Transcriptome, genetic editing, and microRNA divergence substantiate sympatric speciation of blind mole rat, Spalax

. 2016 Jul 05 ; 113 (27) : 7584-9. [epub] 20160623

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27339131

Incipient sympatric speciation in blind mole rat, Spalax galili, in Israel, caused by sharp ecological divergence of abutting chalk-basalt ecologies, has been proposed previously based on mitochondrial and whole-genome nuclear DNA. Here, we present new evidence, including transcriptome, DNA editing, microRNA, and codon usage, substantiating earlier evidence for adaptive divergence in the abutting chalk and basalt populations. Genetic divergence, based on the previous and new evidence, is ongoing despite restricted gene flow between the two populations. The principal component analysis, neighbor-joining tree, and genetic structure analysis of the transcriptome clearly show the clustered divergent two mole rat populations. Gene-expression level analysis indicates that the population transcriptome divergence is displayed not only by soil divergence but also by sex. Gene ontology enrichment of the differentially expressed genes from the two abutting soil populations highlights reproductive isolation. Alternative splicing variation of the two abutting soil populations displays two distinct splicing patterns. L-shaped FST distribution indicates that the two populations have undergone divergence with gene flow. Transcriptome divergent genes highlight neurogenetics and nutrition characterizing the chalk population, and energetics, metabolism, musculature, and sensory perception characterizing the abutting basalt population. Remarkably, microRNAs also display divergence between the two populations. The GC content is significantly higher in chalk than in basalt, and stress-response genes mostly prefer nonoptimal codons. The multiple lines of evidence of ecological-genomic and genetic divergence highlight that natural selection overrules the gene flow between the two abutting populations, substantiating the sharp ecological chalk-basalt divergence driving sympatric speciation.

Zobrazit více v PubMed

Darwin C. On the Origins of Species by Means of Natural Selection. John Murray; London: 1859.

Mayr E. Animal Species and Evolution. Belknap Press of Harvard Univ Press; Cambridge, MA: 1963.

Mayr E. Happy birthday: 80 years of watching the evolutionary scenery. Science. 2004;305(5680):46–47. PubMed

Coyne JA, Orr HA. Speciation. Sinauer Associates; Sunderland, MA: 2004.

Li K, et al. Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax. Proc Natl Acad Sci USA. 2015;112(38):11905–11910. PubMed PMC

Gavrilets S. Fitness Landscapes and the Origin of Species (MPB-41) Princeton Univ Press; Princeton: 2004.

Gavrilets S. Is sexual conflict an “engine of speciation”? Cold Spring Harb Perspect Biol. 2014;6(12):a017723. PubMed PMC

Hadid Y, et al. Possible incipient sympatric ecological speciation in blind mole rats (Spalax) Proc Natl Acad Sci USA. 2013;110(7):2587–2592. PubMed PMC

Funk DJ, Nosil P, Etges WJ. Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proc Natl Acad Sci USA. 2006;103(9):3209–3213. PubMed PMC

Funk DJ, Filchak KE, Feder JL. Genetics of Mate Choice: From Sexual Selection to Sexual Isolation. Springer; New York: 2002. Herbivorous insects: Model systems for the comparative study of speciation ecology; pp. 251–267. PubMed

Ogden R, Thorpe RS. Molecular evidence for ecological speciation in tropical habitats. Proc Natl Acad Sci USA. 2002;99(21):13612–13615. PubMed PMC

Nosil P. Speciation with gene flow could be common. Mol Ecol. 2008;17(9):2103–2106. PubMed

Pavey SA, Collin H, Nosil P, Rogers SM. The role of gene expression in ecological speciation. Ann N Y Acad Sci. 2010;1206(1):110–129. PubMed PMC

Knisbacher BA, Levanon EY. DNA and RNA editing of retrotransposons accelerate mammalian genome evolution. Ann N Y Acad Sci. 2015;1341(1):115–125. PubMed

Carmi S, Church GM, Levanon EY. Large-scale DNA editing of retrotransposons accelerates mammalian genome evolution. Nat Commun. 2011;2:519. PubMed

Knisbacher BA, Levanon EY. DNA editing of LTR retrotransposons reveals the impact of APOBECs on vertebrate genomes. Mol Biol Evol. 2016;33(2):554–567. PubMed PMC

Burns CM, et al. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature. 1997;387(6630):303–308. PubMed

Nevo E. Molecular evolution and ecological stress at global, regional and local scales: The Israeli perspective. J Exp Zool. 1998;282(1‐2):95–119.

Ashburner M, et al. The Gene Ontology Consortium Gene ontology: Tool for the unification of biology. Nat Genet. 2000;25(1):25–29. PubMed PMC

Blake JA, Bult CJ, Eppig JT, Kadin JA, Richardson JE. Mouse Genome Database Group The mouse genome database genotypes: Phenotypes. Nucleic Acids Res. 2009;37(Database issue) Suppl 1:D712–D719. PubMed PMC

Fang X, et al. Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax. Nat Commun. 2014;5:3966. PubMed

Esnault C, et al. APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature. 2005;433(7024):430–433. PubMed

Pinto Y, Cohen HY, Levanon EY. Mammalian conserved ADAR targets comprise only a small fragment of the human editosome. Genome Biol. 2014;15(1):R5. PubMed PMC

Leung AK, Sharp PA. MicroRNA functions in stress responses. Mol Cell. 2010;40(2):205–215. PubMed PMC

Lövy M, et al. Habitat and burrow system characteristics of the blind mole rat Spalax galili in an area of supposed sympatric speciation. PLoS One. 2015;10(7):e0133157. PubMed PMC

Polyakov A, Beharav A, Avivi A, Nevo E. Mammalian microevolution in action: Adaptive edaphic genomic divergence in blind subterranean mole-rats. Proc Biol Sci. 2004;271(Suppl 4):S156–S159. PubMed PMC

Nevo E, Bar-El H. Hybridization and speciation in fossorial mole rats. Evolution. 1976;30(4):831–840. PubMed

Nevo E. Speciation in action and adaptation in subterranean mole rats: Patterns and theory. Ital J Zool (Modena) 1985;52(1-2):65–95.

Ivanitskaya E, Rashkovetsky L, Nevo E. Chromosomes in a hybrid zone of Israeli mole rats (Spalax, Rodentia) Russ J Genet. 2010;46(10):1149–1151. PubMed

Savolainen V, et al. Sympatric speciation in palms on an oceanic island. Nature. 2006;441(7090):210–213. PubMed

Via S. Sympatric speciation in animals: The ugly duckling grows up. Trends Ecol Evol. 2001;16(7):381–390. PubMed

Feder JL, Egan SP, Nosil P. The genomics of speciation-with-gene-flow. Trends Genet. 2012;28(7):342–350. PubMed

Stranger BE, et al. Population genomics of human gene expression. Nat Genet. 2007;39(10):1217–1224. PubMed PMC

Tzung K-W, et al. Early depletion of primordial germ cells in zebrafish promotes testis formation. Stem Cell Rep. 2015;4(1):61–73. PubMed PMC

Navarro-Martín L, Galay-Burgos M, Piferrer F, Sweeney G. Characterisation and expression during sex differentiation of Sox19 from the sea bass Dicentrarchus labrax. Comp Biochem Physiol B Biochem Mol Biol. 2012;163(3-4):316–323. PubMed

Leung AK, Sharp PA. MicroRNAs: A safeguard against turmoil? Cell. 2007;130(4):581–585. PubMed

Liu C, et al. Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell. 2010;6(5):433–444. PubMed PMC

Gao W, et al. MiR-615-5p is epigenetically inactivated and functions as a tumor suppressor in pancreatic ductal adenocarcinoma. Oncogene. 2015;34(13):1629–1640. PubMed

Shapiro JA. Evolution: A View from the 21st Century. FT Press Science; Upper Saddle River, NJ: 2011.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...