Triploid Hybrid Vigor in Above-Ground Growth and Methane Fermentation Efficiency of Energy Willow

. 2022 ; 13 () : 770284. [epub] 20220223

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35283877

Hybrid vigor and polyploidy are genetic events widely utilized to increase the productivity of crops. Given that bioenergy usage needs to be expanded, we investigated triploid hybrid vigor in terms of the biology of biomass-related willow traits and their relevance to the control of biomethane production. To produce triploid hybrid genotypes, we crossed two female diploid Swedish cultivars (Inger, Tordis) with two male autotetraploid willow (Salix viminalis) variants (PP-E7, PP-E15). Field studies at two locations and in two successive years recorded considerable midparent heterosis (MPH%) in early shoot length that ranged between 11.14 and 68.85% and in the growth rate between 34.12 and 97.18%. The three triploid hybrids (THs) developed larger leaves than their parental cultivars, and the MPH% for their CO2 assimilation rate varied between 0.84 and 25.30%. The impact of hybrid vigor on the concentrations of plant hormones in these TH genotypes reflected essentially different hormonal statuses that depended preferentially on maternal parents. Hybrid vigor was evinced by an elevated concentration of jasmonic acid in shoot meristems of all the three THs (MPH:29.73; 67.08; 91.91%). Heterosis in auxin-type hormones, such as indole-3-acetic acid (MPH:207.49%), phenylacetic acid (MPH:223.51%), and salicylic acid (MPH:27.72%) and benzoic acid (MPH:85.75%), was detectable in the shoots of TH21/2 plants. These hormones also accumulated in their maternal Inger plants. Heterosis in cytokinin-type hormones characterized the shoots of TH3/12 and TH17/17 genotypes having Tordis as their maternal parent. Unexpectedly, we detected abscisic acid as a positive factor in the growth of TH17/17 plants with negative MPH percentages in stomatal conductance and a lower CO2 assimilation rate. During anaerobic digestion, wood raw materials from the triploid willow hybrids that provided positive MPH% in biomethane yield (6.38 and 27.87%) showed negative MPH in their acid detergent lignin contents (from -8.01 to -14.36%). Altogether, these insights into controlling factors of above-ground growth parameters of willow genotypes support the utilization of triploid hybrid vigor in willow breeding to expand the cultivation of short rotation energy trees for renewable energy production.

Zobrazit více v PubMed

Ahmadi Moghaddam E., Ericsson N., Hansson P. A., Nordberg Å. (2019). Exploring the potential for biomethane production by willow pyrolysis using life cycle assessment methodology. DOI

Amiot S., Jerbi A., Lachapelle-T X., Frédette C., Labrecque M., Comeau Y. (2020). Optimization of the wastewater treatment capacity of a short rotation willow coppice vegetation filter. DOI

Andralojc P. J., Bencze S., Madgwick P. J., Philippe H., Powers S. J., Shield I., et al. (2014). Photosynthesis and growth in diverse willow genotypes. DOI

Birdseye D., de Boer L. A., Bai H., Zhou P., Shen Z., Schmelz E. A., et al. (2021). Plant trait heterosis is quantitatively associated with expression heterosis of the plastid ribosomal proteins. PubMed DOI PMC

Canadell J. G., Raupach M. R. (2008). Managing forests for climate change mitigation. PubMed DOI

Capuana M. (2020). A review of the performance of woody and herbaceous ornamental plants for phytoremediation in urban areas. DOI

Carlson C. H., Smart L. B. (2021). Heterosis for Biomass-Related Traits in Interspecific Triploid Hybrids of Willow (Salix Spp.). DOI

Chen Z. J. (2010). Molecular mechanisms of polyploidy and hybrid vigor. PubMed DOI PMC

Clifton-Brown J., Harfouche A., Casler M. D., Dylan Jones H., Macalpine W. J., Murphy-Bokern D., et al. (2019). Breeding progress and preparedness for mass-scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar. PubMed DOI PMC

Cseri A., Borbély P., Poór P., Fehér A., Sass L., Jancsó M., et al. (2020). Increased adaptation of an energy willow cultivar to soil salinity by duplication of its genome size. DOI

Dey P., Pal P., Kevin J. D., Das D. B. (2020). Lignocellulosic bioethanol production: prospects of emerging membrane technologies to improve the process - A critical review. DOI

Dimitriou L., Busch G., Jacobs S., Schmidt-Walter P., Lamersdorf N. (2009). A review of the impacts of Short Rotation Coppice cultivation on water issues.

Djomo S. N., Kasmioui O. E., Ceulemans R. (2011). Energy and greenhouse gas balance of bioenergy production from poplar and willow: a review. DOI

Dobrev P. I., Kamínek M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. PubMed DOI

Dobrev P. I., Vankova R. (2012). Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues. PubMed DOI

Dudits D., Török K., Cseri A., Paul K., Nagy A. V., Nagy B., et al. (2016). Response of organ structure and physiology to autotetraploidization in early development of energy willow Salix viminalis. PubMed DOI PMC

Favero A., Daigneault A., Sohngen B. (2020). forests: carbon sequestration, biomass energy, or both? PubMed DOI PMC

Gaykawad S. S., Zha Y., Punt P. J., van Groenestijn J. W., van der Wielen L. A. M., Straathof A. J. J. (2013). Pervaporation of ethanol from lignocellulosic fermentation broth. PubMed DOI

Gleason S. M., Stephens A. E. A., Tozer W. C., Blackman C. J., Butler D. W., Chang Y., et al. (2018). Shoot growth of woody trees and shrubs is predicted by maximum plant height and associated traits. DOI

Groszmann M., Gonzalez-Bayon R., Lyons R. L., Greaves I. K., Kazan K., Peacock W. J., et al. (2015). Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids. PubMed DOI PMC

Hammar T., Hansson P. A., Sundberg C. (2017). Climate impact assessment of willow energy from a landscape perspective: a Swedish case study. DOI

Hanley S. J., Karp A. (2014). Genetic strategies for dissecting complex traits in biomass willows (Salix spp.). PubMed DOI

Hauptvogl M., Kotrla M., Prčík M., Pauková Ž, Kováčik M., Lošák T. (2020). Phytoremediation potential of fast-growing energy plants: challenges and perspectives – A review. DOI

Herrmann C., Idler C., Heiermann M. (2016). Biogas crops grown in energy crop rotations: linking chemical composition and methane production characteristics. PubMed DOI

Hu Y., Thomas B. R. (2019). Hormones and heterosis in hybrid balsam poplar ( DOI

Isebrands J., Richardson J. (2014). DOI

Kakuk B., Bagi Z., Rákhely G., Maróti G., Dudits D., Kovács K. L. (2021). Methane production from green and woody biomass using short rotation willow genotypes for bioenergy generation. PubMed DOI

Kieber J. J., Schaller G. E. (2018). Cytokinin signaling in plant development. PubMed DOI

Kulig B., Gacek E., Wojciechowski R., Oleksy A., Kołodziejczyk M., Szewczyk W., et al. (2019). Biomass yield and energy efficiency of willow depending on cultivar, harvesting frequency and planting density. DOI

Li Y., Wang C., Liu X., Song J., Li H., Sui Z., et al. (2016). Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion. PubMed DOI PMC

Li Z., Coffey L., Garfin J., Miller N. D., White M. R., Spalding E. P., et al. (2018). Genotype-by-environment interactions affecting heterosis in maize. PubMed DOI PMC

Li Z., Zhu A., Song Q., Chen H. Y., Harmon F. G., Chen Z. J. (2020). Temporal Regulation of the Metabolome and Proteome in Photosynthetic and Photorespiratory Pathways Contributes to Maize Heterosis. PubMed DOI PMC

Liu H., Wang Q., Chen M., Ding Y., Yang X., Liu J., et al. (2020). Genome-wide identification and analysis of heterotic loci in three maize hybrids. PubMed DOI PMC

Nyári J., Kakuk B., Bagi Z., Rákhely G., Kovács K. L. (2021). Use of ensiled green willow biomass in biogas fermentation. PubMed DOI

Poór P., Gémes K., Horváth F., Szepesi Á, Simon M. L., Tari I. (2011). Salicylic acid treatment PubMed DOI

Serapiglia M. J., Gouker F. E., Smart L. B. (2014). Early selection of novel triploid hybrids of shrub willow with improved biomass yield relative to diploids. PubMed DOI PMC

Shen G., Hu W., Zhang B., Xing Y. (2015). The regulatory network mediated by circadian clock genes is related to heterosis in rice. PubMed DOI

Shi X., Zhang X., Shi D., Zhang X., Li W., Tang J. (2019). Dissecting Heterosis During the Ear Inflorescence Development Stage in Maize PubMed DOI PMC

Suda Y., Argus G. W. (1968). Chromosome numbers of some North American Salix. DOI

Thomsen S. T., Londoño J. E. G., Ambye-Jensen M., Heiske S., Kádár Z., Meyer A. S. (2016). Combination of ensiling and fungal delignification as effective wheat straw pretreatmen. PubMed DOI PMC

Van Soest P. J., Robertson J. B. (1985).

Vishwakarma K., Upadhyay N., Kumar N., Yadav G., Singh J., Mishra R. K., et al. (2017). Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. PubMed DOI PMC

Wani K. A., Sofi Z. M., Malik J. A., Wani J. A. (2020). “Phytoremediation of Heavy Metals Using Salix (Willows),” in DOI

Xu N., Liu S., Xin F., Zhou J., Jia H., Xu J., et al. (2019). Biomethane production from lignocellulose: biomass recalcitrance and its impacts on anaerobic digestion. PubMed DOI PMC

Zhu A., Wang A., Zhang Y., Dennis E. S., Peacock W. J., Greaves A. I. K. (2020). Early Establishment of Photosynthesis and Auxin Biosynthesis Plays a Key Role in Early Biomass Heterosis in Brassica napus (Canola) Hybrids. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Manifestation of Triploid Heterosis in the Root System after Crossing Diploid and Autotetraploid Energy Willow Plants

. 2023 Oct 12 ; 14 (10) : . [epub] 20231012

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...