially different hormonal statuses that depended preferentially on maternal parents. Hybrid vigor was evinced by an elevated concentration of jasmonic acid in shoot meristems of all the three THs (MPH:29.73; 67.08; 91.91%). Heterosis in auxin-type hormones, such as indole-3-acetic acid (MPH:207.49%), phenylacetic acid (MPH:223.51%), and salicylic acid (MPH:27.72%) and benzoic acid (MPH:85.75%), was detectable in the shoots of TH21/2 plants. These hormones also accumulated in their maternal Inger plants. Heterosis in cytokinin-type hormones characterized the shoots of TH3/12 and TH17/17 genotypes having Tordis as their maternal parent. Unexpectedly, we detected abscisic acid as a positive factor in the growth of TH17/17 plants with negative MPH percentages in stomatal conductance and a lower CO2 assimilation rate. During anaerobic digestion, wood raw materials from the triploid willow hybrids that provided positive MPH% in biomethane yield (6.38 and 27.87%) showed negative MPH in their acid detergent lignin contents (from -8.01 to -14.36%). Altogether, these insights into controlling factors of above-ground growth parameters of willow genotypes support the utilization of triploid hybrid vigor in willow breeding to expand the cultivation of short rotation energy trees for renewable energy production.
Department of Biotechnology University of Szeged Szeged Hungary
Department of Plant Biology University of Szeged Szeged Hungary
Institute of Experimental Botany Czech Academy of Sciences Prague Czechia
Institute of Plant Biology Biological Research Centre Eötvös Loránd Research Network Szeged Hungary
Zobrazit více v PubMed
Ahmadi Moghaddam E., Ericsson N., Hansson P. A., Nordberg Å. (2019). Exploring the potential for biomethane production by willow pyrolysis using life cycle assessment methodology. Energy Sustain. Soc. 9:6. 10.1186/s13705-019-0189-0 DOI
Amiot S., Jerbi A., Lachapelle-T X., Frédette C., Labrecque M., Comeau Y. (2020). Optimization of the wastewater treatment capacity of a short rotation willow coppice vegetation filter. Ecol. Eng. 158:106013. 10.1016/j.ecoleng.2020.106013 DOI
Andralojc P. J., Bencze S., Madgwick P. J., Philippe H., Powers S. J., Shield I., et al. (2014). Photosynthesis and growth in diverse willow genotypes. Food Energy Secur. 3 69–85. 10.1002/fes3.47 DOI
Birdseye D., de Boer L. A., Bai H., Zhou P., Shen Z., Schmelz E. A., et al. (2021). Plant trait heterosis is quantitatively associated with expression heterosis of the plastid ribosomal proteins. bioRxiv [Preprint]. 10.1101/2021.02.16.431485 PubMed DOI PMC
Canadell J. G., Raupach M. R. (2008). Managing forests for climate change mitigation. Science 320 1456–1457. 10.1126/science.1155458 PubMed DOI
Capuana M. (2020). A review of the performance of woody and herbaceous ornamental plants for phytoremediation in urban areas. IForest 13 139–151. 10.3832/ifor3242-013 PubMed DOI
Carlson C. H., Smart L. B. (2021). Heterosis for Biomass-Related Traits in Interspecific Triploid Hybrids of Willow (Salix Spp.). BioEnergy Res. 10.1007/s12155-021-10305-0 DOI
Chen Z. J. (2010). Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci. 15 57–71. 10.1016/j.tplants.2009.12.003 PubMed DOI PMC
Clifton-Brown J., Harfouche A., Casler M. D., Dylan Jones H., Macalpine W. J., Murphy-Bokern D., et al. (2019). Breeding progress and preparedness for mass-scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar. GCB Bioenergy 11 118–151. 10.1111/gcbb.12566 PubMed DOI PMC
Cseri A., Borbély P., Poór P., Fehér A., Sass L., Jancsó M., et al. (2020). Increased adaptation of an energy willow cultivar to soil salinity by duplication of its genome size. Biomass Bioenergy 140:105655. 10.1016/j.biombioe.2020.105655 DOI
Dey P., Pal P., Kevin J. D., Das D. B. (2020). Lignocellulosic bioethanol production: prospects of emerging membrane technologies to improve the process - A critical review. Rev. Chem. Eng. 36 333–367. 10.1515/revce-2018-0014 DOI
Dimitriou L., Busch G., Jacobs S., Schmidt-Walter P., Lamersdorf N. (2009). A review of the impacts of Short Rotation Coppice cultivation on water issues. Landbauforsch. Volkenrode 59 197–206.
Djomo S. N., Kasmioui O. E., Ceulemans R. (2011). Energy and greenhouse gas balance of bioenergy production from poplar and willow: a review. GCB Bioenergy 3 181–197. 10.1111/j.1757-1707.2010.01073.x DOI
Dobrev P. I., Kamínek M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A 950 21–29. 10.1016/S0021-9673(02)00024-9 PubMed DOI
Dobrev P. I., Vankova R. (2012). Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. Methods Mol. Biol. 913 251–261. 10.1007/978-1-61779-986-0_17 PubMed DOI
Dudits D., Török K., Cseri A., Paul K., Nagy A. V., Nagy B., et al. (2016). Response of organ structure and physiology to autotetraploidization in early development of energy willow Salix viminalis. Plant Physiol. 170 1504–1523. 10.1104/pp.15.01679 PubMed DOI PMC
Favero A., Daigneault A., Sohngen B. (2020). forests: carbon sequestration, biomass energy, or both? Sci. Adv. 6 1–13. 10.1126/sciadv.aay6792 PubMed DOI PMC
Gaykawad S. S., Zha Y., Punt P. J., van Groenestijn J. W., van der Wielen L. A. M., Straathof A. J. J. (2013). Pervaporation of ethanol from lignocellulosic fermentation broth. Bioresour. Technol. 129 469–476. 10.1016/j.biortech.2012.11.104 PubMed DOI
Gleason S. M., Stephens A. E. A., Tozer W. C., Blackman C. J., Butler D. W., Chang Y., et al. (2018). Shoot growth of woody trees and shrubs is predicted by maximum plant height and associated traits. Funct. Ecol. 32 247–259. 10.1111/1365-2435.12972 DOI
Groszmann M., Gonzalez-Bayon R., Lyons R. L., Greaves I. K., Kazan K., Peacock W. J., et al. (2015). Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids. Proc. Natl. Acad. Sci. U. S. A. 112 E6397–E6406. 10.1073/pnas.1519926112 PubMed DOI PMC
Hammar T., Hansson P. A., Sundberg C. (2017). Climate impact assessment of willow energy from a landscape perspective: a Swedish case study. GCB Bioenergy 9 973–985. 10.1111/gcbb.12399 DOI
Hanley S. J., Karp A. (2014). Genetic strategies for dissecting complex traits in biomass willows (Salix spp.). Tree Physiol. 34 1167–1180. 10.1093/treephys/tpt089 PubMed DOI
Hauptvogl M., Kotrla M., Prčík M., Pauková Ž, Kováčik M., Lošák T. (2020). Phytoremediation potential of fast-growing energy plants: challenges and perspectives – A review. Pol. J. Environ. Stud. 29 505–516. 10.15244/pjoes/101621 DOI
Herrmann C., Idler C., Heiermann M. (2016). Biogas crops grown in energy crop rotations: linking chemical composition and methane production characteristics. Bioresour. Technol. 206 23–35. 10.1016/j.biortech.2016.01.058 PubMed DOI
Hu Y., Thomas B. R. (2019). Hormones and heterosis in hybrid balsam poplar (Populus balsamifera L.). Forests 10:143. 10.3390/f10020143 DOI
Isebrands J., Richardson J. (2014). Poplars and willows: trees for society and the environment. Wallingford: CABI, 10.1079/9781780641089.0000 DOI
Kakuk B., Bagi Z., Rákhely G., Maróti G., Dudits D., Kovács K. L. (2021). Methane production from green and woody biomass using short rotation willow genotypes for bioenergy generation. Bioresour. Technol. 333:125223. 10.1016/j.biortech.2021.125223 PubMed DOI
Kieber J. J., Schaller G. E. (2018). Cytokinin signaling in plant development. Development 145:dev149344. 10.1242/dev.149344 PubMed DOI
Kulig B., Gacek E., Wojciechowski R., Oleksy A., Kołodziejczyk M., Szewczyk W., et al. (2019). Biomass yield and energy efficiency of willow depending on cultivar, harvesting frequency and planting density. Plant Soil Environ. 65 377–386. 10.17221/594/2018-PSE DOI
Li Y., Wang C., Liu X., Song J., Li H., Sui Z., et al. (2016). Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion. J. Exp. Bot. 67 2889–2900. 10.1093/jxb/erw131 PubMed DOI PMC
Li Z., Coffey L., Garfin J., Miller N. D., White M. R., Spalding E. P., et al. (2018). Genotype-by-environment interactions affecting heterosis in maize. PLoS One 13:e0191321. 10.1371/journal.pone.0191321 PubMed DOI PMC
Li Z., Zhu A., Song Q., Chen H. Y., Harmon F. G., Chen Z. J. (2020). Temporal Regulation of the Metabolome and Proteome in Photosynthetic and Photorespiratory Pathways Contributes to Maize Heterosis. Plant Cell 32 3706–3722. 10.1105/tpc.20.00320 PubMed DOI PMC
Liu H., Wang Q., Chen M., Ding Y., Yang X., Liu J., et al. (2020). Genome-wide identification and analysis of heterotic loci in three maize hybrids. Plant Biotechnol. J. 18 185–194. 10.1111/pbi.13186 PubMed DOI PMC
Nyári J., Kakuk B., Bagi Z., Rákhely G., Kovács K. L. (2021). Use of ensiled green willow biomass in biogas fermentation. Biol. Futura 72 263–271. 10.1007/s42977-021-00067-3 PubMed DOI
Poór P., Gémes K., Horváth F., Szepesi Á, Simon M. L., Tari I. (2011). Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress. Plant Biol. 13 105–114. 10.1111/j.1438-8677.2010.00344.x PubMed DOI
Serapiglia M. J., Gouker F. E., Smart L. B. (2014). Early selection of novel triploid hybrids of shrub willow with improved biomass yield relative to diploids. BMC Plant Biol. 14:74. 10.1186/1471-2229-14-74 PubMed DOI PMC
Shen G., Hu W., Zhang B., Xing Y. (2015). The regulatory network mediated by circadian clock genes is related to heterosis in rice. J. Integr. Plant Biol. 57 300–312. 10.1111/jipb.12240 PubMed DOI
Shi X., Zhang X., Shi D., Zhang X., Li W., Tang J. (2019). Dissecting Heterosis During the Ear Inflorescence Development Stage in Maize via a Metabolomics-based Analysis. Sci. Rep. 9:212. 10.1038/s41598-018-36446-5 PubMed DOI PMC
Suda Y., Argus G. W. (1968). Chromosome numbers of some North American Salix. Brittonia 20 191–197. 10.2307/2805440 DOI
Thomsen S. T., Londoño J. E. G., Ambye-Jensen M., Heiske S., Kádár Z., Meyer A. S. (2016). Combination of ensiling and fungal delignification as effective wheat straw pretreatmen. Biotechnol. Biofuels 9:16. 10.1186/s13068-016-0437-x PubMed DOI PMC
Van Soest P. J., Robertson J. B. (1985). Analysis of forages and fibrous foods. 613. Lab manual. Ithaca, N.Y: Cornell University.
Vishwakarma K., Upadhyay N., Kumar N., Yadav G., Singh J., Mishra R. K., et al. (2017). Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front. Plant Sci. 8:161. 10.3389/fpls.2017.00161 PubMed DOI PMC
Wani K. A., Sofi Z. M., Malik J. A., Wani J. A. (2020). “Phytoremediation of Heavy Metals Using Salix (Willows),” in Bioremediation and Biotechnology, eds Bhat R., Hakeem K., Dervash M. (Cham: Springer; ), 10.1007/978-3-030-40333-1_9 DOI
Xu N., Liu S., Xin F., Zhou J., Jia H., Xu J., et al. (2019). Biomethane production from lignocellulose: biomass recalcitrance and its impacts on anaerobic digestion. Front. Bioeng. Biotechnol. 7:191. 10.3389/fbioe.2019.00191 PubMed DOI PMC
Zhu A., Wang A., Zhang Y., Dennis E. S., Peacock W. J., Greaves A. I. K. (2020). Early Establishment of Photosynthesis and Auxin Biosynthesis Plays a Key Role in Early Biomass Heterosis in Brassica napus (Canola) Hybrids. Plant Cell Physiol. 61 1134–1143. 10.1093/pcp/pcaa038 PubMed DOI