Transcriptome, genetic editing, and microRNA divergence substantiate sympatric speciation of blind mole rat, Spalax
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
27339131
PubMed Central
PMC4941469
DOI
10.1073/pnas.1607497113
PII: 1607497113
Knihovny.cz E-zdroje
- Klíčová slova
- DNA editing, ecological adaptive speciation, microRNA regulation, natural selection, nonoptimal codon usage,
- MeSH
- ekosystém MeSH
- mikro RNA metabolismus MeSH
- půda MeSH
- silikáty MeSH
- Spalax genetika metabolismus MeSH
- sympatrie * MeSH
- tok genů MeSH
- transkriptom * MeSH
- uhličitan vápenatý MeSH
- vznik druhů (genetika) * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- basalt MeSH Prohlížeč
- mikro RNA MeSH
- půda MeSH
- silikáty MeSH
- uhličitan vápenatý MeSH
Incipient sympatric speciation in blind mole rat, Spalax galili, in Israel, caused by sharp ecological divergence of abutting chalk-basalt ecologies, has been proposed previously based on mitochondrial and whole-genome nuclear DNA. Here, we present new evidence, including transcriptome, DNA editing, microRNA, and codon usage, substantiating earlier evidence for adaptive divergence in the abutting chalk and basalt populations. Genetic divergence, based on the previous and new evidence, is ongoing despite restricted gene flow between the two populations. The principal component analysis, neighbor-joining tree, and genetic structure analysis of the transcriptome clearly show the clustered divergent two mole rat populations. Gene-expression level analysis indicates that the population transcriptome divergence is displayed not only by soil divergence but also by sex. Gene ontology enrichment of the differentially expressed genes from the two abutting soil populations highlights reproductive isolation. Alternative splicing variation of the two abutting soil populations displays two distinct splicing patterns. L-shaped FST distribution indicates that the two populations have undergone divergence with gene flow. Transcriptome divergent genes highlight neurogenetics and nutrition characterizing the chalk population, and energetics, metabolism, musculature, and sensory perception characterizing the abutting basalt population. Remarkably, microRNAs also display divergence between the two populations. The GC content is significantly higher in chalk than in basalt, and stress-response genes mostly prefer nonoptimal codons. The multiple lines of evidence of ecological-genomic and genetic divergence highlight that natural selection overrules the gene flow between the two abutting populations, substantiating the sharp ecological chalk-basalt divergence driving sympatric speciation.
Beijing Genomics Institute BGI Shenzhen Shenzhen 518083 China;
College of Chemistry and Life Science Zhejiang Normal University Jinhua Zhejiang 321004 China;
Faculty of Medicine Bar Ilan University Safed 13195 Israel;
Institute of Apicultural Research Chinese Academy of Agricultural Sciences Beijing 100093 China;
Institute of Evolution University of Haifa Haifa 3498838 Israel;
School of Life Sciences Zhengzhou University Zhengzhou 450001 Henan China
The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan 52900 Israel;
The People's Hospital of Qinghai Province Xining 810007 China;
University of Chinese Academy of Sciences Beijing 100049 China;
Zobrazit více v PubMed
Darwin C. On the Origins of Species by Means of Natural Selection. John Murray; London: 1859.
Mayr E. Animal Species and Evolution. Belknap Press of Harvard Univ Press; Cambridge, MA: 1963.
Mayr E. Happy birthday: 80 years of watching the evolutionary scenery. Science. 2004;305(5680):46–47. PubMed
Coyne JA, Orr HA. Speciation. Sinauer Associates; Sunderland, MA: 2004.
Li K, et al. Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax. Proc Natl Acad Sci USA. 2015;112(38):11905–11910. PubMed PMC
Gavrilets S. Fitness Landscapes and the Origin of Species (MPB-41) Princeton Univ Press; Princeton: 2004.
Gavrilets S. Is sexual conflict an “engine of speciation”? Cold Spring Harb Perspect Biol. 2014;6(12):a017723. PubMed PMC
Hadid Y, et al. Possible incipient sympatric ecological speciation in blind mole rats (Spalax) Proc Natl Acad Sci USA. 2013;110(7):2587–2592. PubMed PMC
Funk DJ, Nosil P, Etges WJ. Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proc Natl Acad Sci USA. 2006;103(9):3209–3213. PubMed PMC
Funk DJ, Filchak KE, Feder JL. Genetics of Mate Choice: From Sexual Selection to Sexual Isolation. Springer; New York: 2002. Herbivorous insects: Model systems for the comparative study of speciation ecology; pp. 251–267. PubMed
Ogden R, Thorpe RS. Molecular evidence for ecological speciation in tropical habitats. Proc Natl Acad Sci USA. 2002;99(21):13612–13615. PubMed PMC
Nosil P. Speciation with gene flow could be common. Mol Ecol. 2008;17(9):2103–2106. PubMed
Pavey SA, Collin H, Nosil P, Rogers SM. The role of gene expression in ecological speciation. Ann N Y Acad Sci. 2010;1206(1):110–129. PubMed PMC
Knisbacher BA, Levanon EY. DNA and RNA editing of retrotransposons accelerate mammalian genome evolution. Ann N Y Acad Sci. 2015;1341(1):115–125. PubMed
Carmi S, Church GM, Levanon EY. Large-scale DNA editing of retrotransposons accelerates mammalian genome evolution. Nat Commun. 2011;2:519. PubMed
Knisbacher BA, Levanon EY. DNA editing of LTR retrotransposons reveals the impact of APOBECs on vertebrate genomes. Mol Biol Evol. 2016;33(2):554–567. PubMed PMC
Burns CM, et al. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature. 1997;387(6630):303–308. PubMed
Nevo E. Molecular evolution and ecological stress at global, regional and local scales: The Israeli perspective. J Exp Zool. 1998;282(1‐2):95–119.
Ashburner M, et al. The Gene Ontology Consortium Gene ontology: Tool for the unification of biology. Nat Genet. 2000;25(1):25–29. PubMed PMC
Blake JA, Bult CJ, Eppig JT, Kadin JA, Richardson JE. Mouse Genome Database Group The mouse genome database genotypes: Phenotypes. Nucleic Acids Res. 2009;37(Database issue) Suppl 1:D712–D719. PubMed PMC
Fang X, et al. Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax. Nat Commun. 2014;5:3966. PubMed
Esnault C, et al. APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature. 2005;433(7024):430–433. PubMed
Pinto Y, Cohen HY, Levanon EY. Mammalian conserved ADAR targets comprise only a small fragment of the human editosome. Genome Biol. 2014;15(1):R5. PubMed PMC
Leung AK, Sharp PA. MicroRNA functions in stress responses. Mol Cell. 2010;40(2):205–215. PubMed PMC
Lövy M, et al. Habitat and burrow system characteristics of the blind mole rat Spalax galili in an area of supposed sympatric speciation. PLoS One. 2015;10(7):e0133157. PubMed PMC
Polyakov A, Beharav A, Avivi A, Nevo E. Mammalian microevolution in action: Adaptive edaphic genomic divergence in blind subterranean mole-rats. Proc Biol Sci. 2004;271(Suppl 4):S156–S159. PubMed PMC
Nevo E, Bar-El H. Hybridization and speciation in fossorial mole rats. Evolution. 1976;30(4):831–840. PubMed
Nevo E. Speciation in action and adaptation in subterranean mole rats: Patterns and theory. Ital J Zool (Modena) 1985;52(1-2):65–95.
Ivanitskaya E, Rashkovetsky L, Nevo E. Chromosomes in a hybrid zone of Israeli mole rats (Spalax, Rodentia) Russ J Genet. 2010;46(10):1149–1151. PubMed
Savolainen V, et al. Sympatric speciation in palms on an oceanic island. Nature. 2006;441(7090):210–213. PubMed
Via S. Sympatric speciation in animals: The ugly duckling grows up. Trends Ecol Evol. 2001;16(7):381–390. PubMed
Feder JL, Egan SP, Nosil P. The genomics of speciation-with-gene-flow. Trends Genet. 2012;28(7):342–350. PubMed
Stranger BE, et al. Population genomics of human gene expression. Nat Genet. 2007;39(10):1217–1224. PubMed PMC
Tzung K-W, et al. Early depletion of primordial germ cells in zebrafish promotes testis formation. Stem Cell Rep. 2015;4(1):61–73. PubMed PMC
Navarro-Martín L, Galay-Burgos M, Piferrer F, Sweeney G. Characterisation and expression during sex differentiation of Sox19 from the sea bass Dicentrarchus labrax. Comp Biochem Physiol B Biochem Mol Biol. 2012;163(3-4):316–323. PubMed
Leung AK, Sharp PA. MicroRNAs: A safeguard against turmoil? Cell. 2007;130(4):581–585. PubMed
Liu C, et al. Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell. 2010;6(5):433–444. PubMed PMC
Gao W, et al. MiR-615-5p is epigenetically inactivated and functions as a tumor suppressor in pancreatic ductal adenocarcinoma. Oncogene. 2015;34(13):1629–1640. PubMed
Shapiro JA. Evolution: A View from the 21st Century. FT Press Science; Upper Saddle River, NJ: 2011.
Local Adaptation of Bitter Taste and Ecological Speciation in a Wild Mammal
Genome evolution of blind subterranean mole rats: Adaptive peripatric versus sympatric speciation